Gradient-domain image processing

15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 10

http://graphics.cs.cmu.edu/courses/15-463

Course announcements

- Homework 3 is out.
 - (Much) smaller than homework 2, but you should still start early to take advantage of bonus questions.
 - Requires a camera with flash for the second part.
- Grades for homework 1 have been posted.
- Make-up lecture will be scheduled soon.
 What day does majority of the class prefer?
- How was Ravi's lecture on Monday?
- Thoughts on homework 2?

Overview of today's lecture

- Gradient-domain image processing.
- Basics on images and gradients.
- Integrable vector fields.
- Poisson blending.
- A more efficient Poisson solver.
- Poisson image editing examples.
- Flash/no-flash photography.

Slide credits

Many of these slides were adapted from:

- Kris Kitani (15-463, Fall 2016).
- Fredo Durand (MIT).
- James Hays (Georgia Tech).
- Amit Agrawal (MERL).

Gradient-domain image processing

Someone leaked season 8 of Game of Thrones

or, more likely, they made some creative use of Poisson blending

Application: Poisson blending

originals

copy-paste

More applications

Removing Glass Reflections

Seamless Image Stitching

Yet more applications

Fusing day and night photos

Tonemapping

Entire suite of image editing tools

GradientShop: A Gradient-Domain Optimization Framework for Image and Video Filtering

Pravin Bhat¹ C. Lawrence Zitnick² ¹University of Washington Michael Cohen^{1,2} Brian Curless¹ ²Microsoft Research

(a) Input image

(b) Saliency-sharpening filter

(c) Pseudo-relighting filter

(d) Non-photorealistic rendering filter

(e) Compressed input-image

(f) De-blocking filter

(g) User input for colorization

(h) Colorization filter

Figure 1: The figure shows some of the image-enhancement filters we have created using the GradientShop optimization-framework. GradientShop has been designed to allow applications to explore gradient-domain solutions for various image processing problems.

Main pipeline

Basics of images and gradients

Image representation

We can treat images as scalar fields (i.e., two dimensional functions)

Image gradients

Convert the *scalar* field into a *vector* field through differentiation.

Image gradients

Convert the *scalar* field into a *vector* field through differentiation.

• How do we do this differentiation in real *discrete* images?

High-school reminder: definition of a derivative using forward difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

High-school reminder: definition of a derivative using forward difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Alternative: use central difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

For discrete signals: Remove limit and set h = 2

$$f'(x) = \frac{f(x+1) - f(x-1)}{2}$$

How do you efficiently compute this?

High-school reminder: definition of a derivative using forward difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Alternative: use central difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

For discrete signals: Remove limit and set h = 2

$$f'(x) = \frac{f(x+1) - f(x-1)}{2}$$

What convolution kernel does this correspond to?

High-school reminder: definition of a derivative using forward difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Alternative: use central difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

For discrete signals: Remove limit and set h = 2

$$f'(x) = \frac{f(x+1) - f(x-1)}{2}$$

$$\begin{array}{c|c} -1 & 0 & 1 \\ \hline 1 & 0 & -1 \end{array}$$

High-school reminder: definition of a derivative using forward difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Alternative: use central difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

For discrete signals: Remove limit and set h = 2

$$f'(x) = \frac{f(x+1) - f(x-1)}{2}$$

1D derivative filter

1	0	-1
---	---	----

Image gradients

Convert the *scalar* field into a *vector* field through differentiation.

scalar field $I(x, y) : \mathbb{R}^2 \to \mathbb{R}$ we ctor field $\nabla I = \{\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y}\} : \mathbb{R}^2 \to \mathbb{R}^2$

- How do we do this differentiation in real *discrete* images?
- Can we go in the opposite direction, from gradients to images?

Vector field integration

Two core questions:

• When is integration of a vector field possible?

• How can integration of a vector field be performed?

Integrable vector fields

Integrable fields

Given an arbitrary vector field (u, v), can we always integrate it into a scalar field I?

Curl and divergence

Curl: <u>vector</u> operator showing the rate of rotation of a vector field.

$$Curl \ (\nabla I) = \nabla \times \nabla I$$

Divergence: <u>vector</u> operator showing the isotropy of a vector field.

 $Div (\nabla I) = \nabla \bullet \nabla I$

Do you know of some simpler versions of these operators?

Curl and divergence

Curl: <u>vector</u> operator showing the rate of rotation of a vector field.

$$Curl \ (\nabla I) = \det \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ I_x & I_y \end{vmatrix} = \frac{\partial I_y}{\partial x} - \frac{\partial I_x}{\partial y} = I_{yx} - I_{xy}$$

Divergence: <u>vector</u> operator showing the isotropy of a vector field.

$$div (I_x, I_y) = \frac{\partial I_x}{\partial x} + \frac{\partial I_y}{\partial y} = I_{xx} + I_{yy}$$

Can you use either of these operators to derive an integrability condition?

Integrability condition

Curl of the gradient field should be zero:

$$Curl (\nabla I) = I_{yx} - I_{xy} = 0$$

What does that mean intuitively?

Integrability condition

Curl of the gradient field should be zero:

$$Curl \ (\nabla I) = I_{yx} - I_{xy} = 0$$

What does that mean intuitively?

• Same result independent of order of differentiation.

$$I_{yx} = I_{xy}$$

Demonstration

Laplace filter

Basically a second derivative filter.

• We can use finite differences to derive it, as with first derivative filter.

first-order
finite difference
$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h} \longrightarrow 1D$$
 derivative filter
 $1 \quad 0 \quad -1$
second-order
finite difference $f''(x) = \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} \longrightarrow Laplace filter$?

Laplace filter

Basically a second derivative filter.

• We can use finite differences to derive it, as with first derivative filter.

first-order
finite difference
$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h} \longrightarrow 1D$$
 derivative filter
 $1 \quad 0 \quad -1$
second-order
finite difference $f''(x) = \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} \longrightarrow 1D$ derivative filter
 $1 \quad 0 \quad -1$

Vector field integration

Two core questions:

- When is integration of a vector field possible?
 - Use curl to check for equality of mixed partial second derivatives.

• How can integration of a vector field be performed?

Different types of integration problems

- Reconstructing height field from gradients Applications: shape from shading, photometric stereo
- Manipulating image gradients Applications: tonemapping, image editing, matting, fusion, mosaics
- Manipulation of 3D gradients Applications: mesh editing, video operations

Key challenge: Most vector fields in applications are not integrable.

• Integration must be done *approximately*.

Application: Poisson blending

originals

copy-paste

Key idea

When blending, retain the gradient information as best as possible

source

destination

copy-paste
Poisson blending: 1D example

Definitions and notation

Notation

g: source function

S: destination

 Ω : destination domain

f: interpolant function

f*: destination function

Which one is the unknown?

Definitions and notation

Notation

g: source function

S: destination

 Ω : destination domain

f: interpolant function

f*: destination function

How should we determine f?

- should it look like g?
- should it look like f*?

Interpolation criterion

"Variational" means optimization where the unknown is an entire function Variational problem $\min_{f} \iint_{\Omega} |\nabla f - \mathbf{v}|^2$ with $f|_{\partial\Omega} = f^*|_{\partial\Omega}$ what does this
term do?what does this
term do?

Recall ...

Image gradient

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

is this known?

 $\mathbf{v} = (u, v) = \nabla g$

Interpolation criterion

"Variational" means optimization where the unknown is an entire function

Recall ...

Image gradient
$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

Yes, since the source function g is known

$$\mathbf{v} = (u, v) = \nabla g$$

This is where *Poisson* blending comes from

Poisson equation (with Dirichlet boundary conditions) $\Delta f = \operatorname{div} \mathbf{v}$ over Ω , with $f|_{\partial\Omega} = f^*|_{\partial\Omega}$

what does this term do?

$$\begin{array}{ll} {\sf Gradient} & {\bf v}=(u,v)=\nabla g\\ \\ {\sf Laplacian} & \Delta f=\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2} \end{array}$$

Divergence div $\mathbf{v} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$

div
$$\mathbf{v} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$$

= $\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$
= Δg

Poisson equation (with Dirichlet boundary conditions) $\Delta f = \operatorname{div} \mathbf{v} \quad \operatorname{over} \quad \Omega, \quad \operatorname{with} \quad f|_{\partial\Omega} = f^*|_{\partial\Omega}$ Laplacian of f same as g

Gradient $\mathbf{v} = (u, v) = \nabla g$

Laplacian
$$\Delta f = rac{\partial^2 f}{\partial x^2} + rac{\partial^2 f}{\partial y^2}$$

Divergence div $\mathbf{v} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$

div
$$\mathbf{v} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$$

= $\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$
= Δg

Poisson equation (with Dirichlet boundary conditions)

$$\Delta f = \operatorname{div} \mathbf{v} \quad \operatorname{over} \quad \Omega, \quad \operatorname{with} \quad f|_{\partial\Omega} = f^*|_{\partial\Omega}$$

How can we do this?

Poisson equation (with Dirichlet boundary conditions)

$$\Delta f = \operatorname{div} \mathbf{v} \quad \operatorname{over} \quad \Omega, \quad \operatorname{with} \quad f|_{\partial\Omega} = f^*|_{\partial\Omega}$$

So for each pixel p, do:

$$\Delta f_p = \Delta g_p$$

How did we compute the Laplacian?

Or for discrete images: $4f_p - \sum_{q \in N_p} f_q = 4g_p - \sum_{q \in N_p} g_q$

Poisson equation (with Dirichlet boundary conditions) $\Delta f = \operatorname{div} \mathbf{v} \quad \operatorname{over} \quad \Omega, \quad \operatorname{with} \quad f|_{\partial\Omega} = f^*|_{\partial\Omega}$

What's known and what's unknown?

Poisson equation (with Dirichlet boundary conditions)

$$\Delta f = \operatorname{div} \mathbf{v} \quad \operatorname{over} \quad \Omega, \quad \operatorname{with} \quad f|_{\partial\Omega} = f^*|_{\partial\Omega}$$

f is unknown except g and its Laplacian at the boundary are known

We can rewrite this as

WARNING: requires special treatment at the borders (target boundary values are same as source)

Solving the linear system

Convert the system to a linear least-squares problem:

$$E_{\rm LLS} = \|\mathbf{A}f - \boldsymbol{b}\|^2$$

Expand the error:

$$E_{\text{LLS}} = f^{\top} (\mathbf{A}^{\top} \mathbf{A}) f - 2f^{\top} (\mathbf{A}^{\top} \mathbf{b}) + \|\mathbf{b}\|^2$$

Minimize the error:

Set derivative to 0
$$(\mathbf{A}^{ op}\mathbf{A})f = \mathbf{A}^{ op}m{b}$$

Solve for x
$$~f = (\mathbf{A}^{ op} \mathbf{A})^{-1} \mathbf{A}^{ op} m{b}$$

Solving the linear system

Convert the system to a linear least-squares problem:

$$E_{\text{LLS}} = \|\mathbf{A}f - \mathbf{b}\|^2$$

Expand the error:

$$E_{\text{LLS}} = f^{\top} (\mathbf{A}^{\top} \mathbf{A}) f - 2f^{\top} (\mathbf{A}^{\top} \mathbf{b}) + \|\mathbf{b}\|^2$$

Minimize the error:

Set derivative to 0
$$(\mathbf{A}^{ op}\mathbf{A})f = \mathbf{A}^{ op}m{b}$$

Solve for x
$$f = (\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{A}^{\top}\mathbf{b} \longleftarrow$$
 Note: You almost never want to compute the inverse of a matrix

In Matlab:

$$f = A \setminus b$$

Integration procedures

- Poisson solver (i.e., least squares integration)
 - + Generally applicable.
 - Matrices A can become very large.
- Acceleration techniques:
 - + (Conjugate) gradient descent solvers.
 - + Multi-grid approaches.
 - + Pre-conditioning.
 - + Quadtree decompositions.
- Alternative solvers: projection procedures.
 - We will discuss one of these when we cover photometric stereo.

A more efficient Poisson solver

$$\begin{array}{ll} \mbox{Variational problem} \\ \mbox{min} & \displaystyle \iint_f |\nabla f - \mathbf{v}|^2 & \mbox{with} & f|_{\partial\Omega} = f^*|_{\partial\Omega} \\ \mbox{gradient of f looks} & \mbox{f is equivalent to f}^* \\ \mbox{like gradient of g} & \mbox{at the boundaries} \end{array}$$

Recall ...

Image gradient
$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$\begin{array}{ll} \mbox{Variational problem} \\ \mbox{min} & \displaystyle \iint_f |\nabla f - \mathbf{v}|^2 & \mbox{with} & f|_{\partial\Omega} = f^*|_{\partial\Omega} \\ \mbox{gradient of f looks} & \mbox{f is equivalent to } f^* \\ \mbox{like gradient of g} & \mbox{at the boundaries} \end{array}$$

Recall ...

Image gradient
$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

We can use the gradient approximation to discretize the variational problem

Discrete problem

```
What are G, f, and v?
```

```
\min_{f} \|Gf - v\|^2
```

We will ignore the boundary conditions for now.

Recall ...

Image gradient
$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

We can use the gradient approximation to discretize the variational problem

We will ignore the boundary conditions for now.

Recall ...

Image gradient
$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

We can use the gradient approximation to discretize the variational problem

We will ignore the boundary conditions for now.

Recall ...

Image gradient
$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

Recall ...

Image gradient
$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

**-----

Given the loss function:

$$E(f) = \|Gf - v\|^2$$

... we compute its derivative:

$$\frac{\partial E}{\partial f} = ?$$

Given the loss function:

$$E(f) = \|Gf - v\|^2$$

... we compute its derivative:

$$\frac{\partial E}{\partial f} = G^T G f - v$$

... and we do what with it?

Given the loss function:

$$E(f) = \|Gf - v\|^2$$

... we compute its derivative:

$$\frac{\partial E}{\partial f} = G^T G f - v$$

... and we set that to zero:

$$\frac{\partial E}{\partial f} = 0 \Rightarrow \underbrace{G^T G f}_{f} = v$$
What is this matrix?

Given the loss function:

$$E(f) = \|Gf - v\|^2$$

... we compute its derivative:

$$\frac{\partial E}{\partial f} = G^T G f - v$$

... and we set that to zero:

$$\frac{\partial E}{\partial f} = 0 \Rightarrow \underbrace{G^T G f}_{=} v$$
It is equal to the
Laplacian matrix A we
derived previously!

Reminder from variational case

Poisson equation (with Dirichlet boundary conditions) $\Delta f = \operatorname{div} \mathbf{v} \quad \operatorname{over} \quad \Omega, \quad \operatorname{with} \quad f|_{\partial\Omega} = f^*|_{\partial\Omega}$

What's known and what's unknown?

Reminder from variational case

We arrive at the same system, no matter whether we discretize the continuous Laplace equation or the variational optimization problem.

Given the loss function:

$$E(f) = \|Gf - v\|^2$$

... we compute its derivative:

$$\frac{\partial E}{\partial f} = G^T G f - v$$

... and we set that to zero:

$$\frac{\partial E}{\partial f} = 0 \Rightarrow G^T G f = v$$

Solving this is <u>exactly</u> as expensive as what we had before.

Approach 2: Use gradient descent

Given the loss function:

$$E(f) = \|Gf - \nu\|^2$$

... we compute its derivative:

$$\frac{\partial E}{\partial f} = G^T G f - v = A f - v \equiv r \qquad \text{We}$$

We call this term the *residual*

Approach 2: Use gradient descent

Given the loss function:

$$E(f) = \|Gf - v\|^2$$

... we compute its derivative:

$$\frac{\partial E}{\partial f} = G^T G f - \nu = A f - \nu \equiv r$$
 We call this term the *residual* We call this term

... and then we *iteratively* compute a solution:

$$f^{i+1} = f^i - \eta^i r^i$$
 for i = 0, 1, ..., N, where
 η^i are positive step sizes

Selecting optimal step sizes

Make derivative of loss function with respect to η^i equal to zero:

$$E(f) = \|Gf - v\|^{2}$$

$$E(f^{i+1}) = \|G(f^{i} - \eta^{i}r^{i}) - v\|^{2}$$

$$\frac{\partial E(f^{i+1})}{\partial r^{i}} = [v - A(f^{i} - \eta^{i}r^{i})]^{T}r^{i} = 0 \Rightarrow \eta^{i} = \frac{(r^{i})^{T}r^{i}}{(r^{i})^{T}Ar^{i}}$$

Given the loss function:

$$E(f) = \|Gf - \nu\|^2$$

Minimize by iteratively computing:

$$f^{i+1} = f^i - \eta^i r^i$$
, $r^i = v - A f^i$, $\eta^i = \frac{(r^i)^T r^i}{(r^i)^T A r^i}$ for $i = 0, 1, ..., N$

Is this cheaper than the pseudo-inverse approach?

Given the loss function:

$$E(f) = \|Gf - \nu\|^2$$

Minimize by iteratively computing:

$$f^{i+1} = f^i - \eta^i r^i$$
, $r^i = v - A f^i$, $\eta^i = \frac{(r^i)^T r^i}{(r^i)^T A r^i}$ for $i = 0, 1, ..., N$

Is this cheaper than the pseudo-inverse approach?

• We never need to compute A, only its products with vectors f, r.

Given the loss function:

$$E(f) = \|Gf - \nu\|^2$$

Minimize by iteratively computing:

$$f^{i+1} = f^i - \eta^i r^i$$
, $r^i = v - A f^i$, $\eta^i = \frac{(r^i)^T r^i}{(r^i)^T A r^i}$ for $i = 0, 1, ..., N$

Is this cheaper than the pseudo-inverse approach?

- We never need to compute A, only its products with vectors f, r.
- Vectors f, r are images.

Given the loss function:

$$E(f) = \|Gf - \nu\|^2$$

Minimize by iteratively computing:

$$f^{i+1} = f^i - \eta^i r^i$$
, $r^i = v - A f^i$, $\eta^i = \frac{(r^i)^T r^i}{(r^i)^T A r^i}$ for $i = 0, 1, ..., N$

Is this cheaper than the pseudo-inverse approach?

- We never need to compute A, only its products with vectors f, r.
- Vectors f, r are images.
- Because A is the *Laplacian matrix*, these matrix-vector products can be efficiently computed using *convolutions* with the *Laplacian kernel*.
In practice: conjugate gradient descent

Given the loss function:

$$E(f) = \|Gf - \nu\|^2$$

Minimize by iteratively computing:

$$f^{i+1} = f^i + \eta^i d^i$$
, $r^i = v - A f^i$, for i = 0, 1, ..., N

$$d^{i+1} = r^{i+1} + \beta^{i+1} d^{i},$$

$$\beta^{i+1} = \frac{(r^{i+1})^{T} r^{i+1}}{(r^{i})^{T} r^{i}} \quad \eta^{i} = \frac{(d^{i})^{T} r^{i}}{(d^{i})^{T} A d^{i}}$$

- Smarter way for selecting update directions
- Everything can still be done using convolutions

Note: initialization

Does the initialization f^0 matter?

Note: initialization

Does the initialization f^0 matter?

• It doesn't matter in terms of what final f we converge to, because the loss function is convex.

$$E(f) = \|Gf - v\|^2$$

Note: initialization

Does the initialization f^0 matter?

• It doesn't matter in terms of what final f we converge to, because the loss function is convex.

$$E(f) = \|Gf - \nu\|^2$$

- It does matter in terms of convergence speed.
- We typically use a *multi-grid* approach:
 - Solve an initial problem for a very low-resolution f (e.g., 2x2).
 - Use the solution to initialize gradient descent for a higher resolution f (e.g., 4x4).
 - Use the solution to initialize gradient descent for a higher resolution f (e.g., 8x8).
 - Use the solution to initialize gradient descent for an f with the original resolution NxN.

Poisson image editing examples

Photoshop's "healing brush"

Slightly more advanced version of what we covered here:

• Uses higher-order derivatives

Contrast problem

Loss of contrast when pasting from dark to bright:

- Contrast is a multiplicative property.
- With Poisson blending we are matching linear differences.

Contrast problem

Loss of contrast when pasting from dark to bright:

- Contrast is a multiplicative property.
- With Poisson blending we are matching linear differences.

Solution: Do blending in log-domain.

More blending

originals

copy-paste

Poisson blending

Blending transparent objects

source

destination

Blending objects with holes

(c) seamless cloning and destination averaged

(d) mixed seamless cloning

Editing

Concealment

How would you do this with Poisson blending?

Concealment

How would you do this with Poisson blending?

• Insert a copy of the background.

Texture swapping

Special case: membrane interpolation

How would you do this?

Special case: membrane interpolation

How would you do this?

Poisson problem

$$\begin{split} \min_{f} \iint_{\Omega} |\nabla f - \mathbf{v}|^{2} \quad \text{with} \quad f|_{\partial\Omega} &= f^{*}|_{\partial\Omega} \\ \text{Laplacian problem} \\ \min_{f} \iint_{\Omega} |\nabla f|^{2} \quad \text{with} \quad f|_{\partial\Omega} &= f^{*}|_{\partial\Omega} \end{split}$$

Flash/no-flash photography

Flash

- + Low Noise
- + Sharp
- Artificial Light
- Jarring Look

- High Noise
- Lacks Detail
- + Ambient Light
- + Natural Look

Image acquisition

time

Image acquisition

Image acquisition

Key idea

Denoise the no-flash image while maintaining the edge structure of the flash image

• How would you do this using the image editing techniques we've learned about?

Denoising with bilateral filtering

noisy input

bilateral filtering

median filtering

Denoising with bilateral filtering

$$A_{p(col)}^{Base} = \frac{1}{k(p(col))} \sum_{p' \in \Omega} g_d(|p-p'|)$$
$$g_r(A_{p(col)} - A_{p'(col)}) A_{p'(col)}$$

• However, results still have noise or blur (or both)

Denoising with joint bilateral filtering

$$A_{p(col)}^{NR} = \frac{1}{k(p(col))} \sum_{p' \in \Omega} \frac{g_d(|p - p'|)}{g_r(F_{p(col)} - F_{p'(col)})} A_{p'(col)}$$

- In the flash image there are much more *details*
- Use the flash image F to find edges

Denoising with joint bilateral filtering

$$A_{p(col)}^{NR} = \frac{1}{k(p(col))} \sum_{p' \in \Omega} \frac{g_d(|p - p'|)}{g_r(F_{p(col)} - F_{p'(col)})} A_{p'(col)}$$

Joint Bilateral filter
Not all edges in the flash image are real

Can you think of any types of edges that may exist in the flash image but not the ambient one?

Not all edges in the flash image are real

specularities

shadows

- May cause over- or under-blur in joint bilateral filter
- We need to eliminate their effect

Detecting shadows

- Observation: the pixels in the flash shadow should be similar to the ambient image.
- Not identical:
 - 1. Noise.
 - 2. Inter-reflected flash.
- Compute a *shadow mask*.
- Take pixel p if $F_{p(col)}^{Lin} A_{p(col)}^{Lin} \le \tau_{Shadow}$
- $\tau_{Shadowis}$ manually adjusted
- Mask is *smoothed* and *dilated*

Detecting specularities

- Take pixels where sensor input is close to maximum (very bright).
 - Over fixed threshold τ_{Spec}
- Create a specularity mask.
- Also smoothed.
- M the combination of shadow and specularity masks:

Where $M_p=1$, we use A^{Base} . For other pixels we use A^{NR} .

Detail transfer

- Denoising cannot add details *missing* in the ambient image
- Exist in flash image because of high SNR
- We use a *quotient image*:

• Masked in the same way

Why does this quotient image make sense for detail?

Detail transfer

- Denoising cannot add details *missing* in the ambient image
- Exist in flash image because of high SNR
- We use a *quotient image*:

$$F_{p(col)}^{Detail} = \frac{F_{p(col)} + \varepsilon}{F_{p(col)}^{Base} + \varepsilon} \qquad \begin{array}{c} \text{Reduces the} \\ \text{effect of} \\ \text{noise in F} \end{array}$$

Full pipeline

Demonstration

joint bilateral and detail transfer

ambient-only

Can we do similar flash/no-flash fusion tasks with gradient-domain processing?

Removing self-reflections and hot-spots

Removing self-reflections and hot-spots

Removing self-reflections and hot-spots

Reflection Layer

Flash/no-flash with gradient-domain processing

References

Basic reading:

- Szeliski textbook, Sections 3.13, 3.5.5, 9.3.4, 10.4.3.
- Pérez et al., "Poisson Image Editing," SIGGRAPH 2003.
 - The original Poisson Image Editing paper.
- Agrawal and Raskar, "Gradient Domain Manipulation Techniques in Vision and Graphics," ICCV 2007 course, http://www.amitkagrawal.com/ICCV2007Course/ A great resource (entire course!) for gradient-domain image processing.
- Petschnigg et al., "Digital photography with flash and no-flash image pairs," SIGGRAPH 2004.
- Eisemann and Durand, "Flash Photography Enhancement via Intrinsic Relighting," SIGGRAPH 2004. The first two papers exploring the idea of photography with flash and no-flash pairs, both using variants of the joint bilateral filter.
- Agrawal et al., "Removing Photography Artifacts Using Gradient Projection and Flash-Exposure Sampling," SIGGRAPH 2005. A subsequent paper on photography with flash and no-flash pairs, using gradient-domain image processing.

Additional reading:

- Georgiev, "Covariant Derivatives and Vision," ECCV 2006. An paper from Adobe on the version of Poisson blending implemented in Photoshop's "healing brush".
- Elder and Goldberg, "Image editing in the contour domain", PAMI 2001. One of the very first papers discussing gradient-domain image processing.
- Szeliski, "Locally adapted hierarchical basis preconditioning," SIGGRAPH 2006. A standard reference on multi-grid and preconditioning techniques for accelerating the Poisson solver.
- Bhat et al., "Fourier Analysis of the 2D Screened Poisson Equation for Gradient Domain Problems," ECCV 2008. A paper discussing the (Fourier) basis projection approach for solving the Poisson integration problem.
- Bhat et al., "GradientShop: A Gradient-Domain Optimization Framework for Image and Video Filtering," ToG 2010. A paper describing gradient-domain processing as a general image processing paradigm, which can be used for a broad set of applications beyond blending, including tone-mapping, colorization, converting to grayscale, edge enhancement, image abstraction and non-photorealistic rendering.
- Krishnan and Fergus, "Dark Flash Photography," SIGGRAPH 2009.
 A paper proposing doing flash/no-flash photography using infrared flash lights.
- Kettunen et al., "Gradient-domain path tracing," SIGGRAPH 2015.
 In addition to *editing* images in the gradient-domain, we can also directly *render* them in the gradient-domain.
- Tumblin et al., "Why I want a gradient camera?" CVPR 2005.

We can even directly measure images in the gradient domain, using so-called gradient cameras.