
Gradient-domain image processing

15-463, 15-663, 15-862
Computational Photography

Fall 2018, Lecture 10http://graphics.cs.cmu.edu/courses/15-463

Course announcements

• Homework 3 is out.
- (Much) smaller than homework 2, but you should still start early to take advantage
of bonus questions.
- Requires a camera with flash for the second part.

• Grades for homework 1 have been posted.

• Make-up lecture will be scheduled soon.
- What day does majority of the class prefer?

• How was Ravi’s lecture on Monday?

• Thoughts on homework 2?

Overview of today’s lecture

• Gradient-domain image processing.

• Basics on images and gradients.

• Integrable vector fields.

• Poisson blending.

• A more efficient Poisson solver.

• Poisson image editing examples.

• Flash/no-flash photography.

Slide credits

Many of these slides were adapted from:

• Kris Kitani (15-463, Fall 2016).
• Fredo Durand (MIT).
• James Hays (Georgia Tech).
• Amit Agrawal (MERL).

Gradient-domain image processing

Someone leaked season 8 of Game of Thrones

or, more likely, they made some creative use of Poisson blending

Application: Poisson blending

originals copy-paste Poisson blending

More applications

Removing Glass Reflections

Seamless Image Stitching

Yet more applications

Tonemapping

Fusing day and night photos

Entire suite of image editing tools

Main pipeline

Estimation

of Gradients

Manipulation of

Gradients

Non-Integrable

Gradient Fields

Reconstruction

from

Gradients

Images/Videos/

Meshes/Surfaces

Images/Videos/

Meshes/Surfaces

Basics of images and gradients

Image representation

We can treat images as scalar fields (i.e., two dimensional functions)

I(x,y): ℝ2 → ℝ

Image gradients

Convert the scalar field into a vector field through differentiation.

},{
y

I

x

I
I








=),(yxI : ℝ2 → ℝ : ℝ2 → ℝ2scalar field vector field

Image gradients

Convert the scalar field into a vector field through differentiation.

},{
y

I

x

I
I








=),(yxI : ℝ2 → ℝ : ℝ2 → ℝ2scalar field vector field

• How do we do this differentiation in real discrete images?

Finite differences

High-school reminder: definition of a derivative using forward difference

Finite differences

High-school reminder: definition of a derivative using forward difference

Alternative: use central difference

For discrete signals: Remove limit and set h = 2

How do you efficiently
compute this?

Finite differences

High-school reminder: definition of a derivative using forward difference

Alternative: use central difference

For discrete signals: Remove limit and set h = 2

What convolution kernel
does this correspond to?

Finite differences

High-school reminder: definition of a derivative using forward difference

Alternative: use central difference

For discrete signals: Remove limit and set h = 2

1 0 -1

-1 0 1 ?

?

Finite differences

High-school reminder: definition of a derivative using forward difference

Alternative: use central difference

For discrete signals: Remove limit and set h = 2

1 0 -1

1D derivative filter

Image gradients

Convert the scalar field into a vector field through differentiation.

},{
y

I

x

I
I








=),(yxI : ℝ2 → ℝ : ℝ2 → ℝ2scalar field vector field

• How do we do this differentiation in real discrete images?

• Can we go in the opposite direction, from gradients to images?

Vector field integration

Two core questions:

• When is integration of a vector field possible?

• How can integration of a vector field be performed?

Integrable vector fields

Integrable fields

Given an arbitrary vector field (u, v), can we always integrate it into a scalar field I?

such that

𝜕𝐼

𝜕𝑥
𝑥, 𝑦 = 𝑢(𝑥, 𝑦)

𝐼 𝑥, 𝑦 : ℝ2 → ℝ 𝑣 𝑥, 𝑦 : ℝ2 → ℝ𝑢 𝑥, 𝑦 : ℝ2 → ℝ

𝜕𝐼

𝜕𝑦
𝑥, 𝑦 = 𝑣(𝑥, 𝑦)

?

Curl and divergence
Curl: vector operator showing the rate of rotation of a vector field.

Divergence: vector operator showing the isotropy of a vector field.

Do you know of some simpler versions of these operators?

IICurl =)(

IIDiv •=)(

yyxx

yx

yx
II

y

I

x

I
IIdiv +=




+




=),(

Curl and divergence
Curl: vector operator showing the rate of rotation of a vector field.

Divergence: vector operator showing the isotropy of a vector field.

Can you use either of these operators to derive an integrability condition?

IICurl =)(
xyyx

xy

yx

II
y

I

x

I

II

yx −=



−




=







det

Integrability condition

Curl of the gradient field should be zero:

What does that mean intuitively?

0)(=−=
xyyx

IIICurl

Integrability condition

Curl of the gradient field should be zero:

0)(=−=
xyyx

IIICurl

What does that mean intuitively?

• Same result independent of order of differentiation.

xyyx
II =

Demonstration

Image Ix Iy

Div(Ix, Iy) Curl(Ix, Iy) Ixy Iyx

=

How do we compute this?

Basically a second derivative filter.
• We can use finite differences to derive it, as with first derivative filter.

Laplace filter

?

first-order
finite difference 1 0 -1

1D derivative filter

second-order
finite difference

Laplace filter

Basically a second derivative filter.
• We can use finite differences to derive it, as with first derivative filter.

Laplace filter

first-order
finite difference 1 0 -1

1D derivative filter

second-order
finite difference 1 -2 1

Laplace filter

Vector field integration

Two core questions:

• When is integration of a vector field possible?
- Use curl to check for equality of mixed partial second derivatives.

• How can integration of a vector field be performed?

Different types of integration problems

• Reconstructing height field from gradients
Applications: shape from shading, photometric stereo

• Manipulating image gradients
Applications: tonemapping, image editing, matting, fusion, mosaics

• Manipulation of 3D gradients
Applications: mesh editing, video operations

Key challenge: Most vector fields in applications are not integrable.
• Integration must be done approximately.

Poisson blending

Application: Poisson blending

originals copy-paste Poisson blending

When blending, retain the gradient information as best as possible

3
6

Key idea

source destination copy-paste Poisson blending

two signals regular blending blending derivatives

bright

dark

Poisson blending: 1D example

Definitions and notation

add image
here

g: source function

S: destination

Ω: destination domain

f: interpolant function

f*: destination function

Notation

Which one is the unknown?

Definitions and notation

add image
here

How should we determine f?
• should it look like g?
• should it look like f*?

g: source function

S: destination

Ω: destination domain

f: interpolant function

f*: destination function

Notation

Variational problem

what does this
term do?

what does this
term do?

Image gradient

Recall ...

Interpolation criterion

is this known?

“Variational” means
optimization where
the unknown is an

entire function

Variational problem

gradient of f looks
like gradient of g

f is equivalent to f*
at the boundaries

Image gradient

Recall ...

Interpolation criterion

Yes, since the source
function g is known

“Variational” means
optimization where
the unknown is an

entire function

Poisson equation (with Dirichlet boundary conditions)

Laplacian

Gradient

Equivalently

Divergence

This is where Poisson
blending comes from

what does this term do?

Poisson equation (with Dirichlet boundary conditions)

Laplacian

Gradient

Equivalently

Divergence

Laplacian of f same as g

Poisson equation (with Dirichlet boundary conditions)

Equivalently

so make these guys ...

the same

How can we do this?

Poisson equation (with Dirichlet boundary conditions)

Equivalently

So for each pixel p, do:
How did we compute

the Laplacian?
Or for discrete images:

Poisson equation (with Dirichlet boundary conditions)

Equivalently

So for each pixel p, do:

Or for discrete images:

0 1 0

1 -4 1

0 1 0

Recall...

Laplace
filter

What’s known and what’s unknown?

Poisson equation (with Dirichlet boundary conditions)

Equivalently

So for each pixel p, do:

0 1 0

1 -4 1

0 1 0

Recall...

Laplace
filterOr for discrete images:

f is unknown except
at the boundary

g and its Laplacian
are known

In vector form:

(each pixel adds another ‘sparse’ row here)

Linear system of equations

WARNING: requires special treatment at the borders
(target boundary values are same as source)

linear equation
of N variables

one for each pixel
in destination

We can rewrite this as

How would you solve this?

What is this?

0 ⋯ − 1 ⋯ − 1 4 − 1 ⋯ − 1 ⋯ 0

Solving the linear system

Convert the system to a linear least-squares problem:

Expand the error:

Set derivative to 0

Minimize the error:

Solve for x

Solving the linear system

Convert the system to a linear least-squares problem:

Expand the error:

Set derivative to 0

Minimize the error:

Solve for x

In Matlab:

f = A \ b

Note: You almost never want to
compute the inverse of a matrix.

Integration procedures

• Poisson solver (i.e., least squares integration)
+ Generally applicable.
- Matrices A can become very large.

• Acceleration techniques:
+ (Conjugate) gradient descent solvers.
+ Multi-grid approaches.
+ Pre-conditioning.
+ Quadtree decompositions.

• Alternative solvers: projection procedures.
We will discuss one of these when we cover photometric stereo.

A more efficient Poisson solver

Variational problem

gradient of f looks
like gradient of g

f is equivalent to f*
at the boundaries

Image gradient

Recall ...

Let’s look again at our optimization problem

Variational problem

gradient of f looks
like gradient of g

f is equivalent to f*
at the boundaries

Image gradient

Recall ...

Let’s look again at our optimization problem

And for discrete images:

1 0 -1

1

0

-1

𝜕

𝜕𝑥
≈

𝜕

𝜕𝑦
≈

Discrete problem
What are G, f, and v?

Image gradient

Recall ...

Let’s look again at our optimization problem

And for discrete images:

1 0 -1

1

0

-1

𝜕

𝜕𝑥
≈

𝜕

𝜕𝑦
≈

We can use the
gradient

approximation to
discretize the

variational problem

We will ignore the
boundary conditions

for now.min
𝑓

𝐺𝑓 − 𝑣 2

Discrete problem
matrix G formed by stacking
together discrete gradients

Image gradient

Recall ...

Let’s look again at our optimization problem

And for discrete images:

1 0 -1

1

0

-1

𝜕

𝜕𝑥
≈

𝜕

𝜕𝑦
≈

We can use the
gradient

approximation to
discretize the

variational problem

We will ignore the
boundary conditions

for now.min
𝑓

𝐺𝑓 − 𝑣 2

vectorized version of
the unknown image

vectorized version of the
target gradient field

Discrete problem
matrix G formed by stacking
together discrete gradients

Image gradient

Recall ...

Let’s look again at our optimization problem

And for discrete images:

1 0 -1

1

0

-1

𝜕

𝜕𝑥
≈

𝜕

𝜕𝑦
≈

We can use the
gradient

approximation to
discretize the

variational problem

We will ignore the
boundary conditions

for now.min
𝑓

𝐺𝑓 − 𝑣 2

vectorized version of
the unknown image

vectorized version of the
target gradient field

Discrete problem
matrix G formed by stacking
together discrete gradients

Image gradient

Recall ...

Let’s look again at our optimization problem

And for discrete images:

1 0 -1

1

0

-1

𝜕

𝜕𝑥
≈

𝜕

𝜕𝑦
≈

How do we solve
this optimization

problem?min
𝑓

𝐺𝑓 − 𝑣 2

vectorized version of
the unknown image

vectorized version of the
target gradient field

Approach 1: Compute stationary points

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

… we compute its derivative:

𝜕𝐸

𝜕𝑓
=?

Approach 1: Compute stationary points

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

… we compute its derivative:

𝜕𝐸

𝜕𝑓
= 𝐺𝑇𝐺𝑓 − 𝑣

… and we do what with it?

Approach 1: Compute stationary points

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

… we compute its derivative:

𝜕𝐸

𝜕𝑓
= 𝐺𝑇𝐺𝑓 − 𝑣

… and we set that to zero:

𝜕𝐸

𝜕𝑓
= 0 ⇒ 𝐺𝑇𝐺𝑓 = 𝑣

What is this matrix?

Approach 1: Compute stationary points

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

… we compute its derivative:

𝜕𝐸

𝜕𝑓
= 𝐺𝑇𝐺𝑓 − 𝑣

… and we set that to zero:

𝜕𝐸

𝜕𝑓
= 0 ⇒ 𝐺𝑇𝐺𝑓 = 𝑣

It is equal to the
Laplacian matrix A we

derived previously!

Poisson equation (with Dirichlet boundary conditions)

Reminder from variational case

So for each pixel p, do:

Or for discrete images:

0 1 0

1 -4 1

0 1 0

Recall...

Laplace
filter

What’s known and what’s unknown?

In vector form:

(each pixel adds another ‘sparse’ row here)

Linear system of equations

linear equation
of N variables

one for each pixel
in destination

Reminder from variational case

Same system as:

What is this?

0 ⋯ − 1 ⋯ − 1 4 − 1 ⋯ − 1 ⋯ 0

𝐺𝑇𝐺𝑓 = 𝑣

We arrive at the same system, no matter whether we discretize the
continuous Laplace equation or the variational optimization problem.

Approach 1: Compute stationary points

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

… we compute its derivative:

𝜕𝐸

𝜕𝑓
= 𝐺𝑇𝐺𝑓 − 𝑣

… and we set that to zero:

𝜕𝐸

𝜕𝑓
= 0 ⇒ 𝐺𝑇𝐺𝑓 = 𝑣

Solving this is exactly as
expensive as what we

had before.

Approach 2: Use gradient descent

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

… we compute its derivative:

𝜕𝐸

𝜕𝑓
= 𝐺𝑇𝐺𝑓 − 𝑣 = 𝐴𝑓 − 𝑣 ≡ 𝑟

We call this term
the residual

Approach 2: Use gradient descent

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

… we compute its derivative:

𝜕𝐸

𝜕𝑓
= 𝐺𝑇𝐺𝑓 − 𝑣 = 𝐴𝑓 − 𝑣 ≡ 𝑟

We call this term
the residual

… and then we iteratively compute a solution:

𝑓𝑖+1 = 𝑓𝑖 − η𝑖𝑟𝑖

are positive step sizesη𝑖
for i = 0, 1, …, N, where

Selecting optimal step sizes

Make derivative of loss function with respect to equal to zero:η𝑖

𝐸 𝑓𝑖+1 = 𝐺 𝑓𝑖 − η𝑖𝑟𝑖 − 𝑣
2

𝜕𝐸 𝑓𝑖+1

𝜕𝑟𝑖
= 𝑣 − 𝐴 𝑓𝑖 − η𝑖𝑟𝑖 𝑇

𝑟𝑖 = 0 ⇒ η𝑖 =
𝑟𝑖 𝑇

𝑟𝑖

𝑟𝑖 𝑇𝐴𝑟𝑖

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

Gradient descent

Minimize by iteratively computing:

𝑓𝑖+1 = 𝑓𝑖 − η𝑖𝑟𝑖 , for i = 0, 1, …, Nη𝑖 =
𝑟𝑖 𝑇

𝑟𝑖

𝑟𝑖 𝑇𝐴𝑟𝑖
𝑟𝑖 = 𝑣 − 𝐴𝑓𝑖 ,

Is this cheaper than the pseudo-inverse approach?

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

Gradient descent

Minimize by iteratively computing:

𝑓𝑖+1 = 𝑓𝑖 − η𝑖𝑟𝑖 , for i = 0, 1, …, Nη𝑖 =
𝑟𝑖 𝑇

𝑟𝑖

𝑟𝑖 𝑇𝐴𝑟𝑖
𝑟𝑖 = 𝑣 − 𝐴𝑓𝑖 ,

Is this cheaper than the pseudo-inverse approach?

• We never need to compute A, only its products with vectors f, r.

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

Gradient descent

Minimize by iteratively computing:

𝑓𝑖+1 = 𝑓𝑖 − η𝑖𝑟𝑖 , for i = 0, 1, …, Nη𝑖 =
𝑟𝑖 𝑇

𝑟𝑖

𝑟𝑖 𝑇𝐴𝑟𝑖
𝑟𝑖 = 𝑣 − 𝐴𝑓𝑖 ,

Is this cheaper than the pseudo-inverse approach?

• We never need to compute A, only its products with vectors f, r.
• Vectors f, r are images.

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

Gradient descent

Minimize by iteratively computing:

𝑓𝑖+1 = 𝑓𝑖 − η𝑖𝑟𝑖 , for i = 0, 1, …, Nη𝑖 =
𝑟𝑖 𝑇

𝑟𝑖

𝑟𝑖 𝑇𝐴𝑟𝑖
𝑟𝑖 = 𝑣 − 𝐴𝑓𝑖 ,

Is this cheaper than the pseudo-inverse approach?

• We never need to compute A, only its products with vectors f, r.
• Vectors f, r are images.
• Because A is the Laplacian matrix, these matrix-vector products can be efficiently computed

using convolutions with the Laplacian kernel.

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

In practice: conjugate gradient descent

Minimize by iteratively computing:

𝑓𝑖+1 = 𝑓𝑖 + η𝑖𝑑𝑖 , for i = 0, 1, …, N

η𝑖 =
𝑑𝑖 𝑇

𝑟𝑖

𝑑𝑖 𝑇𝐴𝑑𝑖

𝑟𝑖 = 𝑣 − 𝐴𝑓𝑖 ,

𝛽𝑖+1 =
𝑟𝑖+1 𝑇

𝑟𝑖+1

𝑟𝑖 𝑇𝑟𝑖

𝑑𝑖+1 = 𝑟𝑖+1 + 𝛽𝑖+1𝑑𝑖 , • Smarter way for selecting
update directions

• Everything can still be done
using convolutions

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

Note: initialization

Does the initialization f0 matter?

Note: initialization

Does the initialization f0 matter?

• It doesn’t matter in terms of what final f we converge to, because the loss function is convex.

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

Note: initialization

Does the initialization f0 matter?

• It doesn’t matter in terms of what final f we converge to, because the loss function is convex.

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

• It does matter in terms of convergence speed.
• We typically use a multi-grid approach:

- Solve an initial problem for a very low-resolution f (e.g., 2x2).
- Use the solution to initialize gradient descent for a higher resolution f (e.g., 4x4).
- Use the solution to initialize gradient descent for a higher resolution f (e.g., 8x8).

…
- Use the solution to initialize gradient descent for an f with the original resolution NxN.

Poisson image editing examples

Photoshop’s “healing brush”

Slightly more advanced version
of what we covered here:
• Uses higher-order derivatives

Contrast problem

Loss of contrast when pasting from dark to bright:
• Contrast is a multiplicative property.
• With Poisson blending we are matching linear differences.

Contrast problem

Loss of contrast when pasting from dark to bright:
• Contrast is a multiplicative property.
• With Poisson blending we are matching linear differences.

Solution: Do blending in log-domain.

More blending

copy-paste Poisson blendingoriginals

Blending transparent objects

Blending objects with holes

Editing

Concealment

How would you do this
with Poisson blending?

Concealment

How would you do this
with Poisson blending?

• Insert a copy of the
background.

Texture swapping

Special case: membrane interpolation

How would you do this?

Special case: membrane interpolation

How would you do this?

Poisson problem

Laplacian problem

Flash/no-flash photography

Red Eye

Unflattering Lighting

Motion Blur

Noise

A lot of Noise

Ruined Ambiance

No-FlashFlash

+ Low Noise
+ Sharp
- Artificial Light
- Jarring Look

- High Noise
- Lacks Detail
+ Ambient Light
+ Natural Look

Image acquisition

Lock Focus
& Aperture

1

time

Image acquisition

1/30 s
ISO 3200

No-Flash ImageLock Focus
& Aperture

21

time

Image acquisition

1/30 s
ISO 3200

1/125 s
ISO 200

No-Flash ImageLock Focus
& Aperture

Flash Image

2 31

time

Denoising Result

• Show a larger result here

No-Flash

Denoising Result

Key idea

Denoise the no-flash image while maintaining the edge structure of the flash image
• How would you do this using the image editing techniques we’ve learned about?

Denoising with bilateral filtering

noisy input bilateral filtering median filtering

Denoising with bilateral filtering

• However, results still have noise or blur (or both)

ambient

flash
Bilateral

filter

Denoising with joint bilateral filtering

• In the flash image there are much more details

• Use the flash image F to find edges

Denoising with joint bilateral filtering

Bilateral
filter

Joint Bilateral
filter

The difference

Not all edges in the flash image are real

Can you think of any types of edges that may exist in the flash image but not the
ambient one?

Not all edges in the flash image are real

shadows

specularities

• May cause over- or under-blur in joint bilateral filter

• We need to eliminate their effect

Detecting shadows

• Observation: the pixels in the flash shadow should be similar to the ambient image.

• Not identical:

1. Noise.

2. Inter-reflected flash.

• Compute a shadow mask.

• Take pixel p if

• is manually adjusted

• Mask is smoothed and dilated

Detecting specularities

• Take pixels where sensor input is close to maximum (very bright).

• Over fixed threshold

• Create a specularity mask.

• Also smoothed.

• M – the combination of shadow and specularity masks:

Where Mp=1, we use ABase. For other pixels we use ANR.

Detail transfer

• Denoising cannot add details missing in the ambient image

• Exist in flash image because of high SNR

• We use a quotient image:

• Multiply with ANR to add the details

• Masked in the same way

Reduces the
effect of

noise in F

Why does this quotient image
make sense for detail?

Bilateral
filtered

Detail transfer

• Denoising cannot add details missing in the ambient image

• Exist in flash image because of high SNR

• We use a quotient image: Reduces the
effect of

noise in F

Full pipeline

Demonstration

ambient-only joint bilateral and detail transfer

Can we do similar flash/no-flash fusion tasks with
gradient-domain processing?

Removing self-reflections and hot-spots
Ambient Flash

Removing self-reflections and hot-spots
Ambient Flash

Hands

Face

Tripod

Removing self-reflections and hot-spots
ResultAmbient

Flash

Reflection Layer

Idea: look at how gradients are affected
Same gradient
vector direction

Flash Gradient Vector

Ambient Gradient Vector

Ambient Flash

No reflections

Idea: look at how gradients are affected
Reflection Ambient Gradient

VectorDifferent gradient
vector direction

With reflections

Ambient Flash

Flash Gradient Vector

Idea: look at how gradients are affected
Reflection Ambient Gradient

VectorDifferent gradient
vector direction

With reflections

Ambient Flash

Flash Gradient Vector

Gradient projections
Residual
Gradient
Vector

Result Gradient Vector

Result Residual

Flash Gradient Vector

Ambient Flash

Flash/no-flash with gradient-domain processing

2D

Integration

Flash

Ambient

X

Y

X

Y

Intensity Gradient

Vector Projection

Result X

Result Y

Result

2D Integration

Flash

No-Flash

No-Flash

Result

Flash

No-Flash

No-Flash

Result

Flash

No-Flash

Flash

No-Flash

Result

References
Basic reading:
• Szeliski textbook, Sections 3.13, 3.5.5, 9.3.4, 10.4.3.
• Pérez et al., “Poisson Image Editing,” SIGGRAPH 2003.

The original Poisson Image Editing paper.
• Agrawal and Raskar, “Gradient Domain Manipulation Techniques in Vision and Graphics,” ICCV 2007 course, http://www.amitkagrawal.com/ICCV2007Course/

A great resource (entire course!) for gradient-domain image processing.
• Petschnigg et al., “Digital photography with flash and no-flash image pairs,” SIGGRAPH 2004.
• Eisemann and Durand, “Flash Photography Enhancement via Intrinsic Relighting,” SIGGRAPH 2004.

The first two papers exploring the idea of photography with flash and no-flash pairs, both using variants of the joint bilateral filter.
• Agrawal et al., “Removing Photography Artifacts Using Gradient Projection and Flash-Exposure Sampling,” SIGGRAPH 2005.

A subsequent paper on photography with flash and no-flash pairs, using gradient-domain image processing.

Additional reading:
• Georgiev, “Covariant Derivatives and Vision,” ECCV 2006.

An paper from Adobe on the version of Poisson blending implemented in Photoshop’s “healing brush”.
• Elder and Goldberg, “Image editing in the contour domain”, PAMI 2001.

One of the very first papers discussing gradient-domain image processing.
• Szeliski, “Locally adapted hierarchical basis preconditioning,” SIGGRAPH 2006.

A standard reference on multi-grid and preconditioning techniques for accelerating the Poisson solver.
• Bhat et al., “Fourier Analysis of the 2D Screened Poisson Equation for Gradient Domain Problems,” ECCV 2008.

A paper discussing the (Fourier) basis projection approach for solving the Poisson integration problem.
• Bhat et al., “GradientShop: A Gradient-Domain Optimization Framework for Image and Video Filtering,” ToG 2010.

A paper describing gradient-domain processing as a general image processing paradigm, which can be used for a broad set of applications beyond
blending, including tone-mapping, colorization, converting to grayscale, edge enhancement, image abstraction and non-photorealistic rendering.

• Krishnan and Fergus, “Dark Flash Photography,” SIGGRAPH 2009.
A paper proposing doing flash/no-flash photography using infrared flash lights.

• Kettunen et al., “Gradient-domain path tracing,” SIGGRAPH 2015.
In addition to editing images in the gradient-domain, we can also directly render them in the gradient-domain.

• Tumblin et al., “Why I want a gradient camera?” CVPR 2005.
We can even directly measure images in the gradient domain, using so-called gradient cameras.

