Homework Assignment 6
15-463/663/862, Computational Photography, Fall 2018
Carnegie Mellon University

Due Friday, Nov. 30, at 11:59pm

The purpose of this assignment is to use structured light as a means for reconstructing the 3D shape of a
surface. Rather than having to use a projector, you will rely on shadows to create a structured illumination,
a technique often referred to as “weakly structured light”.

In particular, you will implement the “desktop scanner” of Bouguet and Perona [2]. As shown in Figure 1,
this system is composed of five primary items: a camera, a point-like light source (e.g., desk lamp), a stick,
two planar surfaces, and a calibration checkerboard. By waving the stick in front of the light source, you
can cast line shadows into the scene. As Bouguet and Perona demonstrate, the depth at each pixel can then
be recovered using simple geometric reasoning.

In the course of completing this homework, you will need to develop a good understanding of camera
calibration, Euclidean coordinate transformations, and manipulation of lines and planes. Rather than just
“encouraged” to read it, to solve this assignment you will need to carefully go through Bouguet and Perona [2].
So you should read it carefully before starting the assignment, and keep a copy handy while working through
solving the assignment.

1 Implementing structured-light triangulation (150 points)

For the first part of the homework, you will be using two image sequences contained in the ./data directory
of the homework ZIP archive. One is a calib sequence you will use to estimate the intrinsic and extrinsic
calibration parameters of the camera, and consists of ten images of a checkerboard at various poses. The
second is a sequence captured for the frog object shown in Figure 1. For each sequence we have provided
both a high-resolution 1024768 sequence, as well as a low-resolution 512384 sequence for development. You
should convert these color images to grayscale, e.g., using rgb2gray.

" i

Figure 1: 3D Photography using Planar Shadows. From left to right: the capture setup, a single image from
the scanning sequence, and a reconstructed object (rendered as a colored point cloud).

1.1 Video processing (30 points)

Your first task is to estimate two fundamental quantities from an input video sequence: (1) the time that a
shadow enters a pixel and (2) the position of the shadow edge as a function of time. The following sections
outline the basic procedures for performing these tasks. You will need to consult Section 2.4 in [2] for
additional information.

Spatial shadow edge localization. In terms of Figure 2 in [4], you need to estimate the shadow lines A, (¢)

and A, (t), projected on the horizontal and vertical planar regions, respectively. In order to perform this and
subsequent processing, you will utilize a spatio-temporal approach. We begin by defining the maximum and
minimum intensity observed in each pixel (z,y),

Imax(x7 y) = m?XI<x7y7t)7 (1)
Tin(7,y) = mtinl(aj, Y, 1). (2)
In order to detect the shadow boundaries, we choose a per-pixel detection threshold which is the midpoint

of the dynamic range observed in each pixel. As a result, the shadow edge can be localized by the zero
crossings of the difference image

AI(ZL’,y,t) = I(fE,yﬂf) 7IShadow(x7y)a (3)
where the shadow threshold image is defined to be

Im x\L, +Imin €,
Ishadow(xay) = . (y) 2 (y) (4)

In practice, you will need to select an occlusion-free image patch for each planar region. Afterwards, you can
obtain a set of sub-pixel shadow edge samples (for each row of the patch) by interpolating the position of the
zero-crossings of AI(z,y,t). To produce a final estimate of the shadow edges A, (t) and A, (¢), you should
find the best-fit line (in the least-squares sense) to the set of shadow edge samples. The desired output of
this step is illustrated in Figure 2(a), where the best-fit lines are overlaid on the original image.

Temporal shadow edge localization. After calibrating the camera (see next section), the previous step
will provide all the information necessary to recover the position and orientation of each shadow plane as
a function of time. As described in Section 1.3, in order to reconstruct the object, you also need to know
when each pixel entered the shadowed region. This task can be accomplished in a similar manner as spatial
localization. Instead of estimating zero-crossing along each row for a fixed frame, you can assign the per-pixel
shadow time using the zero crossings of the difference image AI(x,y,t) for each pixel (z,y) as a function
of time ¢. The desired output of this step is illustrated in Figure 2(b), where the shadow crossing times
are quantized to 32 values (with blue indicating earlier times and red indicated later ones). Note that
you may want to include some additional heuristics to reduce false detections. For instance, dark regions
cannot be reliably assigned a shadow time. As a result, you can eliminate pixels with very low contrast
Imax(x7 y) - Imin(x7 y)

In your submission, show a few examples of spatial and temporal edge localizations, analogous to those
shown in Figure 2.

1.2 Calibration (50 points)

You will need the intrinsic and extrinsic calibration of the camera in order to transfer image measurements
into the world coordinate system. You will be using the Camera Calibration Toolbox for Matlab, also created
by Jean-Yves Bouguet. This toolbox is widely used within the computer vision community. The intrinsic
and extrinsic parameters are estimated by viewing several images of a checkerboard at various poses. Before
continuing, you should download the toolbox and review the documentation on the toolbox website [1].
In particular, review the first calibration example and the description of calibration parameters. After
downloading the toolbox, make sure it is in your Matlab path.

Intrinsic calibration. The intrinsic parameters of the camera can be obtained using the calib command
of the calibration toolbox: Change the current working directory to one of the calibration sequences, then
Type calib at the Matlab prompt to start. Since you are only using a few images, select “Standard (all the
images are stored in memory)” when prompted. To load the images, select “Image names” and press return,
then j. Then select “Extract grid corners”, pass through the prompts without entering any options, and then
follow the on-screen directions. (Note that we used a calibration target with the default 30mm30mm squares.
Also, always skip any prompts that appear.) Once you have finished selecting corners, choose “Calibration”,
which will run one pass though the calibration algorithm. Next, choose “Analyze error”. Left-click on any

(a) spatial shadow edge localization (b) temporal shadow edge localization

Figure 2: Spatial and temporal shadow edge localization. (a) The shadow edges are determined by fitting a
line to the set of zero crossings, along each row in the planar regions, of the difference image AI(x,y,t). (b)
The shadow times (quantized to 32 values here) are determined by finding the zero-crossings of the difference
image AI(x,y,t) for each pixel (z,y) as a function of time t.

outliers you observe, then right-click to continue. Repeat the corner selection and calibration steps for any
outliers. Once you have an evenly-distributed set of reprojection errors, select “Recomp. corners” and finally
“Calibration”. To save your intrinsic calibration, select “Save”.

Include the resulting .mat file with the intrinsic calibration parameters in your submission.

Extrinsic calibration. From the previous step you now have an estimate of how pixels can be converted into
normalized coordinates (and subsequently rays in world coordinates, originating at the camera center). In
order to assist you with your implementation, we have provided a Matlab script called extrinsicDemo. This
demo will allow you to select four corners on the “horizontal” plane to determine the Euclidean transformation
from this ground plane to the camera reference frame. (Always start by selecting the corner in the bottom-left
and proceed in a counter-clockwise order. For your reference, the corners define a 558.8mm x 303.2125mm
rectangle.) In addition, observe that the final section of extrinsicDemo uses the included function pixel2ray
to determine the optical rays (in camera coordinates), given a set of user-selected pixels.

1.3 Reconstruction (70 points)

At this point you have estimated all the parameters required to recover the depth of each pixel in the image
(or at least those where the shadow could be observed). In terms of Figure 2 in [2], you can use the camera
calibration to obtain a parametrization of the ray defined by a true object point P and the camera center O..
Given the shadow time for the associated pixel Z. = (x,y) , you can lookup (and potentially interpolate) the
position of the shadow plane at this time. The resulting ray-plane intersection will provide an estimate of the
3D position of the surface point. Repeating this procedure for every pixel will produce a 3D reconstruction.
For more details on the reconstruction process, please consult Sections 2.5 and 2.6 in [2].

Now that you have recovered a 3D point cloud, you will need to visualize the result. You can use Matlab’s
pointCloud command to convert the reconstructed 3D points into a point-cloud structure. You can then
display this structure using the command pcshow. To give you some expectation of reconstruction quality,
Figure 3 shows the results we obtained with our reference implementation. Note that there are several
choices you can make in your implementation; some of these may allow you to obtain additional points on
the surface or increase the reconstruction accuracy. Please document the methods you used to optimize your
reconstruction.

Figure 3: Reconstruction results for the frog sequence.

2 Building your own 3D scanner (100 points)

You will now build your own version of the weakly-structured light 3D scanner. You can replicate the setup
of Figure 1, using a desk lamp, and the camera and tripod you borrowed from the class.

You will additionally need to print a checkerboard for performing your own calibration. We recommend
using the same checkerboard configuration (in terms of number of boxes and their dimensions) as in the data
sequence provided with the homework.

Finally, in setting up the scanner, you will need to create the configuration of the two planes. You should
use appropriate holders (e.g., thick books) to ensure that the vertical plane is as close to orthogonal to the
floor as possible. You should also mark the corners of a rectangle of known dimensions on each plane, to
simplify calibration.

Use your 3D scanning setup to scan at least one object, and include images of the scanned images and
the final reconstruction. Additionally, include a photograph of the setup you built.

Deliverables

As described on the course website, solutions are submitted through Canvas. Your solution should be an
archive (e.g., a ZIP file) that includes the following:

e A PDF report explaining what you did for each problem, including the various visualizations of albe-
does, normals, and surfaces, as well as renderings of images, that are requested throughout problems 1
and 2, as well as answers to all questions asked throughout both problems. The report should include
any figures and intermediate results that you think may help. Make sure to include explanations of
any issues that you may have run into that prevented you from fully solving the assignment, as this
will help us determine partial credit.

e All of your Matlab code, as well as a README file explaining how to use the code.

Please organize your solution submission using the following file structure:

.zip
T The PDF report.
src/ oot Contains all Matlab M-files and the README file explaining how to use the code.
Aata/ o et e Contains all image, video, and other data files.

Hints and Information

e When building your own version of the 3D scanner, you should note some practical issues associated
with this approach.

First, it is important that every pixel be shadowed at some point in the sequence. As a result, you
must wave the stick slow enough to ensure that this condition holds.

In addition, the reconstruction method requires reliable estimates of the plane defined by the light
source and the edge of the stick. Ambient illumination must be reduced so that a single planar shadow
is cast by each edge of the stick, otherwise your shadow estimates will be off.

The light source you use must be sufficiently bright to allow the camera to operate with reasonable
exposures and minimal gain, otherwise sensor noise will corrupt the final reconstruction. It is best
to use a small lamp, such as a desk lamp or similar. This ensures that the light source is sufficiently
point-like to produce abrupt shadow boundaries. Otherwise, the estimate of the shadow plane will not
be reliable.

When calibrating your own camera, it is important to ensure planarity of the checkerboard pattern.
We recommend that you stick the pattern on a flat surface (e.g., a wooden panel). Additionally, it
is important that you capture a sufficient number of images, spanning a large variety of checkerboard
poses everywhere in the field of view of your camera. The calibration sequence we provide in the
homework should give you a sense of what sort of images you need.

In a departure from previous homeworks, here it is not necessary to use RAW images. Given that you
will be capturing video sequences, it is probably easier to work with PNG images.

Finally, you should set the focal length, focus, and aperture settings of your lens appropriately, so that
all of the scanning setup is within your field of view and sharply in focus. Blurry regions will result in
poor shadow estimates, and therefore inaccurate reconstruction.

Credits

This homework was directly adapted from the 3D photography class offered by Gabriel Taubin at Brown.
This includes the write-up, figures, and data.

References

[1] J.-Y. Bouguet. Camera calibration toolbox for Matlab, 2010. http://www.vision.caltech.edu/
bouguetj/calib_doc/.

[2] J.-Y. Bouguet and P. Perona. 3d photography using shadows in dual-space geometry. International
Journal of Computer Vision, 35(2):129-149, 1999.

http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/

