Computational Cameras

Anat Levin Department of Electrical Engineering, Technion

Blurring problems in imaging

- Motion blur
 - Flutter shutter
 - Motion invariant photography
- Defocus blur
 - Coded aperture
 - Lattice focal
 - Flexible depth of field
 - Wavefront coding

Fast shutter speed

Large aperture opening

Small aperture opening

Blurring and deblurring

Deblurring is hard:

- Need to know convolution kernel
- Deconvolution is ill posed

Deconvolution is ill posed

......

Solution 1:

Solution 2:

Convolution and deconvolution in Frequency domain

Primal domain: convolution
$$y = k^* x$$

Frequencey domain: multiplication $Y_w = K_w \cdot X_w$

Deconvolution in Frequency domain: division

Deconvolution and noise amplification

Primal domain: convolution $y=k^*x + n$

Frequencey domain: multiplication $Y_w = K_w$.

$$Y_w = K_w \cdot X_w + N_w$$

Deconvolution in Frequency domain: division

Computational photography approaches to blurring problems

- Motion blur
 - Flutter shutter
 - Motion invariant photography
- Defocus blur
 - Coded aperture
 - Lattice focal
 - Flexible depth of field
 - Wavefront coding

Large aperture opening

Slow shutter speed

Fast shutter speed

Small aperture opening

Flutter Shutter

[Raskar et al. 2006]

Engineer motion PSF (coding exposure time) so it becomes invertible

Traditional Camera

Shutter is OPEN

Flutter Shutter

Shutter is OPEN and CLOSED

Fourier magnitudes

Traditional Camera: Box Filter

M

Preserves High Frequencies!!!

Fourier magnitudes

Flutter Shutter: Coded Filter

Inverse Filter stable

m

License Plate Retrieval

[Raskar et al. 2006]

License Plate Retrieval

Computational photography approaches to blurring problems

- Motion blur
 - Flutter shutter
 - Motion invariant photography
- Defocus blur
 - Coded aperture
 - Lattice focal
 - Flexible depth of field
 - Wavefront coding

Fast shutter speed

Large aperture opening

Small aperture opening

Levin et al. Motion Invariant Photography SIGGRAPH, 2008.

Removing motion blur is hard:

- Need to know exact motion velocity (blur kernel)
- Need to segment image

Levin et al. Motion Invariant Photography SIGGRAPH, 2008.

Space

Space

Static- recorded image

Levin et al. Motion Invariant Photography SIGGRAPH, 2008.

Static- recorded image

Tracking- recorded image

Develo di envienne forma e e e e e

Parabolic- view from sensor

Levin et al. Motion Invariant Photography SIGGRAPH, 2008.

Static- recorded image

Tracking- recorded image

Motion invariant blur

Motion Invariant Photography

Levin et al. Motion Invariant Photography SIGGRAPH, 2008.

Static- recorded image

Tracking- recorded image

Space Time Space ime

Space

Time

Levin et al. Motion Invariant Photography SIGGRAPH, 2008.

Static camera Unknown and variable blur

Our parabolic input

Blur invariant to velocity

Our output after deblurring

The space time volume

The space time volume

Camera integration

Shearing

Shearing:
$$(x,t) \rightarrow (x-st,t)$$

Shearing

Shearing: $(x,t) \rightarrow (x-st,t)$

Can we find a shear invariant integration curve?

Solution: parabolic curve!

Solution: parabolic curve - shear invariant

Solution: parabolic curve - shear invariant

Solution: parabolic curve - shear invariant

Sheared parabola

Shifted parabola

For any velocity (slope),

- there is one time instant where curve is tangent
- corresponds to moment when object is tracked.
- The parabola has a linear derivative
- => spends equal time tracking each velocity.

Hardware construction

Ideally move sensor

(requires same hardware as existing stabilization systems)

In prototype implementation: rotate camera

Human motion- no perfect linearity

Input from a static camera

Deblurred output from our camera

Violating 1D motion assumption- forward motion

Input from a static camera

Deblurred output from our camera

Violating 1D motion assumption- stand-up motion

Input from a static camera

Deblurred output from our camera

Violating 1D motion assumption- rotation

Input from a static camera

Deblurred output from our camera

Limitations & approximations

Limitations:

- 1-D velocity
- Pre-defined velocities range

Approximations:

- PSFs differs in boundaries for different velocities
- Deblurred objects captured at different times

Uniqueness & optimality

- Uniqueness Parabola is *the only* shear invariant curve
- Optimality Most stable inversion of PSF: $p\widehat{sf(w)}^{-1}$ is the highest you can get, **provably.**

Computational photography approaches to blurring problems

Slow shutter speed

- Motion blur
 - Flutter shutter
 - Motion invariant photography
- Defocus blur
 - Coded aperture
 - Lattice focal
 - Flexible depth of field
 - Wavefront coding

Large aperture opening

Fast shutter speed

Small aperture opening

Image and Depth from a Conventional Camera with a Coded Aperture

Anat Levin, Rob Fergus, Frédo Durand, William Freeman

Coded aperture - Introduction

Problem:

Objects that are not in focus seem blurry.

Goal:

Single input image:

Output #1: Depth map

Output #2: All-focused image

Lens' aperture

Image of a point light source

Camera sensor Point spread function

Lens' aperture

Lens' aperture

Lens' aperture

1-D Frequency analysis

Larger filter scale

- \implies Loss of high frequencies
- \implies Reconstruction is difficult

Main Challenges

Depth discrimination
A smooth scene or defocus blur?
Lack or loss of high frequencies?

2. Loss of high frequencies \implies Reconstruction is difficult.

Coded aperture

• Mask within the aperture of the lens

- Defocus patterns differ from natural images
 - => Easier depth discrimination
- Defocus kernel preserves more high frequencies (not a LPF)

Build your own coded aperture

Somm

NON LENS

uwzso

Voila!

Aperture pattern

Image of a point light source

Aperture pattern

Aperture pattern

Aperture pattern

Aperture pattern

Image of a point light source

Defocused images ≠ natural images!

Coded Aperture

Captured Image

Scale estimation - comparison

72

Input

All-focused (deconvolved)

THE

COBR

1

Input

All-focused (deconvolved)

Disadvantages of coded aperture

Blocks light

OTF still have zeros and not so easy to invert

Another solution: Lattice focal lens

Does not block light

OTF as high as possible

Lattice Focal Lens

Lattice Focal Lens

conventional camera

lattice focal lens

all-in-focus image from lattice focal lens

Computational photography approaches to blurring problems

- Motion blur
 - Flutter shutter
 - Motion invariant photography
- Defocus blur
 - Coded aperture
 - Lattice focal
 - Flexible depth of field
 - Wavefront coding

Fast shutter speed

Large aperture opening

Small aperture opening

Flexible Depth of Field Photography

Hajime Nagahara, Sujit Kuthirummal, Changyin Zhou, and Shree K. Nayar

Flexible Depth of Field Photography

Problem:

Objects that are not in focus seem blurry.

Goal:

- Compute extended DOF (all-focus image) from a single image.
- Change imaging scheme to achieve *depth-invariant* blur so computational deblurring is easier

Main Challenge

- Trade-off between DOF and SNR
- A lens with a greater f-number projects darker images

Main Challenge

- Trade-off between DOF and SNR
- A lens with a greater f-number projects darker images

Flexible Depth of Field

Prototype System

Extended Depth of Field

Uniform kernel

Captured Image (*f*/1.4, *T*=0.36sec)

Computed EDOF Image

Image from Normal Camera (f/1.4, T=0.36sec, Near Focus) Image from Normal Camera (f/8, T=0.36sec, Near Focus) with Scaling

Extended Depth of Field: Low Light Imaging

Captured Image (*f*/1.4, *T*=0.72sec)

Computed EDOF Image

Image from Normal Camera (*f*/8, *T*=0.72sec, Near Focus) with Scaling

Wavefront Coding

- how to obtain a depth invariant PSF without mechanically moving parts
 - \rightarrow change the lens!

Lattice Focal Lens

Extended DOF Solutions

