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Course announcements

Homework 5 has been posted.
- Due on Friday November 9%,

Any problems with homework 47
No elevator pitch presentations for final projects.
Extra office hours this week:

- Monday 1:30-3:30 pm.

- Tuesday noon-2:00 pm.

- Friday’s office hours will be held by Alankar.

Great talk this Thursday: Eric Fossum, inventor of the CMOS sensor,
will talk about quantum (i.e., photon-counting) CMQOS sensors.



Overview of today’s lecture

Leftover from last time: Generalized bas-relief ambiguity.
The light transport matrix.

Image-based relighting.

Photometric stereo revisited.

Optical computing using the light transport matrix.

Dual photography.



Slide credits

These slides were directly adapted from:

 Matt O’'Toole (CMU).



The light transport matrix
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the superposition principle
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the superposition principle

why is the error not exactly zero?

Synthetic photo

Diff between synthetic and real photos

photo taken under two light sources =

sum of

photos taken under each source individually



image-based relighting
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Image-based relighting



Let’s say | have measured T.
 What does it mean to right-multiply it with some vector |?
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Image-based relighting: Use the measurements | already have of the
scene (the pictures | took when measuring T) to simulate new
illuminations of the scene.
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Acquiring the Reflectance Field [Debevec et al. 2000]

image-based rendering & relighting

Light stage 1.0
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Acquiring the Reflectance Field

image-based rendering & relighting

Great demonstration: https://www.youtube.com/watch?v=mkzLLz1tXds DePevecetal SIG 2000



Acquiring the Reflectance Field
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Light stage 6, Debevec et al., 2006



Photometric stereo revisited



the light transport matrix
Sloan et al 02, Ng et al 03, Seitz et al 05,Sen et al 05, ...

X 1m

transport matrix is a function of scene geometry, reflectance, etc.



Photometric Stereo (woodham, 1980]

. lj Diffuse reflections:

What is this?
Lj \
tij = pi(Ni - L)l

_ N, 1,

el AN
3x1 vector, 3x1 vector,
unknown known

simplifying assumptions:
directional light source,
convex object

camera pixel ; and light source
produce image intensity t;;



Photometric Stereo woodham, 1980]

Diffuse reflections:

tij = pi(Ni - Lj)l;

— N, -

A ™~
3x1 vector, 3x1 vector,
unknown known

simplifying assumptions:
directional light source,
convex object



Photometric Stereo woodham, 1980]

3 Xm

n X m n x 3
(rank 3)

recover surface normals + albedo by decomposing transport matrix "I



Recovering Scene Geometry

“Mobile” Light Stage, Debevec et al., 2014



Optical computing using the light transport
matrix



main difficulties

question: what are the challenges with analyzing T'?
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main difficulties

question: what are the challenges with analyzing T'?

1012 elements

* matrix can be extremely large
* elements not directly accessible
* global structure poorly understood



computing with light

numerical algorithms implemented directly in optics
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computing with light

numerical algorithms implemented directly in optics




find an illumination pattern that
when projected onto scene,
we get the same photo back
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computing transport eigenvectors

beam
splitter

@/

camera

projector

eigenvector of a square matrix T
when projected onto scene,
we get the same photo back
(multiplied by a scalar)

project capture
| g Al

numerical goal
find 1, A such that

Tl = Al

and \ is maximal




optical power iteration

goal: find principal eigenvector of T
observation: itis a fixed point of the sequence 1, T1, T?1, T?1, ...

properties
* linear convergence [trefethen and Bau 1997]
* eigenvalues must be distinct
* ], cannot be orthogonal to
principal eigenvector




optical power iteration

goal: find principal eigenvector of T
observation: itis a fixed point of the sequence 1, T1, T?1, T?1, ...




optical power iteration

goal: find principal eigenvector of T
observation: itis a fixed point of the sequence 1, T1, T?1, T?1, ...




optical power iteration

goal: find principal eigenvector of T
observation: it is a fixed point of the sequence 1, T1, T?1, T°1,...
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optical power iteration

goal: find principal eigenvector of T

observation: it is a fixed point of the sequence 1, T1, T?1, T4, ...

optical domain
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optical power iteration

goal: find principal eigenvector of T
observation: it is a fixed point of the sequence 1, T1, T?1, T°1,...
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optical power iteration

goal: find principal eigenvector of T
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How would you measure the light transport matrix T?

1012 elements

* matrix can be extremely large
* elements not directly accessible
* global structure poorly understood



How would you measure the light transport matrix T?

1012 elements

Exhaustive/naive approach: turn on projector pixels one
at a time and take a photo for each of them.
* What does each photo correspond toin T?



How would you measure the light transport matrix T?

1012 elements

Exhaustive/naive approach: turn on projector pixels one
at a time and take a photo for each of them.
* How many photos do we need to capture?
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Inverse transport






diffuser







input photo




How do you solve this problem if you
know the light transport matrix T?

input photo illumination




input photo illumination




input photo illumination




numerical goal
o given photo p, find illumination 1
that minimizes

How do you usually solve for | when T is large?

2

input photo illumination




Reminder from lecture 10: Gradient descent

Given the loss function:
E(f) = IGf —vl|?

Minimize by iteratively computing:

. (ri)Tri

R R S N L T L . _
f fromrt, rt=v—Afh M=o Ern

fori=0,1, .. N

s this cheaper than the pseudo-inverse approach?

* We never need to compute A, only its products with vectors f, r.

* Vectorsf, r are images.

e Because A is the Laplacian matrix, these matrix-vector products can
be efficiently computed using convolutions with the Laplacian kernel.



Gradient descent in this case

Given the loss function:

E(f) = lIGf —vll?

Minimize by iteratively computing:

T -
I S Gl
fl+1 =fl—mir, rt=v—-Af', n'= T A fori=0,1,..,N

s this cheaper than the pseudo-inverse approach?
 We never need to compute A, only its products with vectors f, r.

s Vectors+raretmages- What are f, r in this case?
- \ i the Lanlac ot . I




inverting light transport

beam
splitter

camera

projector

numerical goal
given photo p, find illumination ]
that minimizes

1T 1P

remarks
T low-rank or high-rank
T unknown & not acquired
* illumination sequence will be
specific to input photo



inverting light transport

input photo actual illumination



Dual photography



How do the light
transport matrices
for these two
scenes relate to
each other?

virtual camera

camera

Primal Configuration
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Dual Configuration




camera

Primal Configuration

Helmholtz
reciprocity: The
two matrices are
the transpose of
each other.

virtual camera

Dual Configuration

Great demonstration:
https://www.youtube.com/watch?v=eV58Ko3iFul
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