
Deconvolution

15-463, 15-663, 15-862
Computational Photography

Fall 2018, Lecture 12http://graphics.cs.cmu.edu/courses/15-463

Course announcements

• Homework 3 is out.
- Due October 12th.
- Any questions?

• Project logistics on the course website.
- Next week I’ll schedule extra office hours in case you want to discuss project ideas.

• Make-up lecture details: Friday October 12th, 1:30-3:00 pm, GHC 4102 (this room).
- Next week I’ll schedule extra office hours for those of you who cannot make it to the
make-up lecture.

• Additional guest lecture next Monday: Anat Levin, “Coded photography.”

Overview of today’s lecture

• Leftover from lightfield lecture.

• Sources of blur.

• Deconvolution.

• Blind deconvolution.

Slide credits

Most of these slides were adapted from:

• Fredo Durand (MIT).
• Gordon Wetzstein (Stanford).

Why are our images blurry?

Why are our images blurry?

• Lens imperfections.

• Camera shake.

• Scene motion.

• Depth defocus.

Lens imperfections

object distance D focus distance D’

• Ideal lens: An point maps to a point at a certain plane.

Lens imperfections

object distance D focus distance D’

• Ideal lens: An point maps to a point at a certain plane.
• Real lens: A point maps to a circle that has non-zero minimum radius among all planes.

What is the effect of this on the images we capture?

Lens imperfections

object distance D focus distance D’

• Ideal lens: An point maps to a point at a certain plane.
• Real lens: A point maps to a circle that has non-zero minimum radius among all planes.

Shift-invariant blur.

blur kernel

Lens imperfections
What causes lens imperfections?

Lens imperfections
What causes lens imperfections?
• Aberrations.

• Diffraction.

large
aperture

small
aperture

(Important note: Oblique
aberrations like coma and
distortion are not shift-
invariant blur and we do
not consider them here!)

Lens as an optical low-pass filter

object distance D focus distance D’

Point spread function (PSF): The blur kernel of a lens.
• “Diffraction-limited” PSF: No aberrations, only diffraction. Determined by aperture shape.

diffraction-limited
PSF of a circular

aperture

blur kernel

Lens as an optical low-pass filter

object distance D focus distance D’

Point spread function (PSF): The blur kernel of a lens.
• “Diffraction-limited” PSF: No aberrations, only diffraction. Determined by aperture shape.

Optical transfer function (OTF): The Fourier transform of the PSF. Equal to aperture shape.

diffraction-limited
PSF of a circular

aperture

blur kernel

diffraction-limited
OTF of a circular

aperture

Lens as an optical low-pass filter

image from a perfect lens

*

imperfect lens PSF

=

image from imperfect lens

x * c = b

Lens as an optical low-pass filter

image from a perfect lens

*

imperfect lens PSF

=

image from imperfect lens

x * c = b

If we know c and b, can we recover x?

Quick aside: optical anti-aliasing

Lenses act as (optical) low-pass filters.

made of silicon, emits
electrons from photons

photodiodephotodiode

silicon for read-
out etc. circuitry

color filtercolor filter

helps photodiode
collect more light

(also called lenslet)

microlensmicrolens

• Lenslets also filter the image to
avoid resolution artifacts.

• Lenslets are problematic when
working with coherent light.

• Many modern cameras do not
have lenslet arrays.

We will discuss these issues in
more detail at a later lecture.potential

well
potential

well

stores emitted
electrons

Slide from lecture 2: Basic imaging sensor design

Quick aside: optical anti-aliasing

Lenses act as (optical) smoothing filters.
• Sensors often have a lenslet array in front of them as an anti-aliasing (AA) filter.
• However, the AA filter means you also lose resolution.
• Nowadays, due the large number of sensor pixels, AA filters are becoming unnecessary.

Photographers often hack their
cameras to remove the AA filter, in
order to avoid the loss of resolution.

a.k.a. “hot rodding”

Quick aside: optical anti-aliasing

without AA filter with AA filter

Example where AA filter is needed

Quick aside: optical anti-aliasing

without AA filter with AA filter

Example where AA filter is unnecessary

Lens as an optical low-pass filter

image from a perfect lens

*

imperfect lens PSF

=

image from imperfect lens

x * c = b

If we know c and b, can we recover x?

Deconvolution

x * c = b
If we know c and b, can we recover x?

Deconvolution

x * c = b
Reminder: convolution is multiplication in Fourier domain:

F(x) . F(c) = F(b)
If we know c and b, can we recover x?

Deconvolution

x * c = b

After division, just do inverse Fourier transform:

Reminder: convolution is multiplication in Fourier domain:

F(x) . F(c) = F(b)
Deconvolution is division in Fourier domain:

F(xest) = F(b) \ F(c)

xest = F-1 (F(b) \ F(c))

Deconvolution

Any problems with this approach?

Deconvolution

• The OTF (Fourier of PSF) is a low-pass filter

b = c * x + n

• The measured signal includes noise

noise term

zeros at high
frequencies

Deconvolution

• When we divide by zero, we amplify the high frequency noise

• The OTF (Fourier of PSF) is a low-pass filter

b = c * x + n

• The measured signal includes noise

noise term

zeros at high
frequencies

Naïve deconvolution

* =

b * c-1 = xest

-1

Even tiny noise can make the results awful.
• Example for Gaussian of σ = 0.05

Wiener Deconvolution

noise-dependent damping factor

Apply inverse kernel and do not divide by zero:

|F(c)|2

xest = F-1 (⋅)
|F(c)|2 + 1/SNR(ω)

F(b)

F(c)

• Derived as solution to maximum-likelihood problem under Gaussian noise assumption
• Requires noise of signal-to-noise ratio at each frequency

SNR(ω) =
signal variance at ω

noise variance at ω

Wiener Deconvolution

noise-dependent damping factor

Apply inverse kernel and do not divide by zero:

|F(c)|2

xest = F-1 (⋅)
|F(c)|2 + 1/SNR(ω)

F(b)

F(c)

Intuitively:
• When SNR is high (low or no noise), just divide by kernel.
• When SNR is low (high noise), just set to zero.

Deconvolution comparisons

naïve deconvolution Wiener deconvolution

Deconvolution comparisons

σ = 0.01 σ = 0.05 σ = 0.01

Derivation

𝑥 = 𝑐 ∗ 𝑥 + 𝑛
Noise n is assumed to be zero-
mean and independent of signal x.

Sensing model:

Derivation

𝑏 = 𝑐 ∗ 𝑥 + 𝑛
Noise n is assumed to be zero-
mean and independent of signal x.

Sensing model:

Fourier transform:

𝐵 = 𝐶 ⋅ 𝑋 + 𝑁

Why multiplication?

Derivation

Noise n is assumed to be zero-
mean and independent of signal x.

Sensing model:

Fourier transform:

Problem statement: Find function H(ω) that minimizes expected error in Fourier domain.

Convolution becomes
multiplication.

min
𝐻

𝐸 𝑋 − 𝐻 ෨𝐵
2

𝑏 = 𝑐 ∗ 𝑥 + 𝑛

𝐵 = 𝐶 ⋅ 𝑋 + 𝑁

Derivation
Replace B and re-arrange loss:

min
𝐻

𝐸 1 + 𝐻𝐶 𝑋 − 𝐻𝑁 2

min
𝐻

1 − 𝐻𝐶 2𝐸 𝑋 2 − 2 1 − 𝐻𝐶 𝐸 𝑋𝑁 + 𝐻 2𝐸 𝑁 2

Expand the squares:

Derivation
When handling the cross terms:
• Can I write the following?

𝐸 𝑋𝑁 = 𝐸 𝑋 𝐸 𝑁

Derivation
When handling the cross terms:
• Can I write the following?

𝐸 𝑋𝑁 = 𝐸 𝑋 𝐸 𝑁

Yes, because X and N are assumed independent.

• What is this expectation product equal to?

Derivation
When handling the cross terms:
• Can I write the following?

𝐸 𝑋𝑁 = 𝐸 𝑋 𝐸 𝑁

Yes, because X and N are assumed independent.

• What is this expectation product equal to?

Zero, because N has zero mean.

Derivation
Replace B and re-arrange loss:

min
𝐻

𝐸 1 + 𝐻𝐶 𝑋 − 𝐻𝑁 2

min
𝐻

1 − 𝐻𝐶 2𝐸 𝑋 2 − 2 1 − 𝐻𝐶 𝐸 𝑋𝑁 + 𝐻 2𝐸 𝑁 2

Expand the squares:

cross-term is zero

min
𝐻

1 − 𝐻𝐶 2𝐸 𝑋 2 + 𝐻 2𝐸 𝑁 2

Simplify:

How do we solve this optimization problem?

Derivation
Differentiate loss with respect to H, set to zero, and solve for H:

𝜕loss

𝜕𝐻
= 0

⇒ −2 1 − 𝐻𝐶 𝐸 𝑋 2 + 2𝐻𝐸 𝑁 2 = 0

⇒ 𝐻 =
𝐶𝐸 𝑋 2

𝐶2𝐸 𝑋 2 + 𝐸 𝑁 2

Divide both numerator and denominator with 𝐸 𝑋 2 , extract factor 1/C, and done!

Wiener Deconvolution

noise-dependent damping factor

Apply inverse kernel and do not divide by zero:

|F(c)|2

xest = F-1 (⋅)
|F(c)|2 + 1/SNR(ω)

F(b)

F(c)

• Derived as solution to maximum-likelihood problem under Gaussian noise assumption
• Requires estimate of signal-to-noise ratio at each frequency

SNR(ω) =
signal variance at ω

noise variance at ω

Natural image and noise spectra
Natural images tend to have spectrum that scales as 1 / ω2

• This is a natural image statistic

Natural image and noise spectra
Natural images tend to have spectrum that scales as 1 / ω2

• This is a natural image statistic

Noise tends to have flat spectrum, σ(ω) = constant
• We call this white noise

What is the SNR?

Natural image and noise spectra
Natural images tend to have spectrum that scales as 1 / ω2

• This is a natural image statistic

Noise tends to have flat spectrum, σ(ω) = constant
• We call this white noise

Therefore, we have that: SNR(ω) = 1 / ω2

Wiener Deconvolution

amplitude-dependent damping factor

Apply inverse kernel and do not divide by zero:

|F(c)|2

xest = F-1 (⋅)
|F(c)|2 + ω2

F(b)

F(c)

• Derived as solution to maximum-likelihood problem under Gaussian noise assumption
• Requires noise of signal-to-noise ratio at each frequency

SNR(ω) =
1

ω2

Wiener Deconvolution

gradient regularization

For natural images and white noise, equivalent to the minimization problem:

minx ‖b – c ∗ x‖2 + ‖∇x‖2

How can you prove this equivalence?

Wiener Deconvolution

gradient regularization

For natural images and white noise, it can be re-written as the minimization problem

minx ‖b – c ∗ x‖2 + ‖∇x‖2

How can you prove this equivalence?

• Convert to Fourier domain and repeat the proof for Wiener deconvolution.
• Intuitively: The ω2 term in the denominator of the special Wiener filter is the square of

the Fourier transform of ∇x, which is i⋅ω.

Deconvolution comparisons

blurry input gradient regularizationnaive deconvolution original

Deconvolution comparisons

blurry input gradient regularizationnaive deconvolution original

… and a proof-of-concept demonstration

noisy input gradient regularizationnaive deconvolution

Question

Can we undo lens blur by deconvolving a PNG or JPEG image without any preprocessing?

Question

Can we undo lens blur by deconvolving a PNG or JPEG image without any preprocessing?
• All the blur processes we discuss today happen optically (before capture by the sensor).
• Blur model is accurate only if our images are linear.

Are PNG or JPEG images linear?

Question

Can we undo lens blur by deconvolving a PNG or JPEG image without any preprocessing?
• All the blur processes we discuss today happen optically (before capture by the sensor).
• Blur model is accurate only if our images are linear.

Are PNG or JPEG images linear?
• No, because of gamma encoding.
• Before deblurring, you must linearize your images.

How do we linearize PNG or JPEG images?

The importance of linearity

blurry input deconvolution after
linearization

deconvolution without
linearization

original

Can we do better than that?

Can we do better than that?

Use different gradient regularizations:

minx ‖b – c ∗ x‖2 + ‖∇x‖2

minx ‖b – c ∗ x‖2 + ‖∇x‖1

minx ‖b – c ∗ x‖2 + ‖∇x‖0.8

• L2 gradient regularization (Tikhonov regularization, same as Wiener deconvolution)

• L1 gradient regularization (sparsity regularization, same as total variation)

• Ln<1 gradient regularization (fractional regularization)

All of these are motivated by natural image statistics. Active research area.

How do
we solve

for these?

Comparison of gradient regularizations

input
squared gradient

regularization
fractional gradient

regularization

High quality images using cheap lenses

[Heide et al., “High-Quality Computational Imaging Through Simple Lenses,” TOG 2013]

Deconvolution

* =

x * c = b

If we know b and c, can we recover x?

?

How do we
measure this?

PSF calibration

Take a photo of a point source

Image of PSF

Image with sharp lens Image with cheap lens

Deconvolution

* =

x * c = b

If we know b and c, can we recover x?

?

Blind deconvolution

* =

x * c = b

If we know b, can we recover x and c?

? ?

Camera shake

Camera shake as a filter

image from static camera

*

PSF from camera motion

=

image from shaky camera

x * c = b

If we know b, can we recover x and c?

Multiple possible solutions

How do we
detect this

one?

Use prior information

Among all the possible pairs of images and blur kernels, select the ones where:

• The image “looks like” a natural image.

• The kernel “looks like” a motion PSF.

Use prior information

Among all the possible pairs of images and blur kernels, select the ones where:

• The image “looks like” a natural image.

• The kernel “looks like” a motion PSF.

Shake kernel statistics
Gradients in natural images follow a
characteristic “heavy-tail” distribution.

sharp
natural
image

blurry
natural
image

Shake kernel statistics
Gradients in natural images follow a
characteristic “heavy-tail” distribution.

sharp
natural
image

blurry
natural
image

Can be approximated by ‖∇x‖0.8

Use prior information

Among all the possible pairs of images and blur kernels, select the ones where:

• The image “looks like” a natural image.

• The kernel “looks like” a motion PSF.

Gradients in natural images follow a
characteristic “heavy-tail” distribution.

Shake kernels are very sparse, have
continuous contours, and are always positive

How do we use this information for blind deconvolution?

Regularized blind deconvolution

Solve regularized least-squares optimization

minx,b ‖b – c ∗ x‖2 + ‖∇x‖0.8 + ‖c‖1

What does each term in this summation correspond to?

Regularized blind deconvolution

natural image prior

Solve regularized least-squares optimization

minx,b ‖b – c ∗ x‖2 + ‖∇x‖0.8 + ‖c‖1

data term shake kernel prior

Note: Solving such optimization problems is complicated (no longer linear least squares).

A demonstration

input deconvolved image and kernel

A demonstration

input deconvolved image and kernel

This image looks worse
than the original…

This doesn’t look like a
plausible shake kernel…

Regularized blind deconvolution

Solve regularized least-squares optimization

minx,b ‖b – c ∗ x‖2 + ‖∇x‖0.8 + ‖c‖1

loss function

Regularized blind deconvolution

Solve regularized least-squares optimization

minx,b ‖b – c ∗ x‖2 + ‖∇x‖0.8 + ‖c‖1

loss function
inverse

loss

pixel intensity

Where in this graph is
the solution we find?

Regularized blind deconvolution

Solve regularized least-squares optimization

minx,b ‖b – c ∗ x‖2 + ‖∇x‖0.8 + ‖c‖1

loss function
inverse

loss

pixel intensityoptimal solution

many plausible
solutions here

Rather than keep just
maximum, do a weighted

average of all solutions

A demonstration

input maximum-only

This image looks worse
than the original…

average

More examples

Results on real shaky images

Results on real shaky images

Results on real shaky images

Results on real shaky images

More advanced motion deblurring

[Shah et al., High-quality Motion Deblurring from a Single Image, SIGGRAPH 2008]

Why are our images blurry?

• Lens imperfections.

• Camera shake.

• Scene motion.

• Depth defocus.

Can we solve all of these problems using (blind) deconvolution?

Why are our images blurry?

• Lens imperfections.

• Camera shake.

• Scene motion.

• Depth defocus.

Can we solve all of these problems using (blind) deconvolution?
• We can deal with (some) lens imperfections and camera

shake, because their blur is shift invariant.
• We cannot deal with scene motion and depth defocus,

because their blur is not shift invariant.
• See coded photography lecture.

References
Basic reading:
• Szeliski textbook, Sections 3.4.3, 3.4.4, 10.1.4, 10.3.
• Fergus et al., “Removing camera shake from a single image,” SIGGRAPH 2006.

the main motion deblurring and blind deconvolution paper we covered in this lecture.

Additional reading:
• Heide et al., “High-Quality Computational Imaging Through Simple Lenses,” TOG 2013.

the paper on high-quality imaging using cheap lenses, which also has a great discussion of all matters relating to
blurring from lens aberrations and modern deconvolution algorithms.

• Levin, “Blind Motion Deblurring Using Image Statistics,” NIPS 2006.
• Levin et al., “Image and depth from a conventional camera with a coded aperture,” SIGGRAPH 2007.
• Levin et al., “Understanding and evaluating blind deconvolution algorithms,” CVPR 2009 and PAMI 2011.
• Krishnan and Fergus, “Fast Image Deconvolution using Hyper-Laplacian Priors,” NIPS 2009.
• Levin et al., “Efficient Marginal Likelihood Optimization in Blind Deconvolution,” CVPR 2011.

a sequence of papers developing the state of the art in blind deconvolution of natural images, including the use
Laplacian (sparsity) and hyper-Laplacian priors on gradients, analysis of different loss functions and maximum a-
posteriori versus Bayesian estimates, the use of variational inference, and efficient optimization algorithms.

• Minskin and MacKay, “Ensemble Learning for Blind Image Separation and Deconvolution,” AICA 2000.
the paper explaining the mathematics of how to compute Bayesian estimators using variational inference.

• Shah et al., “High-quality Motion Deblurring from a Single Image,” SIGGRAPH 2008.
a more recent paper on motion deblurring.

