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Blurring problems in imaging 

• Motion blur
• Flutter shutter

• Motion invariant photography

• Defocus blur
• Coded aperture

• Lattice focal

• Flexible depth of field

• Wavefront coding
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Blurring and deblurring

yxk =y=k*x

Deblurring is hard:
• Need to know convolution kernel
• Deconvolution is ill posed 

? =∗



Deconvolution is ill posed

? =

=?

Solution 1:

Solution 2:

∗

k*x=y
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Convolution and deconvolution in Frequency domain

yxk = y=k*x

𝒀𝒘=𝑲𝒘 ∙ 𝑿𝒘

Primal domain: convolution

Frequencey domain: multiplication

Deconvolution in Frequency domain: division

෢𝑿𝒘=
𝒀𝒘

𝑲𝒘

Division by zero
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Deconvolution and noise amplification

yxk = y=k*x

𝒀𝒘=𝑲𝒘 ∙ 𝑿𝒘

Primal domain: convolution

Frequencey domain: multiplication

Deconvolution in Frequency domain: division

෢𝑿𝒘=
𝒀𝒘

𝑲𝒘

Division by zero

+n

+𝑵𝒘

+
𝑵𝒘

𝑲𝒘 Noise contribution 
increases when 
𝑲𝒘 is small



Computational photography approaches to 
blurring problems

• Motion blur
• Flutter shutter

• Motion invariant photography

• Defocus blur
• Coded aperture

• Lattice focal

• Flexible depth of field

• Wavefront coding



Flutter Shutter

Engineer motion PSF (coding exposure time) so it becomes invertible!

[Raskar et al. 2006]

[Raskar et al. 2006]



Traditional Camera

Shutter is OPEN

[Raskar et al. 2006]



Flutter Shutter

[Raskar et al. 2006]



Shutter is OPEN and 

CLOSED

[Raskar et al. 2006]



Lab Setup
[Raskar et al. 2006]



Blurring 

=

Convolution

Traditional Camera: Box Filter

sinc Function

[Raskar et al. 2006]

Fourier magnitudes

spatial convolution



Flutter Shutter: Coded Filter

Preserves High Frequencies!!!

[Raskar et al. 2006]

spatial convolution

Fourier magnitudes



Comparison
[Raskar et al. 2006]



Inverse Filter Unstable

Inverse Filter stable

[Raskar et al. 2006]



Short Exposure Long Exposure Coded Exposure

Ground TruthMatlab Richardson-Lucy

Our result



Are all codes “good”?

Alternate

All ones

Random

Our Code

[Raskar et al. 2006]



License Plate Retrieval

[Raskar et al. 2006]



License Plate Retrieval

[Raskar et al. 2006]



Computational photography approaches to 
blurring problems

• Motion blur
• Flutter shutter

• Motion invariant photography

• Defocus blur
• Coded aperture

• Lattice focal

• Flexible depth of field

• Wavefront coding
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Overcoming motion blur

Levin et al. Motion Invariant Photography   SIGGRAPH, 2008.
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Overcoming motion blur

Levin et al. Motion Invariant Photography   SIGGRAPH, 2008.

Removing motion blur is hard:

• Need to know exact motion velocity (blur kernel)

• Need to segment image

Deblurring red car



25

Overcoming motion blur

Levin et al. Motion Invariant Photography   SIGGRAPH, 2008.
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Overcoming motion blur

Levin et al. Motion Invariant Photography   SIGGRAPH, 2008.
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Overcoming motion blur

Levin et al. Motion Invariant Photography   SIGGRAPH, 2008.

Motion invariant blur
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Overcoming motion blurMotion Invariant Photography
Levin et al. Motion Invariant Photography   SIGGRAPH, 2008.

Motion invariant deblurring
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Static camera

Unknown and 

variable blur 

Our parabolic input

Blur invariant to 

velocity

Our output after 

deblurring

NON-BLIND 

deblurring

Levin et al. Motion Invariant Photography   SIGGRAPH, 2008.



The space time volume

xyt- space-time volume

xt-slice

x

y

x

t

t



The space time volume

xt-slice

x

Static objects- vertical lines

Moving objects slanted lines, slope ~ motion velocity

t



Camera integration

t

x

captured image (1D)

Static objects- sharp

Moving objects- blurred

Pixel integration curves



Shearing

x

Static object coordinates 

x’

Moving object coordinates

t t

Coordinate

change

Shearing: ),( tstx −→),( tx



Shearing

t

x x

Shearing: ),( tstx −→),( tx

Static object coordinates Moving object coordinates

t
Displacement:

Can we find a shear invariant integration curve? 

Solution: parabolic curve! 



Solution: parabolic curve - shear invariant

x

t
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Solution: parabolic curve - shear invariant

t
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Solution: parabolic curve - shear invariant

t
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Solution: parabolic curve - shear invariant

t
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Solution: parabolic curve - shear invariant

t
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Solution: parabolic curve - shear invariant

t
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Solution: parabolic curve - shear invariant

x

Static object coordinates Moving object coordinates

Shearing: ),( tstx −→),( tx

Sheared parabola     Shifted parabola

t t



x

Solution: parabolic curve - shear invariant

x

Static object coordinates Moving object coordinates

Shearing: ),( tstx −→),( tx

Sheared parabola     Shifted parabola

2)( ttf = stttf s −= 2)(

( ) 4/2/         22
sst −−=

b c

t t



Solution: parabolic curve - shear invariant

For any velocity (slope),

• there is one time instant where curve is tangent 

• corresponds to moment when object is tracked.

• The parabola has a linear derivative

=> spends equal time tracking each velocity.

x

t



Hardware construction

• Ideally move sensor                                                         

(requires same hardware as existing stabilization systems)

• In prototype implementation: rotate camera 

variable 

radius

cam

Rotating 

platform

Lever



Input from a static camera Deblurred output from our camera 

Human motion- no perfect linearity



Violating 1D motion assumption- forward motion

Input from a static camera Deblurred output from our camera 



Violating 1D motion assumption- stand-up motion

Input from a static camera Deblurred output from our camera 



Violating 1D motion assumption- rotation

Input from a static camera Deblurred output from our camera 



Limitations & approximations

Limitations:

• 1-D velocity

• Pre-defined velocities range

Approximations:

• PSFs differs in boundaries for different velocities

• Deblurred objects captured at different times

PSF

x

51



Uniqueness & optimality

• Uniqueness – Parabola is the only shear invariant 
curve

• Optimality – Most stable inversion of PSF: 
෣𝑝𝑠𝑓(𝑤)−1 is the highest you can get, 

provably.

𝑦 = 𝑝𝑠𝑓 ∗ 𝑥

ො𝑦 = ෢𝑝𝑠𝑓 ∙ ෝ𝑥

෢𝑝𝑠𝑓−1 ∙ ො𝑦 = ෝ𝑥

ℱ

∎−1
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Computational photography approaches to 
blurring problems

• Motion blur
• Flutter shutter

• Motion invariant photography

• Defocus blur
• Coded aperture

• Lattice focal

• Flexible depth of field

• Wavefront coding



Image and Depth from a Conventional Camera 
with a Coded Aperture

Anat Levin, Rob Fergus,    
Frédo Durand, William Freeman
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Coded aperture - Introduction

Problem:

Objects that are not in focus seem blurry.

Goal:
Single input image:

Output #1: Depth map

Output #2: All-focused image

55



Lens
Camera sensor

Point spread 
function

Image of a point light 

source

Focal plane

Lens’ aperture 

Defocus blur
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LensObject
Camera sensor

Point spread 
function

Focal plane

Defocus blur

Image of a defocused 

point light source
Lens’ aperture 
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Lens
Camera sensor

Point spread 
function

Object

Focal plane

Defocus blur

Lens’ aperture 
Image of a defocused 

point light source
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Lens
Camera sensor

Point spread 
function

Object

Focal plane

Defocus blur

Lens’ aperture 
Image of a defocused 

point light source
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Lens
Camera sensor

Point spread 
function

Object

Focal plane

Defocus blur

Lens’ aperture 
Image of a defocused 

point light source

Blur ↔ Depth ↔ PSF (Filter) Scale
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1-D Frequency analysis

Time

FrequencyFrequency

Time

Larger filter scale

Loss of high frequencies

Reconstruction is difficult 61



Main Challenges

1. Depth discrimination

A smooth scene or defocus blur?

Lack or loss of high frequencies?

2.   Loss of high frequencies         Reconstruction is difficult.

Out of focus
?



62



Coded aperture

• Mask within the aperture of the lens

• Defocus patterns differ from natural images 
=> Easier depth discrimination

• Defocus kernel preserves more high frequencies (not a LPF)

63
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Lens with coded 

aperture

Focal plane

Camera sensor

Point spread 
function

Coded aperture: lens with occluder

Image of a point light 

source
Aperture pattern
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Lens with coded 

aperture

Object

Focal plane

Camera sensor

Point spread 
function

Coded aperture: lens with occluder

Image of a defocused 

point light source
Aperture pattern
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Lens with coded 

aperture

Object

Focal plane

Camera sensor

Point spread 
function

Coded aperture: lens with occluder

Image of a defocused 

point light source
Aperture pattern
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Lens with coded 

aperture

Object

Focal plane

Camera sensor

Point spread 
function

Coded aperture: lens with occluder

Image of a defocused 

point light source
Aperture pattern
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Lens with coded 

aperture

Object

Focal plane

Camera sensor

Point spread 
function

Coded aperture: lens with occluder

Image of a defocused 

point light source
Aperture pattern
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Image of a point light source

Captured ImageCaptured Image

Conventional 

Aperture

Defocused images
≠ natural images!

Coded 

Aperture

71



Conventional Coded

Correct scale

Smaller scale

Larger scale

Scale estimation - comparison

72



Input 

83



All-focused             

(deconvolved)

84



Input 
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All-focused                    

(deconvolved) 
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Digital refocusing from a single image
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Digital refocusing from a single image
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Digital refocusing from a single image
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Digital refocusing from a single image
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Digital refocusing from a single image
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Digital refocusing from a single image
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Digital refocusing from a single image
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Disadvantages of coded aperture

[Levin et al. 2009]

Blocks light

OTF still have zeros and not so easy to invert

Another solution: Lattice focal lens

Does not block light

OTF as high as possible



Lattice Focal Lens

[Levin et al. 2009]

superimpose array of lenses with 

different focal lengths!

time



Lattice Focal Lens

[Levin et al. 2009]

conventional camera lattice focal lens all-in-focus image from 

lattice focal lens



Computational photography approaches to 
blurring problems

• Motion blur
• Flutter shutter

• Motion invariant photography

• Defocus blur
• Coded aperture

• Lattice focal

• Flexible depth of field

• Wavefront coding



Flexible Depth of Field Photography
Hajime Nagahara, Sujit Kuthirummal,
Changyin Zhou, and Shree K. Nayar
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Flexible Depth of Field Photography

Problem:

Objects that are not in focus seem blurry.

Goal:

• Compute extended DOF (all-focus image) from a single image.

• Change imaging scheme to achieve depth-invariant blur so 
computational deblurring is easier

102



Main Challenge

• Trade-off between DOF and SNR

• A lens with a greater f-number projects darker images

103

Lens
Camera sensor

Point spread 
function

Focal plane



Main Challenge

• Trade-off between DOF and SNR

• A lens with a greater f-number projects darker images

Lens
Camera sensor

Point spread 
function

Object

Focal plane
104



105



Flexible Depth of Field

106
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Prototype System
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Extended Depth of Field

Captured Image
(f/1.4, T=0.36sec) Computed EDOF Image

Image from Normal 
Camera (f/1.4, T=0.36sec, 
Near Focus)

Image from Normal 
Camera (f/8, T=0.36sec, 
Near Focus) with Scaling109

Uniform
kernel



Extended Depth of Field: Low Light Imaging

Captured Image
(f/1.4, T=0.72sec)

Computed EDOF Image Image from Normal Camera
(f/1.4, T=0.72sec, Near Focus)

Image from Normal Camera
(f/8, T=0.72sec, Near Focus) 
with Scaling
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Wavefront Coding

• how to obtain a depth invariant PSF without mechanically moving parts

→ change the lens!

[Dowski and Cathey 1995]

cubic phase plate



Lattice Focal Lens

[Levin et al. 2009]

superimpose array of lenses with 

different focal lengths!

time



Wavefront Coding v.s. lattice focal

time

f1

f2

f3

f4

f1 f2

f3 f4

Cubic phase plate Lattice focal phase plate

A focal area

d1 d2 d3 d4



Extended DOF Solutions

• Coded aperture

• Wavefront coding

• Focal Sweep

• Lattice-Focal

121

-> Highest possible OTF

Depth invariant 

Need to estimate depth as 
part of inversion 


