Gradient-domain image processing

15-463, 15-663, 15-862
Computational Photography

http://graphics.cs.cmu.edu/courses/15-463 Fall 2018, Lecture 10

Course announcements

Homework 3 is out.
- (Much) smaller than homework 2, but you should still start early to take advantage
of bonus questions.
- Requires a camera with flash for the second part.

Grades for homework 1 have been posted.

Make-up lecture will be scheduled soon.
- What day does majority of the class prefer?

How was Ravi’s lecture on Monday?

Thoughts on homework 27

Overview of today’s lecture

Gradient-domain image processing.
Basics on images and gradients.
Integrable vector fields.

Poisson blending.

A more efficient Poisson solver.
Poisson image editing examples.

Flash/no-flash photography.

Slide credits

Many of these slides were adapted from:

e Kris Kitani (15-463, Fall 2016).
 Fredo Durand (MIT).

* James Hays (Georgia Tech).
 Amit Agrawal (MERL).

Gradient-domain image processing

Someone leaked season 8 of Game of Thrones

or, more likely, they made some creative use of Poisson blending

Poisson blending

Application

Poisson blending

copy-paste

originals

More applications

Seamless Image Stit'ching

Yet more applications

(383}
S

L/
"”?-Egalu Niin
o

Tonemapping

Entire suite of image editing tools

GradientShop: A Gradient-Domain Optimization Framework
for Image and Video Filtering

Pravin Bhat! C. Lawrence Zitnick? Michael Cohen!-2 Brian Curless?!
1University of Washington 2Microsoft Research

(c) Pseudo-relighting filter (d) Non-photorealistic rendering filter

(e) Compressed input-image (f) De-blocking filter (g) User input for colorization (h) Colorization filter

Figure 1: The figure shows some of the image-enhancement filters we have created using the GradientShop optimization-framework. Gradi-
entShop has been designed to allow applications to explore gradient-domain solutions for various image processing problems.

Main pipeline

Non-Integrable ‘
Gradient Fields

Basics of images and gradients

Image representation

We can treat images as scalar fields (i.e.. two dimensional functions)

Image gradients

Convert the scalar field into a vector field through differentiation.

ol Ol
scalar field 1(x,y) : R?—> R) vector field VI :{5 " } R R
X oy

Image gradients

Convert the scalar field into a vector field through differentiation.

ol Ol
scalar field 1(x,y) : R?—> R) vector field VI :{5 " } R R
X oy

 How do we do this differentiation in real discrete images?

Finite differences

High-school reminder: definition of a derivative using forward difference

Fa) — fim [@ D) — (@)

h—0 h

Finite differences

High-school reminder: definition of a derivative using forward difference

Fa) — fim [@ D) — (@)

h—0 h

Alternative: use central difference

f(z) = %E}% f(z +0.5h) ; f(x —0.5h)

For discrete signals: Remove limit and set h = 2

ff(:t:) B f(ﬂl‘ + 1) — f(:l? — 1) How do you efficiently
_ 9 compute this?

Finite differences

High-school reminder: definition of a derivative using forward difference

Fa) — fim [@ D) — (@)

h—0 h

Alternative: use central difference

f(z) = %E}% f(z +0.5h) ; f(x —0.5h)

For discrete signals: Remove limit and set h = 2

ff(:t:) B f(ﬂl‘ + 1) — f(:l? — 1) What convolution kernel
_ 9 does this correspond to?

Finite differences

High-school reminder: definition of a derivative using forward difference

Fa) — fim [@ D) — (@)

h—0 h

Alternative: use central difference

f(z) = %E}% f(z +0.5h) ; f(x —0.5h)

For discrete signals: Remove limit and set h = 2

flz+1)— flz—1)
2

f'(z) =

Finite differences

High-school reminder: definition of a derivative using forward difference

Fa) — fim [@ D) — (@)

h—0 h

Alternative: use central difference

f(z) = %E}% f(z +0.5h) ; f(x —0.5h)

For discrete signals: Remove limit and set h = 2

flx+1) — f(z—1) 1D derivative filter
2 1]0(-1

f'(z) =

Image gradients

Convert the scalar field into a vector field through differentiation.

0
scalar field 1(x,y) :RZ2-> R - vector field VI ={

 How do we do this differentiation in real discrete images?

 Can we go in the opposite direction, from gradients to images?

Vector field integration

Two core questions:

 When is integration of a vector field possible?

* How can integration of a vector field be performed?

Integrable vector fields

Integrable fields

Given an arbitrary vector field (u, v), can we always integrate it into a scalar field I?

P

I(x,y): R > R
ol
E (x,y) = u(x,y)
ol
dy

such that
(x,y) =v(x,y)

Curl and divergence

Curl: vector operator showing the rate of rotation of a vector field.
Curl (VI)=V xVI

Divergence: vector operator showing the isotropy of a vector field.
Div (V1) =V e VI

Do you know of some simpler versions of these operators?

Curl and divergence

Curl: vector operator showing the rate of rotation of a vector field.

0 0
— —| al, al
Curl (VI)= det|ox oy =———X=|yx—lxy
| | OX oy
X y

Divergence: vector operator showing the isotropy of a vector field.

_ Ol ol,
div(l,1)=—7+—=1,+1_
OX oy

Can you use either of these operators to derive an integrability condition?

Integrability condition

Curl of the gradient field should be zero:

Curl (VI)=1_-1_=0

Xy

What does that mean intuitively?

Integrability condition

Curl of the gradient field should be zero:

Curl (VI)=1_-1_=0

Xy

What does that mean intuitively?
e Same result independent of order of differentiation.

Demonstration

How do we compute this? —> Div(l, I) Curl(l, 1) | |

Laplace filter

Basically a second derivative filter.
 We can use finite differences to derive it, as with first derivative filter.

| .first—.order (@) = lim f(z 4+ 0.5h) — f(z — 0.5R) i 1D derivative filter
finite difference h—0 h 1101(-1
second-order flr+h)—=2f(x)+ flz — h) Laplace filter

finite difference () = Jim ¥ ?

Laplace filter

Basically a second derivative filter.
 We can use finite differences to derive it, as with first derivative filter.

| .first—.order (@) = lim f(z 4+ 0.5h) — f(z — 0.5R) i 1D derivative filter
finite difference h—0 h 110]-1
second-order flxr+h) = 2f(x)+ flz — h) Laplace filter

finite difference f(:r'):%% h? 1(-211

Vector field integration

Two core questions:

 When is integration of a vector field possible?
- Use curl to check for equality of mixed partial second derivatives.

 How can integration of a vector field be performed?

Different types of integration problems

* Reconstructing height field from gradients
Applications: shape from shading, photometric stereo

 Manipulating image gradients
Applications: tonemapping, image editing, matting, fusion, mosaics

 Manipulation of 3D gradients
Applications: mesh editing, video operations

Key challenge: Most vector fields in applications are not integrable.
* Integration must be done approximately.

Poisson blending

Poisson blending

Application

Poisson blending

copy-paste

originals

Key idea

When blending, retain the gradient information as best as possible

f—

source destination copy-paste Poisson blending

Poisson blending: 1D example

iy

dark

Ol

s i
73 Il Il 1 Il 1 Il Il Il
4] 20 40 60 80 100 120 140 160 180 200

two signals

1 w
100 120 140 160 180 200

regular blending

blending derivatives

Definitions and notation

Notation

g: source function

S: destination o
(): destination domain 5
f: interpolant function
f*: destination function
dQ

f f

Which one is the unknown?

Definitions and notation

Notation
g: source function

S: destination

Q): destination domain 5
f: interpolant function
f*. destination function
%49
How should we determine f?
e should it look like g7 f

e should it look like f*?

f*

Interpolation criterion

|I)

Variational” means Variational problem
optimization where

the unknown is an . .
entire function m}n // IVf— V|2 with flag = f"|aq
Q
what does this what does this
term do? term do?

Recall ...

is this known?

_|9f of _ _
Vf— _833" 8?}_ V—(Hj’U)—Vg

Interpolation criterion

Variational” means Variational problem
optimization where

the unknown is an . 9) .
entire function m}n // |Vf - V| with f|8ﬂ =f |8Q
Q
gradient of f looks fis equivalent to f*
like gradient of g at the boundaries

Recall ...

Yes, since the source
function g is known

_|9f of _ _
Vf— _833" 8?}_ V—(Hj’U)—Vg

Equivalently

This is where Poisson
blending comes from

Poisson equation (with Dirichlet boundary conditions)

Af=divv over €, with flaao= f"|s0
what does this term do?

v = (u,v) = Vg

. ou Ov

divv=—+ —

2r o or Oy

_ 2 2
Af_amfray2 :ag+ag
Ozx? = Oy?

, ou Ov = Ag
div v =

Equivalently

Poisson equation (with Dirichlet boundary conditions)

Af=divv over €, with flso = f"|sa
Laplacian of f same as g

v = (u,v) = Vg

. ou Ov

divv=—+ —

2r o or Oy

_ 2 2
Af_amfray2 :ag+ag
Ozx? = Oy?

, ou Ov = Ag
div v =

oz " By

Equivalently

Poisson equation (with Dirichlet boundary conditions)

Af=divv over €, with flso = f"|sa

so make these guys ... S
4 \
Ag Af
pV V4 90
J the same

How can we do this?

Equivalently

Poisson equation (with Dirichlet boundary conditions)

Af=divv over €, with flso = f"|sa

So for each pixel p, do: Afp — Agﬁ How did we compute

the Laplacian?
Or for discrete images: 4fp — Z fqo =49, — Z 9q & saplacian

qEN gENy

Equivalently

Poisson equation (with Dirichlet boundary conditions)

Af=divv over €, with flso = f"|sa

So for each pixel p, do: Af, = Agp Recall...
Laplace i
Or for discrete images: 4jfp — = 4q, — . 4] 1
ges: 4/p Z Ja =49 Z o filter [-T7T5
gEND gEN,

What’s known and what’s unknown?

Equivalently

Poisson equation (with Dirichlet boundary conditions)

Af=divv over €, with flso = f"|sa

So for each pixel p, do: Af, = Agp Recall...
Laplace i
Or for discrete images: 4jfp — = 4q, — . 4] 1
ges: 4/p Z Ja =49 Z o filter [-T7T5
gEND gEN,

fis unknown except g and its Laplacian
at the boundary are known

We can rewrite this as

linear equation Af, — Z fo =49, — Z g, oneforeach pixel

of N variables in destination

gENp qENp
In vector form: R
0.--—1-—1 4 —1-+-—1--0] far Age, Linear system of equations
What is this? 7 o Ades |j> Af — b
fp = | Agp
fQ‘S qu3
(each pixel adds another ‘sparse’ row here) | : : How would you solve this?
fas Agq,
| f;\r | i AMLIN |

WARNING: requires special treatment at the borders
(target boundary values are same as source)

Solving the linear system

Convert the system to a linear least-squares problem:

Eris = |[|[Af - b|?
Expand the error:

Eis=f"(ATA)f —2f"(A"b) +|b]?

Minimize the error:

Set derivative to O (ATA)f — ATb

Solve for x f = (ATA)_IATb

Solving the linear system

Convert the system to a linear least-squares problem: In Matlab:

Eris = |[|[Af - b|? f =2\ Db
Expand the error:

Eis=f"(ATA)f —2f"(A"b) +|b]?

Minimize the error:

Set derivative to O (ATA)f — ATb

Solve forx f = (ATA)—lA‘I‘b <« Note: You almost never want to
compute the inverse of a matrix.

Integration procedures

e Poisson solver (i.e., least squares integration)
+ Generally applicable.
- Matrices A can become very large.

e Acceleration techniques:
+ (Conjugate) gradient descent solvers.
+ Multi-grid approaches.
+ Pre-conditioning.
+ Quadtree decompositions.

e Alternative solvers: projection procedures.
We will discuss one of these when we cover photometric stereo.

A more efficient Poisson solver

Let’s look again at our optimization problem

Variational problem
][][1}][1//|Vf—‘f|2 with flaa = f*|an
Q

gradient of f looks fis equivalent to f*

like gradient of g at the boundaries
Recall ...
Of Of
V=15
Oz Oy _

Let’s look again at our optimization problem

Variational problem
][][1}][1//|Vf—‘f|2 with flaa = f*|an
Q

gradient of f looks fis equivalent to f*

like gradient of g at the boundaries
Recall ... And for discrete images:
0
i x ~[1]0]-1
vr_ [0f 1
’ 0
ox’ Oy —=~ |0
- - ay 1

Let’s look again at our optimization problem

We can use the Discrete problem

gradient Whatare G, f, and v? We will ignore the
approximation to : 2 boundary conditions
discretize the mflnlle U” for now.
variational problem
Recall ... And for discrete images:
0

i x ~[1]0]-1

of df A
V= , 0

ox’ Oy —=~ |0

L - ay 1

Let’s look again at our optimization problem

Discrete problem

matrix G formed by stacking
together discrete gradients®\|

min||Gf — v

We can use the
gradient
approximation to

We will ignore the
boundary conditions

discretize the f X for now.
variational problem vectorized version of M vectorized version of the
the unknown image target gradient field
Recall ... And for discrete images:
d
a ~|[1[0]-1

Vf: gfuaf 0 L
i I 8?}_ @z 0

Let’s look again at our optimization problem

Discrete problem

matrix G formed by stacking
together discrete gradients®\|

min||Gf — v

We can use the
gradient
approximation to

We will ignore the
boundary conditions

discretize the f X for now.
variational problem vectorized version of M vectorized version of the
the unknown image target gradient field
Recall ... And for discrete images:
d
a ~|[1[0]-1

Vf: gfuaf 0 L
i I 8?}_ @z 0

Let’s look again at our optimization problem

Discrete problem

matrix G formed by stacking
together discrete gradients®\|

min||Gf — v||*
A \
vectorized version of M vectorized version of the

How do we solve
this optimization
problem?

the unknown image target gradient field
Recall ... And for discrete images:
0
a ~11(01]-1

vf: afuaf 0 =
Oz Oy 3y~ |0

Approach 1: Compute stationary points

Given the loss function:
E(f) = lIGf —v]|?
... We compute its derivative:

OF
— =7

of

Approach 1: Compute stationary points

Given the loss function:

E(f) = Gf — vl
.. We compute its derivative:
ok _ GI'Gf —v
daf

... and we do what with it?

Approach 1: Compute stationary points

Given the loss function:

E(f) = Gf —vlI?
... We compute its derivative:
oE oo
of ~ 06—
... and we set that to zero:
oE
—=0=>GIGf =v

af o
> \What s this matrix?

Approach 1: Compute stationary points

Given the loss function:
E(f) = lIGf —vl|?

... We compute its derivative:

oF _ TG
of ~ 06—
... and we set that to zero:
0F B e
ﬁ =0 :EI_G,]C =V It is equal to the

> Laplacian matrix A we
derived previously!

Reminder from variational case

Poisson equation (with Dirichlet boundary conditions)

Af=divv over €, with flso = f"|sa

So for each pixel p, do: Af, = Agp Recall...
Laplace i
Or for discrete images: 4jfp — = 4q, — . 4] 1
ges: 4/p Z Ja =49 Z o filter [-T7T5
gEND gEN,

What’s known and what’s unknown?

Reminder from variational case

linear equation Af, — Z fo =49, — Z g, oneforeach pixel

of N variables in destination

gENp gENp
In vector form: R
0.--—1-—1 4 —1-+-—1--0] far Age, Linear system of equations
What is this? 7 o Ades |j> Af — b

o = | Agp

| , , Jas Bbas Same system as:

(each pixel adds another ‘sparse’ row here) | : :
fQ4 qu4 T
: 5 G Gf %
| fn | Agn |

We arrive at the same system, no matter whether we discretize the
continuous Laplace equation or the variational optimization problem.

Approach 1: Compute stationary points

Given the loss function:
E(f) = lIGf —vl|?

... We compute its derivative:

0E .
— =GTGf —v
daf
... and we set that to zero:
0E Solving this is exactly as
— =0 GTGf — Vi expensive as what we

af had before.

Approach 2: Use gradient descent

Given the loss function:
E(f) = lIGf —vl|?

... We compute its derivative:

0E |
- _ T an — = We call this term
=G Gf v = Af vV=r the residual

of

Approach 2: Use gradient descent

Given the loss function:
E(f) = lIGf —vl|?

... We compute its derivative:

0E |
- _ T an — = We call this term
=G Gf v = Af vV=r the residual

daf
... and then we iteratively compute a solution:

fi+1 — fi _ nirl' fori=0,1, .. N, where
l
1

are positive step sizes

Selecting optimal step sizes

Make derivative of loss function with respect to T]l equal to zero:

E(f) = IGf vl
E(F*1) = 6 (f* = nir') — o]

aE(]ci+1) (ri)Tri

= v —A(f' — niri)]Tri =0=>1n'=

ort (r)T Art

Gradient descent

Given the loss function:

E(f) =Gf — vl

Minimize by iteratively computing:

(r) -

1 i . . .
fl _fl_nlrlr rl_v_Afl' n _(TL)TATL

Is this cheaper than the pseudo-inverse approach?

fori=0,1, ..

. N

Gradient descent

Given the loss function:

E(f) =Gf — vl

Minimize by iteratively computing:

fi+1 — fi —T]iTi, 7,i — v —Afi, T]i

B (ri)TTi

- (r)T Art

fori=0,1, ..., N

Is this cheaper than the pseudo-inverse approach?
 We never need to compute A, only its products with vectors f, r.

Gradient descent

Given the loss function:

E(f) =Gf — vl

Minimize by iteratively computing:

T NGRS
fl+ :f’l_nlrl’ Tl:U—Afl, nl_

- (r)T Art

fori=0,1, ..., N

Is this cheaper than the pseudo-inverse approach?

 We never need to compute A, only its products with vectors f, r.
e \Vectors f, r are images.

Gradient descent

Given the loss function:

E(f) =Gf — vl

Minimize by iteratively computing:

fi+1 — fi —T]iTi, 7,i — v —Afi, T]i

B (ri)TTi

- (r)T Art

fori=0,1, ..., N

Is this cheaper than the pseudo-inverse approach?

 We never need to compute A, only its products with vectors f, r.

e \Vectors f, r are images.

 Because A is the Laplacian matrix, these matrix-vector products can be efficiently computed
using convolutions with the Laplacian kernel.

In practice: conjugate gradient descent

Given the loss function:

E(f) =Gf — vl

Minimize by iteratively computing:
ffl=fl4nid', rt=v—AfY, fori=0,1,.,N

i+1 _ .i+1 i+1 i
A" =r""+ 57 d",

* Smarter way for selecting
update directions

(Ti+1)T7"i+1 _ (di)TTi . Evgrything can.still be done
: : r]l — _ _ using convolutions
(ri)Tri (d)T Ad?

,Bi+1 —

Note: initialization

Does the initialization fo matter?

Note: initialization

Does the initialization fo matter?

* [t doesn’t matter in terms of what final f we converge to, because the loss function is convex.

E(f) =lGf — vl

Note: initialization

Does the initialization fo matter?

* [t doesn’t matter in terms of what final f we converge to, because the loss function is convex.

E(f) =lGf — vl

e |t does matter in terms of convergence speed.

* We typically use a multi-grid approach:
- Solve an initial problem for a very low-resolution f (e.g., 2x2).
- Use the solution to initialize gradient descent for a higher resolution f (e.g., 4x4).
- Use the solution to initialize gradient descent for a higher resolution f (e.g., 8x8).

- Use the solution to initialize gradient descent for an f with the original resolution NxN.

Poisson image editing examples

Photoshop’s “healing brush”

Slightly more advanced version
of what we covered here:
e Uses higher-order derivatives

Contrast problem

Loss of contrast when pasting from dark to bright:
* Contrastis a multiplicative property.
* With Poisson blending we are matching linear differences.

Contrast problem

Loss of contrast when pasting from dark to bright:

* Contrastis a multiplicative property.
* With Poisson blending we are matching linear differences.

Solution: Do blending in log-domain.

originals copy-paste Poisson blending

Blending transparent objects

destination

Blending objects with holes

(¢) seamless cloning and destination av-
eraged

(d) mixed seamless cloning

Concealment

'." How would you do this
with Poisson blending?

Concealment

'." How would you do this
with Poisson blending?

 « Inserta copy of the
background.

Q0
=
O
Q.
©
=
Vp)]
Q
S
>
4
nvm
_I

Special case: membrane interpolation

How would you do this?

Special case: membrane interpolation

How would you do this?

Poisson problem
m}n// |‘7f—v|2 with flaa = f|en
Q
Laplacian problem

m}nf/Wflz with flaa = f7|an
Q

Flash/no-flash photography

Lighting

ing

=
Q
)
)
(qV)
e
=
=)

Motion Blur i&™,

/) §:‘é

A lot of Noise

Ruined Ambiance

» R ” s - o
; : ¥ »
el PERGEERY " 32 e
‘\xﬁ.%- :
7'13'51."»

-
.
”~
-
.

l/mage acquisition

N
Lock Focus
& Aperture

time

l/mage acquisition

\
Lock Focus No-Flash Image
& Aperture

time

1/30s
ISO 3200

l/mage acquisition

'y

\
Lock Focus No-Flash Image Flash Image
& Aperture

time

1/30s
ISO 3200

= N
o S m; = u ~

Q

Denoising Result

No-Flash

Denoising Result

Key idea

Denoise the no-flash image while maintaining the edge structure of the flash image
 How would you do this using the image editing techniques we’ve learned about?

Denoising with bilateral filtering

noisy input bilateral filtering median filtering

Denoising with bilateral filtering

Ans) = PNACEED
plcol) = a
k(p(c l))p —

Yr (Ap(col) = p'(col))Ap’(col) k

* However, results still have noise or blur (or both)

Bilateral
filter

Denoising with joint bilateral filtering

gT(FP(COI) a FP’(COD)AP’(COU

* |n the flash image there are much more details

* Use the flash image F to find edges

Denoising with joint bilateral filtering

NR
Ayteod = e D);di(lp p'D

Yr (Fp(col) — Fp’(col))Ap'(col)

v
—

Bilateral The difference | Joint Bilateral

filter filter

Not all edges in the flash image are real

Can you think of any types of edges that may exist in the flash image but not the
ambient one?

Not all edges in the flash image are real

specularities

shadows

* May cause over- or under-blur in joint bilateral filter
* We need to eliminate their effect

Detecting shadows

* Observation: the pixels in the flash shadow should be similar to the ambient image.

Not identical:
1. Noise.

2. Inter-reflected flash.

Compute a shadow mask.

Lin
Apcon = Tshadow

Take pixel p if F (Col)

tshadowis manually adjusted

Mask is smoothed and dilated

Detecting specularities

» Take pixels where sensor input is close to maximum (very bright).

* Over fixed threshold Tspec
* Create a specularity mask.
* Also smoothed.

* M —the combination of shadow and specularity masks:

Where M =1, we use A€, For other pixels we use A"".

Detail transfer

Denoising cannot add details missing in the ambient image

Exist in flash image because of high SNR

We use a quotient image:

Detail __
Fp(col) —

Fp(col) + &E— —

B
Folcony T €

Multiply with ANR to add the details

BHater;;\\j;7

filtered

Masked in the same way

Reduces the
effect of
noise in F

Why does this quotient image
make sense for detail?

Detail transfer

* Denoising cannot add details missing in the ambient image

 Exist in flash image because of high SNR

* We use a gquotient image: Reduces the

effect of
noise in F

Fp(col) + & —

FDeta,il _

plcol) T Rpes + €

Full pipeline

A F
No-Flash - Flash }--
Image ‘— Image 4| | |
I FLm ALm
Bilateral Joint Bilateral Shadow &
Filter Bilateral Filter Specularity
Filter Detection
—_— FBase
ABase ANR FDetail Mask M
Artifact
Denoising Detail Transfer | detection

AFinal — (1 _ M)ANRFDelaiI + MABase

Demonstration

_'0

¥
)

i

t bilateral and detail transfer

join

ambient-only

Can we do similar flas
gradient-do

N/No-

main

‘lash fusion tasks with

orocessing?

Removing self-reflections and hot-spots
Ambient Flash

Removing self-reflections and hot-spots
Ambient Flash

Removing self-reflections and hot-spots

thenjt Result Reflection Layer

|dea: look at how gradients are affected

Same gradient Flash Gradient Vector
vector direction
Ambient Gradient Vector

[Ambient | Flash

No reflections
i

|dea: look at how gradients are affected

Different gradient
vector direction

Reflection Ambient Gradient

Vector

Flash Gradient Vector

With reflections

|dea: look at how gradients are affected

Different gradient
vector direction

Reflection Ambient Gradient

Vector

Flash Gradient Vector

With reflections

Gradient projections

Flash Gradient Vector

Result Gradient Vector

2D Integration
Intensity Gradient

/

Vector Projection
. Result

Ambient

~»
—-—

o-Flash

No-Flash

.

Result

Flash

,
..

P
o
A
w
O
Z

No-Flash

.} e
‘ -
ae

-

L
"

Result

sind.

References

Basic reading:

Szeliski textbook, Sections 3.13, 3.5.5,9.3.4, 10.4.3.
Pérez et al., “Poisson Image Editing,” SIGGRAPH 2003.
The original Poisson Image Editing paper.
Agrawal and Raskar, “Gradient Domain Manipulation Techniques in Vision and Graphics,” ICCV 2007 course, http://www.amitkagrawal.com/ICCV2007Course/
A great resource (entire course!) for gradient-domain image processing.
Petschnigg et al., “Digital photography with flash and no-flash image pairs,” SIGGRAPH 2004.
Eisemann and Durand, “Flash Photography Enhancement via Intrinsic Relighting,” SIGGRAPH 2004.
The first two papers exploring the idea of photography with flash and no-flash pairs, both using variants of the joint bilateral filter.
Agrawal et al., “Removing Photography Artifacts Using Gradient Projection and Flash-Exposure Sampling,” SIGGRAPH 2005.
A subsequent paper on photography with flash and no-flash pairs, using gradient-domain image processing.

Additional reading:

Georgiev, “Covariant Derivatives and Vision,” ECCV 2006.
An paper from Adobe on the version of Poisson blending implemented in Photoshop’s “healing brush”.
Elder and Goldberg, “Image editing in the contour domain”, PAMI 2001.
One of the very first papers discussing gradient-domain image processing.
Szeliski, “Locally adapted hierarchical basis preconditioning,” SIGGRAPH 2006.
A standard reference on multi-grid and preconditioning techniques for accelerating the Poisson solver.
Bhat et al., “Fourier Analysis of the 2D Screened Poisson Equation for Gradient Domain Problems,” ECCV 2008.
A paper discussing the (Fourier) basis projection approach for solving the Poisson integration problem.
Bhat et al., “GradientShop: A Gradient-Domain Optimization Framework for Image and Video Filtering,” ToG 2010.
A paper describing gradient-domain processing as a general image processing paradigm, which can be used for a broad set of applications beyond
blending, including tone-mapping, colorization, converting to grayscale, edge enhancement, image abstraction and non-photorealistic rendering.
Krishnan and Fergus, “Dark Flash Photography,” SIGGRAPH 2009.
A paper proposing doing flash/no-flash photography using infrared flash lights.
Kettunen et al., “Gradient-domain path tracing,” SIGGRAPH 2015.
In addition to editing images in the gradient-domain, we can also directly render them in the gradient-domain.
Tumblin et al., “Why | want a gradient camera?” CVPR 2005.
We can even directly measure images in the gradient domain, using so-called gradient cameras.

