Light transport probing

conventional photography

degrees of freedom = m

degrees of freedom $= m \times n$

degrees of freedom $= m \times n$

degrees of freedom $= m \times n$

$$\prod = \sum_{i=1}^K \left|_{\mathbf{m}_i} \right|$$

experimental setup

 $\begin{array}{ccc} & & & \text{step 4} \\ \text{close shutter} & & \text{repeat } K \text{ times} \end{array}$

step 3 attenuate image with vector \mathbf{m}_i (dual code)

step 2 illuminate scene with vector \mathbf{l}_i (primal code)

 $\begin{array}{ccc} \text{step 5} & \text{step 4} \\ \text{close shutter} & \text{repeat } K \text{ times} \end{array}$

step 3 attenuate image with vector \mathbf{m}_i (dual code)

step 2 illuminate scene with vector \mathbf{l}_i (primal code)

 $\begin{array}{ccc} \text{step 5} & \text{step 4} \\ \text{close shutter} & \text{repeat } K \text{ times} \end{array}$

step 3 attenuate image with vector \mathbf{m}_i (dual code)

step 2 illuminate scene with vector \mathbf{l}_i (primal code)

 step 3 attenuate image with vector \mathbf{m}_i (dual code)

step 2 illuminate scene with vector \mathbf{l}_i (primal code)

step 5

step 4 close shutter repeat K times

step 3 attenuate image with vector \mathbf{m}_i (dual code)

step 2 illuminate scene with vector \mathbf{l}_i (primal code)

step 5

step 4 close shutter repeat K times

step 3 attenuate image with vector \mathbf{m}_i (dual code)

step 2 illuminate scene with vector \mathbf{l}_i (primal code)

 $\begin{array}{ccc} & \text{step 5} & \text{step 4} \\ & \text{close shutter} & \text{repeat } K \text{ times} \end{array}$

step 3 attenuate image with vector \mathbf{m}_i (dual code)

step 2 illuminate scene with vector \mathbf{l}_i (primal code)

step 5 step 4 close shutter repeat K times

step 3 attenuate image with vector \mathbf{m}_i (dual code)

step 2 illuminate scene with vector \mathbf{l}_i (primal code)

 $\begin{array}{ccc} & \text{step 5} & \text{step 4} \\ \text{close shutter} & \text{repeat } K \text{ times} \end{array}$

step 3 attenuate image with vector \mathbf{m}_i (dual code)

step 2 illuminate scene with vector \mathbf{l}_i (primal code)

step 5

step 4 close shutter repeat K times

step 3 attenuate image with vector \mathbf{m}_i (dual code)

step 2 illuminate scene with vector \mathbf{l}_i (primal code)

Rademacher primal-dual codes

stochastic diagonal estimator [Bekas et al. 07]

```
primal codes are Rademacher random vectors: \mathbf{l}_i = \text{random vector in } \{-1,+1\}^m dual codes derive from primal code: \mathbf{m}_i = \mathbf{l}_i codes converge to identity probing matrix: (\mathbf{I}\odot\mathbf{T})\mathbf{1} \approx \frac{1}{K}\sum_{i=1}^K \mathbf{m}_i\odot\mathbf{T}\,\mathbf{l}_i variance of pixel n for K primal-dual codes =\frac{1}{K}\sum_{m=1,n\neq m}^M \mathbf{T}_{nm}^2 aperture correlation (microscopy) is a diagonal estimator [Wilson et al. 96, Levoy et al. 04]
```

stochastic estimator for general probing

dual codes for general probing matrix ${f \Pi}\colon\ {f m}_i={f \Pi}\ {f l}_i$

Direct-global separation using diagonal probing (co-axial case)

designing probing matrices

transport matrix

designing probing matrices

Coaxial configuration: use a beamsplitter to make projector and camera effectively collocated

transport matrix

designing probing matrices

Coaxial configuration: use a beamsplitter to make projector and camera effectively collocated

transport matrix

coaxial example: contrast-enhancing direct light

conventional photo

all light paths

coaxial example: contrast-enhancing direct light

conventional photo

direct + ½ indirect

direct + 1/2 indirect light paths

coaxial example: contrast-enhancing direct light

 $\begin{array}{c|c}
1\\
\hline
1\\
\hline
1\\
\hline
1\\
\hline
1\\
\hline
\end{array}$

direct + 1/16 indirect light paths

all light paths

indirect light paths

medium to long range indirect light paths

long range indirect light paths

all light paths

indirect light paths

direct + back-scatter light paths

What if my camera and projector are not co-axial?