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Course announcements

• Homework 3 is out.
- (Much) smaller than homework 2, but you should still start early to take advantage 
of bonus questions.
- Requires a camera with flash for the second part.

• Grades for homework 1 have been posted.

• Make-up lecture will be scheduled soon.
- What day does majority of the class prefer?

• How was Ravi’s lecture on Monday?

• Thoughts on homework 2?



Overview of today’s lecture

• Gradient-domain image processing.

• Basics on images and gradients.

• Integrable vector fields.

• Poisson blending.

• A more efficient Poisson solver.

• Poisson image editing examples.

• Flash/no-flash photography.



Slide credits

Many of these slides were adapted from:

• Kris Kitani (15-463, Fall 2016).
• Fredo Durand (MIT).
• James Hays (Georgia Tech).
• Amit Agrawal (MERL).



Gradient-domain image processing



Someone leaked season 8 of Game of Thrones

or, more likely, they made some creative use of Poisson blending



Application: Poisson blending

originals copy-paste Poisson blending



More applications

Removing Glass Reflections

Seamless Image Stitching



Yet more applications

Tonemapping

Fusing day and night photos



Entire suite of image editing tools



Main pipeline

Estimation

of Gradients

Manipulation of 

Gradients

Non-Integrable 

Gradient Fields

Reconstruction 

from 

Gradients

Images/Videos/

Meshes/Surfaces

Images/Videos/

Meshes/Surfaces



Basics of images and gradients



Image representation

We can treat images as scalar fields (i.e., two dimensional functions)

I(x,y): ℝ2 → ℝ



Image gradients

Convert the scalar field into a vector field through differentiation.
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Image gradients

Convert the scalar field into a vector field through differentiation.
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=),( yxI : ℝ2 → ℝ : ℝ2 → ℝ2scalar field vector field

• How do we do this differentiation in real discrete images?



Finite differences

High-school reminder: definition of a derivative using forward difference



Finite differences

High-school reminder: definition of a derivative using forward difference

Alternative: use central difference

For discrete signals: Remove limit and set h = 2

How do you efficiently 
compute this?



Finite differences

High-school reminder: definition of a derivative using forward difference

Alternative: use central difference

For discrete signals: Remove limit and set h = 2

What convolution kernel 
does this correspond to?



Finite differences

High-school reminder: definition of a derivative using forward difference

Alternative: use central difference

For discrete signals: Remove limit and set h = 2

1 0 -1

-1 0 1 ?

?



Finite differences

High-school reminder: definition of a derivative using forward difference

Alternative: use central difference

For discrete signals: Remove limit and set h = 2

1 0 -1

1D derivative filter



Image gradients

Convert the scalar field into a vector field through differentiation.
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=),( yxI : ℝ2 → ℝ : ℝ2 → ℝ2scalar field vector field

• How do we do this differentiation in real discrete images?

• Can we go in the opposite direction, from gradients to images?



Vector field integration

Two core questions:

• When is integration of a vector field possible?

• How can integration of a vector field be performed? 



Integrable vector fields



Integrable fields

Given an arbitrary vector field (u, v), can we always integrate it into a scalar field I?

such that 

𝜕𝐼

𝜕𝑥
𝑥, 𝑦 = 𝑢(𝑥, 𝑦)

𝐼 𝑥, 𝑦 : ℝ2 → ℝ 𝑣 𝑥, 𝑦 : ℝ2 → ℝ𝑢 𝑥, 𝑦 : ℝ2 → ℝ

𝜕𝐼

𝜕𝑦
𝑥, 𝑦 = 𝑣(𝑥, 𝑦)

?



Curl and divergence
Curl: vector operator showing the rate of rotation of a vector field.

Divergence: vector operator showing the isotropy of a vector field.

Do you know of some simpler versions of these operators?
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Curl and divergence
Curl: vector operator showing the rate of rotation of a vector field.

Divergence: vector operator showing the isotropy of a vector field.

Can you use either of these operators to derive an integrability condition?

IICurl = )(
xyyx

xy

yx

II
y

I

x

I

II

yx −=



−




=







det



Integrability condition

Curl of the gradient field should be zero:

What does that mean intuitively?

0)( =−=
xyyx

IIICurl



Integrability condition

Curl of the gradient field should be zero:

0)( =−=
xyyx

IIICurl

What does that mean intuitively?

• Same result independent of order of differentiation.

xyyx
II =



Demonstration

Image Ix Iy

Div(Ix, Iy) Curl(Ix, Iy) Ixy Iyx

=

How do we compute this?



Basically a second derivative filter.
• We can use finite differences to derive it, as with first derivative filter.

Laplace filter

?

first-order
finite difference 1 0 -1

1D derivative filter

second-order
finite difference

Laplace filter



Basically a second derivative filter.
• We can use finite differences to derive it, as with first derivative filter.

Laplace filter

first-order
finite difference 1 0 -1

1D derivative filter

second-order
finite difference 1 -2 1

Laplace filter



Vector field integration

Two core questions:

• When is integration of a vector field possible?
- Use curl to check for equality of mixed partial second derivatives.

• How can integration of a vector field be performed? 



Different types of integration problems

• Reconstructing height field from gradients
Applications: shape from shading, photometric stereo

• Manipulating image gradients
Applications: tonemapping, image editing, matting, fusion, mosaics

• Manipulation of 3D gradients
Applications: mesh editing, video operations

Key challenge: Most vector fields in applications are not integrable.
• Integration must be done approximately.



Poisson blending



Application: Poisson blending

originals copy-paste Poisson blending



When blending, retain the gradient information as best as possible

3
6

Key idea

source destination copy-paste Poisson blending



two signals regular blending blending derivatives

bright

dark

Poisson blending: 1D example



Definitions and notation

add image 
here

g: source function

S: destination

Ω: destination domain

f: interpolant function

f*: destination function

Notation

Which one is the unknown?



Definitions and notation

add image 
here

How should we determine f?
• should it look like g?
• should it look like f*?

g: source function

S: destination

Ω: destination domain

f: interpolant function

f*: destination function

Notation



Variational problem

what does this 
term do?

what does this 
term do?

Image gradient

Recall ...

Interpolation criterion

is this known?

“Variational” means 
optimization where 
the unknown is an 

entire function



Variational problem

gradient of f looks 
like gradient of g

f is equivalent to f* 
at the boundaries

Image gradient

Recall ...

Interpolation criterion

Yes, since the source 
function g is known

“Variational” means 
optimization where 
the unknown is an 

entire function



Poisson equation (with Dirichlet boundary conditions)

Laplacian

Gradient

Equivalently

Divergence

This is where Poisson
blending comes from

what does this term do?



Poisson equation (with Dirichlet boundary conditions)

Laplacian

Gradient

Equivalently

Divergence

Laplacian of f same as g



Poisson equation (with Dirichlet boundary conditions)

Equivalently

so make these guys ...

the same

How can we do this?



Poisson equation (with Dirichlet boundary conditions)

Equivalently

So for each pixel p, do:
How did we compute 

the Laplacian?
Or for discrete images:



Poisson equation (with Dirichlet boundary conditions)

Equivalently

So for each pixel p, do:

Or for discrete images:

0 1 0

1 -4 1

0 1 0

Recall...

Laplace 
filter

What’s known and what’s unknown?



Poisson equation (with Dirichlet boundary conditions)

Equivalently

So for each pixel p, do:

0 1 0

1 -4 1

0 1 0

Recall...

Laplace 
filterOr for discrete images:

f is unknown except 
at the boundary

g and its Laplacian 
are known



In vector form:

(each pixel adds another ‘sparse’ row here)

Linear system of equations

WARNING: requires special treatment at the borders
(target boundary values are same as source )

linear equation 
of N variables

one for each pixel 
in destination

We can rewrite this as

How would you solve this?

What is this?

0 ⋯ − 1 ⋯ − 1 4 − 1 ⋯ − 1 ⋯ 0



Solving the linear system

Convert the system to a linear least-squares problem:

Expand the error:

Set derivative to 0

Minimize the error:

Solve for x



Solving the linear system

Convert the system to a linear least-squares problem:

Expand the error:

Set derivative to 0

Minimize the error:

Solve for x

In Matlab:

f = A \ b

Note: You almost never want to 
compute the inverse of a matrix.



Integration procedures

• Poisson solver (i.e., least squares integration)
+ Generally applicable.
- Matrices A can become very large.

• Acceleration techniques: 
+ (Conjugate) gradient descent solvers.
+ Multi-grid approaches.
+ Pre-conditioning.
+ Quadtree decompositions.

• Alternative solvers: projection procedures.
We will discuss one of these when we cover photometric stereo.



A more efficient Poisson solver



Variational problem

gradient of f looks 
like gradient of g

f is equivalent to f* 
at the boundaries

Image gradient

Recall ...

Let’s look again at our optimization problem



Variational problem

gradient of f looks 
like gradient of g

f is equivalent to f* 
at the boundaries

Image gradient

Recall ...

Let’s look again at our optimization problem

And for discrete images:

1 0 -1

1

0

-1

𝜕

𝜕𝑥
≈

𝜕

𝜕𝑦
≈



Discrete problem
What are G, f, and v?

Image gradient

Recall ...

Let’s look again at our optimization problem

And for discrete images:

1 0 -1

1

0

-1

𝜕

𝜕𝑥
≈

𝜕

𝜕𝑦
≈

We can use the 
gradient 

approximation to 
discretize the 

variational problem

We will ignore the 
boundary conditions 

for now.min
𝑓

𝐺𝑓 − 𝑣 2



Discrete problem
matrix G formed by stacking 
together discrete gradients

Image gradient

Recall ...

Let’s look again at our optimization problem

And for discrete images:

1 0 -1

1

0

-1

𝜕

𝜕𝑥
≈

𝜕

𝜕𝑦
≈

We can use the 
gradient 

approximation to 
discretize the 

variational problem

We will ignore the 
boundary conditions 

for now.min
𝑓

𝐺𝑓 − 𝑣 2

vectorized version of 
the unknown image

vectorized version of the 
target gradient field



Discrete problem
matrix G formed by stacking 
together discrete gradients

Image gradient

Recall ...

Let’s look again at our optimization problem

And for discrete images:

1 0 -1

1

0

-1

𝜕

𝜕𝑥
≈

𝜕

𝜕𝑦
≈

We can use the 
gradient 

approximation to 
discretize the 

variational problem

We will ignore the 
boundary conditions 

for now.min
𝑓

𝐺𝑓 − 𝑣 2

vectorized version of 
the unknown image

vectorized version of the 
target gradient field



Discrete problem
matrix G formed by stacking 
together discrete gradients

Image gradient

Recall ...

Let’s look again at our optimization problem

And for discrete images:

1 0 -1

1

0

-1

𝜕

𝜕𝑥
≈

𝜕

𝜕𝑦
≈

How do we solve 
this optimization 

problem?min
𝑓

𝐺𝑓 − 𝑣 2

vectorized version of 
the unknown image

vectorized version of the 
target gradient field



Approach 1: Compute stationary points

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

… we compute its derivative:

𝜕𝐸

𝜕𝑓
=?



Approach 1: Compute stationary points

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

… we compute its derivative:

𝜕𝐸

𝜕𝑓
= 𝐺𝑇𝐺𝑓 − 𝑣

… and we do what with it?



Approach 1: Compute stationary points

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

… we compute its derivative:

𝜕𝐸

𝜕𝑓
= 𝐺𝑇𝐺𝑓 − 𝑣

… and we set that to zero:

𝜕𝐸

𝜕𝑓
= 0 ⇒ 𝐺𝑇𝐺𝑓 = 𝑣

What is this matrix?



Approach 1: Compute stationary points

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

… we compute its derivative:

𝜕𝐸

𝜕𝑓
= 𝐺𝑇𝐺𝑓 − 𝑣

… and we set that to zero:

𝜕𝐸

𝜕𝑓
= 0 ⇒ 𝐺𝑇𝐺𝑓 = 𝑣

It is equal to the 
Laplacian matrix A we 

derived previously!



Poisson equation (with Dirichlet boundary conditions)

Reminder from variational case

So for each pixel p, do:

Or for discrete images:

0 1 0

1 -4 1

0 1 0

Recall...

Laplace 
filter

What’s known and what’s unknown?



In vector form:

(each pixel adds another ‘sparse’ row here)

Linear system of equations

linear equation 
of N variables

one for each pixel 
in destination

Reminder from variational case

Same system as:

What is this?

0 ⋯ − 1 ⋯ − 1 4 − 1 ⋯ − 1 ⋯ 0

𝐺𝑇𝐺𝑓 = 𝑣

We arrive at the same system, no matter whether we discretize the 
continuous Laplace equation or the variational optimization problem.



Approach 1: Compute stationary points

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

… we compute its derivative:

𝜕𝐸

𝜕𝑓
= 𝐺𝑇𝐺𝑓 − 𝑣

… and we set that to zero:

𝜕𝐸

𝜕𝑓
= 0 ⇒ 𝐺𝑇𝐺𝑓 = 𝑣

Solving this is exactly as 
expensive as what we 

had before.



Approach 2: Use gradient descent

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

… we compute its derivative:

𝜕𝐸

𝜕𝑓
= 𝐺𝑇𝐺𝑓 − 𝑣 = 𝐴𝑓 − 𝑣 ≡ 𝑟

We call this term 
the residual



Approach 2: Use gradient descent

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

… we compute its derivative:

𝜕𝐸

𝜕𝑓
= 𝐺𝑇𝐺𝑓 − 𝑣 = 𝐴𝑓 − 𝑣 ≡ 𝑟

We call this term 
the residual

… and then we iteratively compute a solution:

𝑓𝑖+1 = 𝑓𝑖 − η𝑖𝑟𝑖

are positive step sizesη𝑖
for i = 0, 1, …, N, where



Selecting optimal step sizes

Make derivative of loss function with respect to      equal to zero:η𝑖

𝐸 𝑓𝑖+1 = 𝐺 𝑓𝑖 − η𝑖𝑟𝑖 − 𝑣
2

𝜕𝐸 𝑓𝑖+1

𝜕𝑟𝑖
= 𝑣 − 𝐴 𝑓𝑖 − η𝑖𝑟𝑖 𝑇

𝑟𝑖 = 0 ⇒ η𝑖 =
𝑟𝑖 𝑇

𝑟𝑖

𝑟𝑖 𝑇𝐴𝑟𝑖

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2



Gradient descent

Minimize by iteratively computing:

𝑓𝑖+1 = 𝑓𝑖 − η𝑖𝑟𝑖 , for i = 0, 1, …, Nη𝑖 =
𝑟𝑖 𝑇

𝑟𝑖

𝑟𝑖 𝑇𝐴𝑟𝑖
𝑟𝑖 = 𝑣 − 𝐴𝑓𝑖 ,

Is this cheaper than the pseudo-inverse approach?

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2



Gradient descent

Minimize by iteratively computing:

𝑓𝑖+1 = 𝑓𝑖 − η𝑖𝑟𝑖 , for i = 0, 1, …, Nη𝑖 =
𝑟𝑖 𝑇

𝑟𝑖

𝑟𝑖 𝑇𝐴𝑟𝑖
𝑟𝑖 = 𝑣 − 𝐴𝑓𝑖 ,

Is this cheaper than the pseudo-inverse approach?

• We never need to compute A, only its products with vectors f, r.

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2



Gradient descent

Minimize by iteratively computing:

𝑓𝑖+1 = 𝑓𝑖 − η𝑖𝑟𝑖 , for i = 0, 1, …, Nη𝑖 =
𝑟𝑖 𝑇

𝑟𝑖

𝑟𝑖 𝑇𝐴𝑟𝑖
𝑟𝑖 = 𝑣 − 𝐴𝑓𝑖 ,

Is this cheaper than the pseudo-inverse approach?

• We never need to compute A, only its products with vectors f, r.
• Vectors f, r are images.

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2



Gradient descent

Minimize by iteratively computing:

𝑓𝑖+1 = 𝑓𝑖 − η𝑖𝑟𝑖 , for i = 0, 1, …, Nη𝑖 =
𝑟𝑖 𝑇

𝑟𝑖

𝑟𝑖 𝑇𝐴𝑟𝑖
𝑟𝑖 = 𝑣 − 𝐴𝑓𝑖 ,

Is this cheaper than the pseudo-inverse approach?

• We never need to compute A, only its products with vectors f, r.
• Vectors f, r are images.
• Because A is the Laplacian matrix, these matrix-vector products can be efficiently computed 

using convolutions with the Laplacian kernel.

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2



In practice: conjugate gradient descent

Minimize by iteratively computing:

𝑓𝑖+1 = 𝑓𝑖 + η𝑖𝑑𝑖 , for i = 0, 1, …, N

η𝑖 =
𝑑𝑖 𝑇

𝑟𝑖

𝑑𝑖 𝑇𝐴𝑑𝑖

𝑟𝑖 = 𝑣 − 𝐴𝑓𝑖 ,

𝛽𝑖+1 =
𝑟𝑖+1 𝑇

𝑟𝑖+1

𝑟𝑖 𝑇𝑟𝑖

𝑑𝑖+1 = 𝑟𝑖+1 + 𝛽𝑖+1𝑑𝑖 , • Smarter way for selecting 
update directions

• Everything can still be done 
using convolutions

Given the loss function:

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2



Note: initialization

Does the initialization f0 matter?



Note: initialization

Does the initialization f0 matter?

• It doesn’t matter in terms of what final f we converge to, because the loss function is convex. 

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2



Note: initialization

Does the initialization f0 matter?

• It doesn’t matter in terms of what final f we converge to, because the loss function is convex. 

𝐸 𝑓 = 𝐺𝑓 − 𝑣 2

• It does matter in terms of convergence speed.
• We typically use a multi-grid approach:

- Solve an initial problem for a very low-resolution f (e.g., 2x2).
- Use the solution to initialize gradient descent for a higher resolution f (e.g., 4x4).
- Use the solution to initialize gradient descent for a higher resolution f (e.g., 8x8).

…
- Use the solution to initialize gradient descent for an f with the original resolution NxN.



Poisson image editing examples



Photoshop’s “healing brush”

Slightly more advanced version 
of what we covered here:
• Uses higher-order derivatives



Contrast problem

Loss of contrast when pasting from dark to bright:
• Contrast is a multiplicative property.
• With Poisson blending we are matching linear differences.



Contrast problem

Loss of contrast when pasting from dark to bright:
• Contrast is a multiplicative property.
• With Poisson blending we are matching linear differences.

Solution: Do blending in log-domain.



More blending

copy-paste Poisson blendingoriginals



Blending transparent objects



Blending objects with holes



Editing



Concealment

How would you do this 
with Poisson blending?



Concealment

How would you do this 
with Poisson blending?

• Insert a copy of the 
background.



Texture swapping



Special case: membrane interpolation

How would you do this?



Special case: membrane interpolation

How would you do this?

Poisson problem

Laplacian problem



Flash/no-flash photography



Red Eye



Unflattering Lighting



Motion Blur



Noise



A lot of Noise



Ruined Ambiance



No-FlashFlash

+ Low Noise
+ Sharp
- Artificial Light
- Jarring Look

- High Noise
- Lacks Detail
+ Ambient Light
+ Natural Look



Image acquisition

Lock Focus
& Aperture

1

time



Image acquisition

1/30 s
ISO 3200

No-Flash ImageLock Focus
& Aperture

21

time



Image acquisition

1/30 s
ISO 3200

1/125 s
ISO 200

No-Flash ImageLock Focus
& Aperture

Flash Image

2 31

time



Denoising Result



• Show a larger result here

No-Flash



Denoising Result



Key idea

Denoise the no-flash image while maintaining the edge structure of the flash image
• How would you do this using the image editing techniques we’ve learned about?



Denoising with bilateral filtering

noisy input bilateral filtering median filtering



Denoising with bilateral filtering

• However, results still have noise or blur (or both)

ambient

flash
Bilateral 

filter



Denoising with joint bilateral filtering

• In the flash image there are much more details

• Use the flash image F to find edges



Denoising with joint bilateral filtering

Bilateral 
filter

Joint Bilateral 
filter

The difference



Not all edges in the flash image are real

Can you think of any types of edges that may exist in the flash image but not the 
ambient one?



Not all edges in the flash image are real

shadows

specularities

• May cause over- or under-blur in joint bilateral filter

• We need to eliminate their effect



Detecting shadows

• Observation: the pixels in the flash shadow should be similar to the ambient image.

• Not identical:

1. Noise.

2. Inter-reflected flash.

• Compute a shadow mask.

• Take pixel p if 

• is manually adjusted

• Mask is smoothed and dilated



Detecting specularities

• Take pixels where sensor input is close to maximum (very bright).

• Over fixed threshold 

• Create a specularity mask.

• Also smoothed.

• M – the combination of shadow and specularity masks:

Where Mp=1,  we use ABase.  For other pixels we use ANR.



Detail transfer

• Denoising cannot add details missing in the ambient image

• Exist in flash image because of high SNR

• We use a quotient image:

• Multiply with ANR to add the details

• Masked in the same way

Reduces the 
effect of 

noise in F 

Why does this quotient image 
make sense for detail?

Bilateral 
filtered



Detail transfer

• Denoising cannot add details missing in the ambient image

• Exist in flash image because of high SNR

• We use a quotient image: Reduces the 
effect of 

noise in F 



Full pipeline



Demonstration

ambient-only joint bilateral and detail transfer



Can we do similar flash/no-flash fusion tasks with 
gradient-domain processing?



Removing self-reflections and hot-spots
Ambient Flash



Removing self-reflections and hot-spots
Ambient Flash

Hands

Face

Tripod



Removing self-reflections and hot-spots
ResultAmbient

Flash

Reflection Layer



Idea: look at how gradients are affected
Same gradient 
vector direction

Flash Gradient Vector

Ambient Gradient Vector

Ambient Flash

No reflections



Idea: look at how gradients are affected
Reflection Ambient Gradient 

VectorDifferent gradient 
vector direction

With reflections

Ambient Flash

Flash Gradient Vector



Idea: look at how gradients are affected
Reflection Ambient Gradient 

VectorDifferent gradient 
vector direction

With reflections

Ambient Flash

Flash Gradient Vector



Gradient projections
Residual 
Gradient 
Vector

Result Gradient Vector

Result Residual

Flash Gradient Vector

Ambient Flash



Flash/no-flash with gradient-domain processing

2D 

Integration

Flash

Ambient

X

Y

X

Y

Intensity Gradient 

Vector Projection

Result X

Result Y

Result

2D Integration



Flash



No-Flash



No-Flash



Result



Flash



No-Flash



No-Flash



Result



Flash



No-Flash



Flash



No-Flash



Result
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