More image filtering

15-463, 15-663, 15-862
Computational Photography

http://graphics.cs.cmu.edu/courses/15-463 Fall 2017, Lecture 4

Course announcements

* Any questions about Homework 17
- How many of you have read/started/finished the homework?

* Make sure to take the Doodle about rescheduling the September 27% lecture!
- Link available on Piazza.
- Currently 10 responses.

Overview of today’s lecture

Template matching.
Morphological filters.
Rank filters.

Adaptive thresholding.
Bilateral filtering.

Non-local means.

Slide credits

Most of these slides were adapted directly from:
* Kris Kitani (15-463, Fall 2016).

Inspiration and some examples also came from:
e James Hays (Georgia Tech).

* Bernd Girod (Stanford).

Template matching

Reminder from last time

How do we detect an edge?

Reminder from last time

How do we detect an edge?
* We filter with something that looks like an edge.

original -1

We can think of linear filtering as a way to evaluate
how similar an image is locally to some template.

vertical edge filter

Find this template

How do we detect the template @ in he following image?

Find this template

How do we detect the template @ in he following image?

filter
output j What will
hlm,n] = glk, U flm+ k,n+1] the output
/ ook like

Image

Solution 1: Filter the image using the template as filter kernel.

Find this template

How do we detect the template @ in he following image?

filter @¥
output j
hm,n) = 3 glk,) ffm + k,n + 1
/

Image

Solution 1: Filter the image using the template as filter kernel. What went wrong?

Find this template

How do we detect the template @ in he following image?

filter @¥

output j

him,n] =Y glk, | flm+k,n+]

/

Image

Increases for higher
Solution 1: Filter the image using the template as filter kernel. local intensities.

Find this template

How do we detect the template @ in he following image?

filter template mean
output j / What will
him,n] = Z(g[k | —) flm+k,n+] the output

look like?

Image

Solution 2: Filter the image using a zero-mean template.

Find this template
How do we detect the template @ in he following image?

output

filter @¥ template mean |
output j / True detection
h[m,) Z(g[k I —3)flm+k,n+]1] x

thresholding

Image

Solution 2: Filter the image using a zero-mean template. What went wrong?

Find this template
How do we detect the template @ in he following image?

output

filter template mean
output j /
hlm,n] Z(g[k ll—g)flm+Ek,n+1]

Not robust to high-
contrast areas

Image

Solution 2: Filter the image using a zero-mean template.

Find this template

How do we detect the template @ in he following image?

filter
‘/ What will
Z(g[k] — flm+k,n+1])? the output

look like?

Solution 3: Use sum of squared differences (SSD).

Find this template
How do we detect the template @ in he following image?

1-output

filter @8
output / True detection
hlm,n] =Y (glk,1] = flm + k,n +1))° \
k,l _

thresholding

Image

Solution 3: Use sum of squared differences (SSD). What could go wrong?

Find this template
How do we detect the template @ in he following image?

1-output

filter

/

Z(g[k‘] — flm +k,n+1])?
Not robust to local
intensity changes

Solution 3: Use sum of squared differences (SSD).

Find this template

How do we detect the template @ in he following image?

Observations so far:
e subtracting mean deals with brightness bias
e dividing by standard deviation removes contrast bias

Can we combine the two effects?

Find this template

How do we detect the template @ in he following image?

What will

the output
filter ¥ template mean P

! / look like?

Zk,l(g[ktl] o g)(f[m + k,ﬂ, + l] T fm,n)
Va9l 1] =)2 X (FIm + by n 4 1] = Fimin)?)

Image

output

hlm,n| =

Solution 4: Normalized cross-correlation (NCC).

Find this template

How do we detect the template @ in he following image?

1-output =8

True detections

thresholding

Solution 4: Normalized cross-correlation (NCC).

Find this template
How do we detect the template @ in he following image?

1-output

True detections

thresholding

Solution 4: Normalized cross-correlation (NCC).

What is the best method?

It depends on whether you care about speed or invariance.
e Zero-mean: Fastest, very sensitive to local intensity.
 Sum of squared differences: Medium speed, sensitive to intensity offsets.

 Normalized cross-correlation: Slowest, invariant to contrast and brightness.

Reminder: two types of image transformations

Filtering l Warping

changes pixel values changes pixel locations

Effects of image warping

How well does patch-based template matching do under warping?

Effects of image warping

How well does patch-based template matching do under warping?
* Not atall.

can handle can’t handle

original scaling shearing rotation reflection

How would you handle these cases?

Applications of template matching

Face detection Light fields
Alignment

http://hugin.sourceforge.net/tech/

http://davidwalsh.name/face-detection-jquery

Homework 4

Counting

Fingertip detection A

ASCII art

https://www.cim.mcgill.ca/sre/projects/fingertip/ http://en.wikipedia.org/wiki/File:Neubauer improved with cells.jpg http://fr.wikipedia.org/wiki/Art ASCII|

“Every computer vision problem can be described as a registration problem.”

http://davidwalsh.name/face-detection-jquery
http://hugin.sourceforge.net/tech/
https://www.cim.mcgill.ca/sre/projects/fingertip/
http://en.wikipedia.org/wiki/File:Neubauer_improved_with_cells.jpg
http://fr.wikipedia.org/wiki/Art_ASCII

Morphological filtering

Theme for the rest of this lecture

Last time we discussed filtering operations that are both:

e |inear

e shift-invariant

This time we will see filters where we remove one or both of these properties.

Processing binary images

Binary images are quite common:
* segmentation

* template matching

 tfext

* thresholding

Mathematical morphology:
e set-theoretic study of binary image processing
* well-studied field with rich history

Generalizes to:

* grayscale image filtering
e distance transforms

e diffusion operations

Representation of binary images

Foreground or object pixels:
* intensity value 1 (white)

Background pixels:
* intensity value O (black)

Some logic preliminaries

mi=

Image A Image B

p g pANDg(alsop-q) pORgalsop +¢q) NOT (p) (also p)

{) i {) 0]
()] (0 I]
I U {) |)
I] I I ()

Basic logic operations

How do you create these images as logical combinations of A and B?

[1 (=]

Some logic preliminaries

mi=

Image A Image B

p g pANDg(alsop-q) pORgalsop +¢q) NOT (p) (also p)

{) i {) 0]
()] (0 I]
I U {) |)
I] I I ()

Basic logic operations

How do you create these images as logical combinations of A and B?

[1 (=]

NOT(A)

Some logic preliminaries

mi=

Image A Image B

p g pANDg(alsop-q) pORgalsop +¢q) NOT (p) (also p)

{) i {) 0]
()] (0 I]
I U {) |)
I] I I ()

Basic logic operations

How do you create these images as logical combinations of A and B?

[1 (=]

NOT(A) AND(A,B)

Some logic preliminaries

mi=

Image A Image B

p g pANDg(alsop-q) pORgalsop +¢q) NOT (p) (also p)

{) i {) 0]
()] (0 I]
I U {) |)
I] I I ()

Basic logic operations

How do you create these images as logical combinations of A and B?

NOT(A) AND(A,B)

Some logic preliminaries

mi=

Image A Image B

p g pANDg(alsop-q) pORgalsop +¢q) NOT (p) (also p)

{) i {) 0]
()] (0 I]
I U {) |)
I] I I ()

Basic logic operations

How do you create these images as logical combinations of A and B?

Some logic preliminaries

p ¢ pANDg(alsop-q) pORg((alsop + ¢q)

NOT (p) (also p)

mi=

0
I
I
I

Image A Image B

Basic logic operations

How do you create these images as logical combinations of A and B?

Notation: B-A

AND(NOT(A), B)

Structuring element

Basically the binary equivalent of a kernel
e specifies a neighborhood around a binary pixel

5x5 square Crosss

v A J

For each structuring element, we can specify a corresponding windowing operator:
_ ! Y A oy,
W{fl:xay]}_{f[x X,V y:ll:x 5y:|El_|xy}

structuring element

Basic morphological filters

Dilation: expand a binary image based on some structuring element

g[x,y] = OR[W{f[x,y}}] = dilate(f,W)

What does
the output
look like?

Basic morphological filters

Dilation: expand a binary image based on some structuring element

g[x,y] = OR[W{f[x,y}}] = dilate(f,W)

Performing dilation

Shift structuring element to every pixel, then compute the OR operator in the
neighborhood defined by the structuring element

		[efefefef [[efefefef []					[efefefef [
	Jefefefefef]				Jefefefefef []				Jefefefefef []					
	@Eefefo]e]				ejefefefefofofe]				elefefefofefo]e]						
o] @@ o[efo]e]			e]e]efefefofefofe]			e]e]eefefofefofo]									
olelo Q@ ofofo]			olojoofofofofofo]			olojojolofofofofo]									
	eefefefefef [oefefefofef []					elefefo/@EIMI				
Jejefefefef [T]]		Jojefefefel [I]			Jejefefo/CIMIM										
HEEEEOEEEEEEE HEEEEDOEEEEEEE HEEEON | |_HEE
Ll L fef P LTI]| HEEEOEEN | . Ll L fef P LTI]|
HEEEEEEEEEEE HEEEEEEN | | . HEEEEEEEEEEE
HEEEEEEEEEEE HEEEEEEN | | = HEEEEEEEEEEE
HEEEEEEEEEEEE HEEEEEEEEEEEE HEEEEEEEEEEEE

Basic morphological filters

Erosion: shrink a binary image based on some structuring element

g[x,y] = A_ND[W{f[x,y]}] = erode(f,W)

What does
the output
look like?

Basic morphological filters

Erosion: shrink a binary image based on some structuring element

g[x,y] = A_ND[W{f[x,y]}] = erode(f,W)

N - EEEEEEEEEEEE
¥ EEEEEEEEEEEN

Example

original

erosion with 3 x 3 erosion with 7 x 7

Example

Erosion with structuring *~—o
elements of different shapes ® o o
2 e
4 N I 4 H»

30 x 30 square /0 x /70 square

Original . “

diam = 30 circle diam = 70 circle

Template matching using morphological filters

How to detect the gaps
in the fence?

binary fence image

Template matching using morphological filters

binary fence image erosion with 150 x 150 cross

Template matching using morphological filters

INTEREST-POINT DETECTION

Feature extraction typically starts by finding the salient
interest points in the image. For robust image matching, we
desire interest points to be repeatable under perspective
transformations (or, at least, scale changes, rotation, and
translation) and real-world lighting variations. An example of
feature extraction is illustrated in Figure 3. To achieve scale How to detect all instances
invariance, interest points are typically computed at multiple of the |letter “e”?

scales using an image pyramid [15]. To achieve rotation
invariance, the patch around each interest point is canoni-
cally oriented in the direction of the dominant gradient.
[llumination changes are compensated by normalizing the
mean and standard deviation of the pixels of the gray values
within each patch [16].

binarized text

Template matching using morphological filters

INTEREST-POINT DETECTION

Feature extraction typically starts by finding the salient
interest points in the image. For robust image matching, we
desire interest points to be repeatable under perspective
transformations (or, at least, scale changes, rotation, and
translation) and real-world lighting variations. An example of
feature extraction is illustrated in Figure 3. To achieve scale
invariance, interest points are typically computed at multiple
scales using an image pyramid [15]. To achieve rotation
invariance, the patch around each interest point is canoni-
cally oriented in the direction of the dominant gradient.
[llumination changes are compensated by normalizing the
mean and standard deviation of the pixels of the gray values
within each patch [16].

binarized text erosion with structuring
element

Edge detection using morphological filters

4

original

dilated - original original - eroded

Set-theoretic interpretation

structuring
element

Dilation: Minkowski set addition Erosion: Minkowski set subtraction

g[x,y] = OR[W{f[x,y]}] = dilate(f,W) g[x,y] = AND[W{f[x,y]” = erode(f,W)

Which of the following is true?

Assume we always use the same structuring element.

* Eroding and then dilating an image returns the original image.

e First eroding and then dilating an image produces the same result as first dilating and
then eroding the image.

Which of the following is true?

Assume we always use the same structuring element.

* Eroding and then dilating an image returns the original image.
Nope.

e First eroding and then dilating an image produces the same result as first dilating and
then eroding the image.

Nope.

“Dual” morphological operations generally neither commute nor are inverses of each other.

More morphological filters

Closing: first dilate then erode image

c:!ose(f,W) = emde(di[afe(f,W),W)

Opening: first erode then dilate image

open(f,W) = df[are(emde(f,W),W)

Majority: replace pixel with majority value in neighborhood

g[x,y] = MAJ [W {f[xjy]}] = mqfnrf{y(f,W)

Denoising using majority operation

—~ w,[@

-

Opening and closing

ITHE
TEST

IMAGE

erosion

original closing

Small hole closing

original dilation closing

Are morphological filters:

Linear?

Shift-invariant?

Are morphological filters:

Linear?

* No.

Shift-invariant?

* Yes.

We can prove that morphological filters are equivalent generalized forms of convolution,
where maximum (supremum) replaces summation, and additions replace products:

g[x,y]z Satfg{f[x—a,y—ﬁ]+ w[a,ﬁ]} = Sﬂgg{w[x—a,y—ﬁ}rf[a,ﬁ]}

How to generalize morphological filters to grayscale images?

How to generalize morphological filters to grayscale images?

General theory based on image level sets:

* Separate image into multiple binary images, by thresholding at each possible intensity
level (“level sets”).

* Apply morphological filter to each level set image.
 Combine results using maximum across level set images.

We will see one simple instance of this.

Rank filters

Replacing logical operators

Can you think of a function of the binary pixel values in an image neighborhood that
produces the same result as the logical OR operator?

		[efefefef [[efefefef []					[efefefef [
	Jefefefefef]				Jefefefefef []				Jefefefefef []					
	@Eefefo]e]				ejefefefefofofe]				elefefefofefo]e]						
o] @@ o[efo]e]			e]e]efefefofefofe]			e]e]eefefofefofo]									
olelo Q@ ofofo]			olojoofofofofofo]			olojojolofofofofo]									
	eefefefefef [oefefefofef []					elefefo/@EIMI				
Jejefefefef [T]]		Jojefefefel [I]			Jejefefo/CIMIM										
HEEEEOEEEEEEE HEEEEDOEEEEEEE HEEEON | |_HEE
Ll L fef P LTI]| HEEEOEEN | . Ll L fef P LTI]|
HEEEEEEEEEEE HEEEEEEN | | . HEEEEEEEEEEE
HEEEEEEEEEEE HEEEEEEN | | = HEEEEEEEEEEE
HEEEEEEEEEEEE HEEEEEEEEEEEE HEEEEEEEEEEEE

Replacing logical operators

Dilation: g[x,y] = OR[W{f[x,y}}] = dilate(f,W)

Erosion: g[x,y] = AND[W{f[x,y]}J = erode(f,W)

Majority: g[}:,y] = MAJ [W {f[x,y]}] = mqfur.f{y(f,ﬁ*’)

Replace OR
with MAX

Replace AND
with ?

Replace MAJ
with ?

Replacing logical operators

Dilation: g[x,y] = OR[W{f[x,y}}] = dilate(f,W)

Erosion: g[x,y] = AND[W{f[x,y]}J = erode(f,W)

Majority: g[}:,y] = MAJ [W {f[x,y]}] = mqfur.f{y(f,ﬁ*’)

Replace OR
with MAX

Replace AND
with MIN

Replace MAJ
with ?

Replacing logical operators

Dilation: g[x,y] = OR[W{f[X,J/]}] = dilate(f,W) > Rv?/ﬁlf?cl\;g(R
Erosion: g[x,y] = AND[W{f[x,y]}] = erode(f,W) > Re\/f/)iltahc|e\/ﬁNND
Majority: g| x,y |= MAJ [W {f[xy]}] = majority(f, W) > vFéietilal\;ELIJ\fAAlil

Given these replacements, how would you generalize these filters to grayscale images?

Rank filters

Grayscale dilation > Max filtering
Grayscale erosion > Min filtering
Grayscale majority > Median filtering

* Are these filters linear, shift invariant, neither, or both?

 How would you generalize opening and closing to grayscale images?

Min and max filtering example

D:g:talm'\

Processm .

- i -

original dilation (max filtering) erosion (min filtering)

Effect of structuring element

2 horizontal lines 9 points

Morphological edge detection

original dilation - erosion thresholded result

Denoising

Standard “salt and pepper” noise example

Salt and Pepper noise Original Median filter Gaussian filter

Which is which?

ising

More realistic deno

3x3 median filtering 7x7 median filtering

salt and pepper noise

origina

Removing annoying artifacts

Original Median filtering

Cartoonization

How would you create this effect?

Cartoonization

edges from median blurred image median blurred image

_’\\\\\;.'\.‘I\ 2 ﬁ} ;,
;\(St -

Note: image cartoonization and abstraction are very active research areas.

Adaptive thresholding

How would you turn this into a bright binary image?

£d
£ EH

& B
£l Eil

binarized

intensit

threshold

Single-value thresholding

intensity intensity
1 1
0 0

What is the problem here?

Input

binarized

Single-value thresholding

intensity intensity
A A
threshold :
X X
intensity intensity
A A
1 1
0 > 0 : >
X X

How would you do thresholding here?

We can’t get
both dips with
single-value
thresholding

Input

binarized

Single-value thresholding

intensity intensity

A A

threshold
X

intensity intensity

A : : A
1 1
0 > 0 >

Can you think of a way to implement this using filtering?

Adapt
threshold to
local values

Adaptive thresholding

pom—

1, f[x, y] > threshold
Global thresholding: g[x, y] = -

O, otherwise

Adaptive thresholding o) - _ 1, flx, y]>mean(W(x,y))
using mean filtering: ’ 0. otherwise

Adaptlve threShOldlng g[x y] _ 1; f[xl y] > med|an(W(X) y))
using median filtering: ’ 0. otherwise \

- Median: greater than 50%
You can use any other percentile

When using rank filters, this is a generalized version of morphological operations.

Examples

S()lllll‘| for L.ena

Odﬂr Lonn, your it
X blu(l SO Ies Lo e
shought the entire worle \F
onl your portrant I could compn
i Flest when | tried to use \ Q
A m cheeks belong to only yvou
" # thousand lines

original

el e ‘

L3 deaw 10

Iniw bl -0

I thampght the -

.:ﬂﬂ.:&" ekt okl ot |

Firat wlon | oo lrog e g

that Yo o bchs Tl v on v
hadr contmins o Chosntnd lines
with mine of dincoete cosaes

pemsunal &< tectunl

global thresholding

Sonnet for Lena

O dear Lena, your hanuty in so vast

I\ in hard somnetimnes ta describe ic [nat.

I thought the Fotire worlid 1 would impress
if only your portrait I roubd rompress.

Alne' Firat when 1 tried Lo use YQ

| founel that yuur cheeks belong to ooly you,
Yorur ailky hwir rontsjnn & thousand linea
Hanl to rnalch with simne of discrete cosnes.
And for vour lipe, measual and tectunl
Thirteen Cravs found 1o the proper finctal.
And while thiear sethacke are all Guite pevers
I wnight bave fixed them with limks here or thee
But when Bitern took spazkle from wonir eyen
I nair!, ‘Damin all thin, I just digivize.®

Thomas Colthurst

adaptive thresholding

Examples

adaptive thresholding

Bilateral filtering

Fixing Gaussian blur

How to smooth out the details in an image without losing the important edges?

The problem with Gaussian filtering

Gaussian kernel

]

Why is the output so blurry?

output

The problem with Gaussian filtering

Gaussian kernel

input output

Blur kernel averages across edges

The bilateral filtering solution

bilateral filter kernel

N D
10
B K

Do not blur if there is an edge! How does it do that?

output

Bilateral filtering vs Gaussian filtering

hlm,n] =

Normalization factor

Wmn

1

k,l

Spatial weighting

Os

if it’s nearby

> G mn k1) fm + kyn + 1]

Intensity range weighting

AN

3
< T >

Does it matter how
far the pixel position
is?

z = flm,n| — flm+k,n+1]
JT

and it looks like me

Bilateral filtering vs Gaussian filtering

Which is which?

him,n] = glk, 1] f[m+ k,n +]
k,l

> glk, rmnlk, [fim + k,n 4]

Bilateral filtering vs Gaussian filtering

Gaussian filtering

him,n] = glk, 1] f[m+ k,n +]
k,l

Bilateral filtering

> glk, rmnlk, [fim + k,n 4]

Bilateral filtering vs Gaussian filtering

Gaussian filtering

him,n] = > GRS f[m + k,n +]
k,l

. L Spatial weighting:
Bilateral filtering Og n fa?/ornearbi pixegls

1

k.l

Bilateral filtering vs Gaussian filtering

Gaussian filtering

him,n] = > GRS f[m + k,n +]
k,l

. L Spatial weighting:
Bilateral filtering Og n fa?/ornearbi pixegls

> GBS rmn [k, 1) f[m + k,n 4 1]

k,l
Intensity range weighting:
O, favor similar pixels

z = flm,n] — flm+ k,n+1

Bilateral filtering vs Gaussian filtering

Gaussian filtering

him,n] = > GRS f[m + k,n +]
k,l

. L Spatial weighting:
Bilateral filtering Og n fa?/ornearbi pixegls

hlm,n| = W Zg[k, Urmnlk, L] flm + k,n + 1]

k,l
Intensity range weighting:
Normalization factor T favor similar pixels

z = flm,n] — flm+ k,n+1

Bilateral filtering vs Gaussian filtering

Gaussian filtering

Smooths everything nearby (even edges)
Only depends on spatial distance

Bilateral filtering

Smooths ‘close’ pixels in space and intensity
Depends on spatial and intensity distance

Bilateral filtering visualization

Tmn |k, L fm + kE,n + 1]

hlm,n]| = ! Z

mn k!‘.

Spatial range I ' Intensity range

e ‘.'.\ r;“ : P
A A * W » ' g
¥ ‘-’o‘. o
> aJr
o 1

Output Bilateral Filter Input

Exploring the bilateral filter parameter space
0,=0.1 o,=0.25 (Gaﬁgsi_arfoblur)

Oy = 2

0;= 6

input

Does the bilateral filter respect all edges?

bilateral filter kernel

Does the bilateral filter respect all edges?

bilateral fllter kernel

Bilateral filter crosses (and blurs) thin edges.

input output

Denoising

noisy input bilateral filtering median filtering

Tone mapping

i
s 2 s
s

original bilateral filtering simple gamma correction

http://www.flickr.com/groups/hdr/
http://www.flickr.com/groups/hdr/

Photo retouch

S

original digital pore removal (aka bilateral filtering)

Close-up comparison

original digital pore removal (aka bilateral filtering)

s the bilateral filter:

Linear?

Shift-invariant?

s the bilateral filter:

Linear?

* No.

Shift-invariant?

* No.

Bilateral filtering cannot be implemented as convolution. This makes naive
implementation very computationally expensive.

Efficient algorithms for bilateral filtering are an active research area.

Non-local means

Redundancy in natural images

Non-local means

No need to stop at neighborhood. Instead search everywhere in the image.

ssp(y(N)-y(N;))

Zym e 207

w(i,j)

Non-local means vs bilateral filtering

Non-local means filtering

1
W, Zrmn[k,l]f[m—l—k,n—l—l]
mmn k,l

Intensity range weighting:
Bilateral filtering favor similar pixels (patches
< - ., incase of non-local means)

z = flm,n] — flm + k,n + 1]

him,n| =

> GBS rmn [k, 1) f[m + k,n 4 1]

k,l

Spatial weighting:
favor nearby pixels

Everything put together

Gaussian filtering

Smooths everything nearby (even edges)
Only depends on spatial distance

Bilateral filtering

Smooths ‘close’ pixels in space and intensity
Depends on spatial and intensity distance

Non-local means

Smooths similar patches no matter how far away
Only depends on intensity distance

Denoising example

noisy input Gaussian filtering bilateral filtering non-local means

|Il

filtering

Very general forms of “structura

We will see more in later lectures.

s non-local means:

Linear?

Shift-invariant?

s non-local means:

Linear?

* No.

Shift-invariant?

* No.

Non-local means is not a convolution, and is generally very very challenging to implement
efficiently.

Efficient algorithms for non-local means are an active research area.

References

Basic reading:
e Szeliski textbook, Sections 3.2 and 8.1

Additional reading:
* Serra, “Image Analysis and Mathematical Morphology,” Academic Press 1983.
standard reference book on mathematical morphology, also available in course form

http://cmmm.ensmp.fr/~serra/cours/index.htm

Paris et al., “A Gentle Introduction to the Bilateral Filter and Its Applications,” SIGGRAPH 2007-08, CVPR 2008
short course on the bilateral filter, including discussion of fast implementations
https://people.csail.mit.edu/sparis/bf course/

Xu et al., “Image Smoothing via L, Gradient Minimization,” SIGGRAPH 2011
one of many works on image abstraction and cartoonization, with a good related work section

Buades et al., “Nonlocal Image and Movie Denoising,” IJCV 2008
the journal version of the original non-local means paper

Felzenszwalb and Huttenlocher, “Distance Transforms of Sampled Functions,” ToC 2012
discusses how to compute distance transforms and skeletons using morhology

