Image filtering

15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 3

Course announcements

Office hours for rest of semester:

Tiancheng Tuesday 4-6 pm.

Yannis Friday 2-4 pm.

- For this week only, Yannis has extra office hours on Thursday 4-6pm.
- Homework 1 will is available on website and due on September 14th.
 - How many of you have read/started/finished the homework?
- Make sure you are on Piazza (sign up on your own using the link on the course website).
 - How many of you aren't already on Piazza?
- Everyone still on waitlist will be enrolled.
- Three guest lectures scheduled: Ravi Mullapudi, Suren Jayasuriya, Aswin Sankarayarayanan.
 - Potentially one more to come.
- September 27th lecture will need to be rescheduled for 28th or 29th (sorry).
 - Make sure to take Doodle survey linked on Piazza.

Overview of today's lecture

- Quick wrap-up of image processing pipeline.
- Types of image transformations.
- Point image processing.
- Linear shift-invariant image filtering.
- Convolution.
- Image gradients.

Slide credits

Most of these slides were adapted directly from:

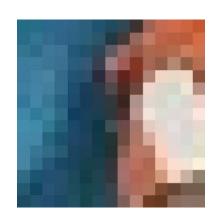
• Kris Kitani (15-463, Fall 2016).

Inspiration and some examples also came from:

- Fredo Durand (Digital and Computational Photography, MIT).
- Kayvon Fatahalian (15-769, Fall 2016).

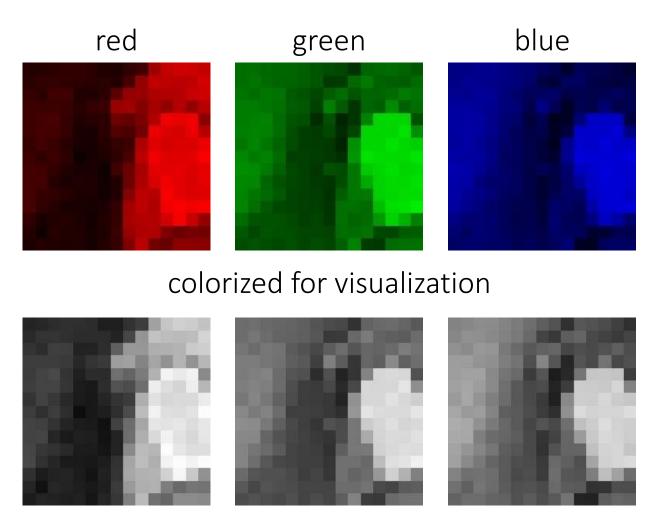
Types of image transformations

A (color) image is a 3D tensor of numbers.



How many bits are the intensity values?

color image patch

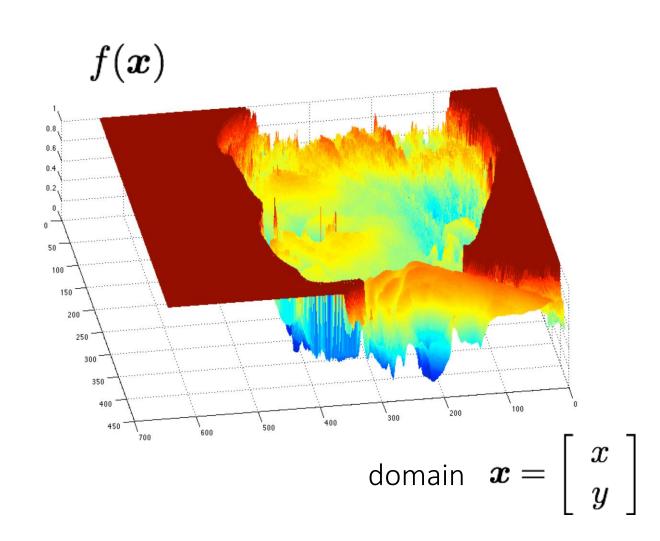


actual intensity values per channel

Each channel is a 2D array of numbers.

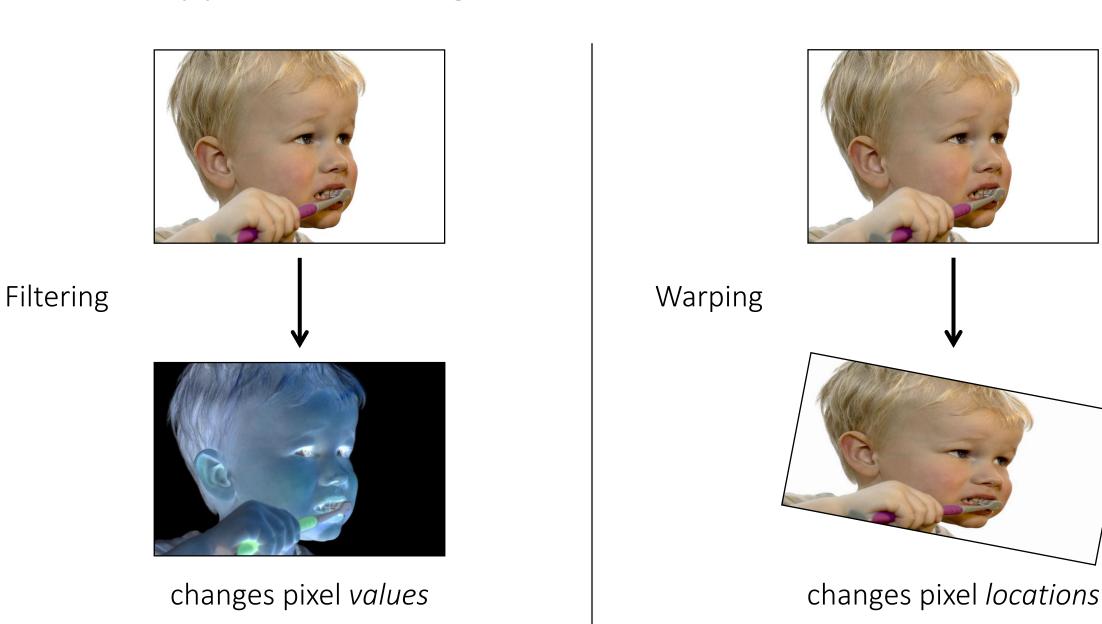
grayscale image

What is the range of the image function f?

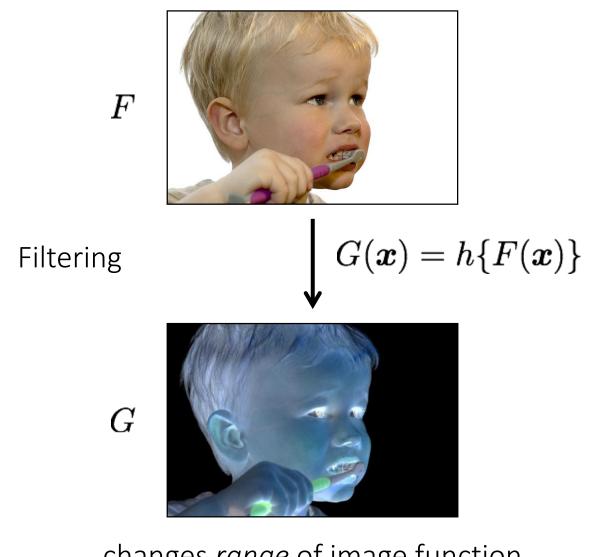


A (grayscale) image is a 2D function.

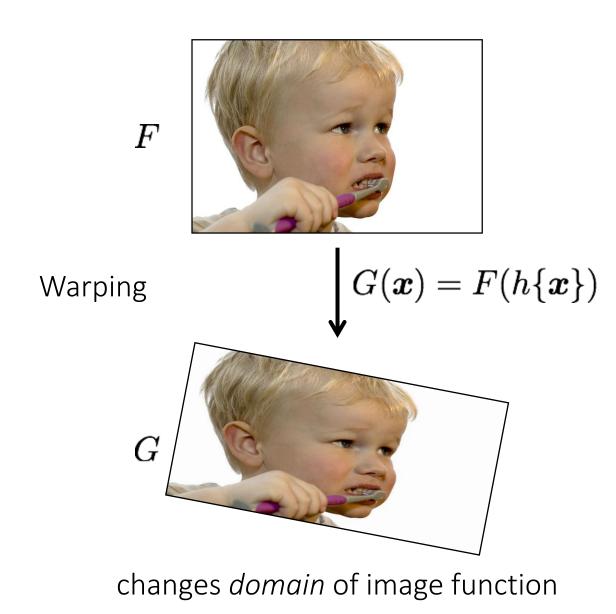
What types of image transformations can we do?



What types of image transformations can we do?

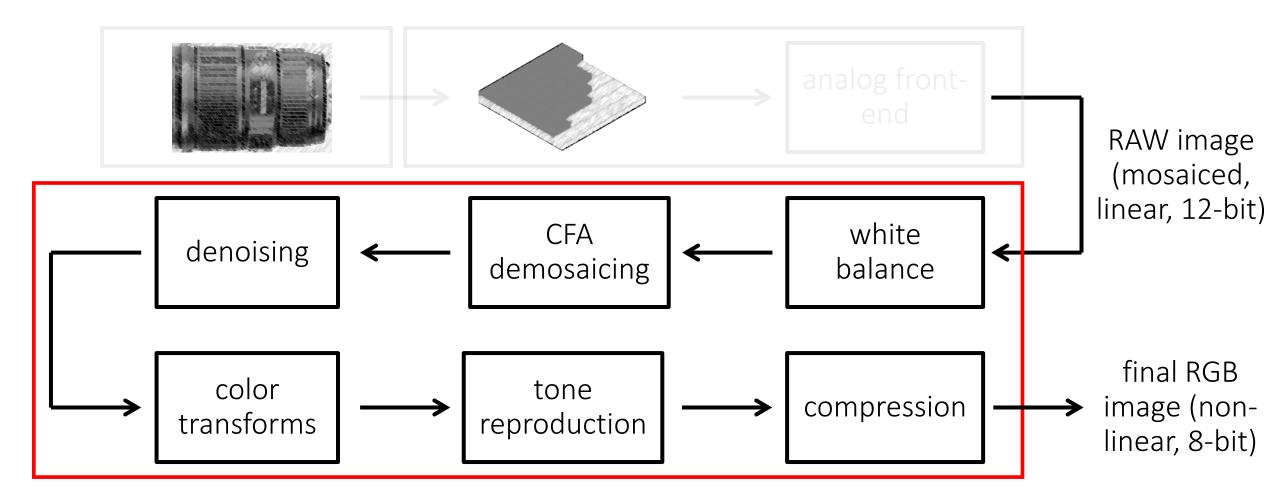


changes range of image function

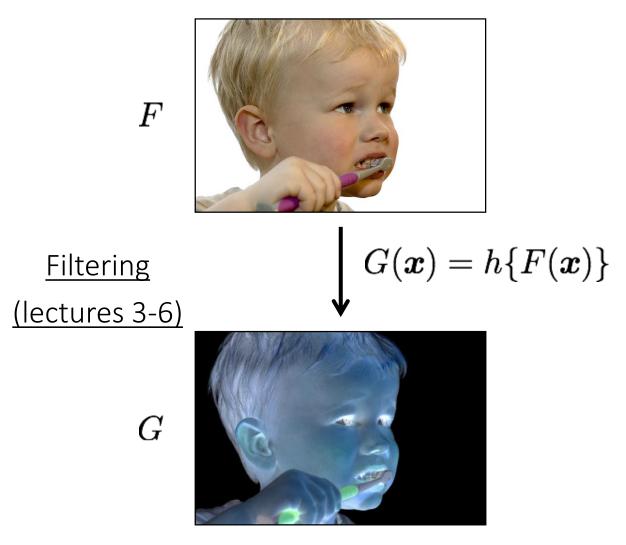


The (in-camera) image processing pipeline

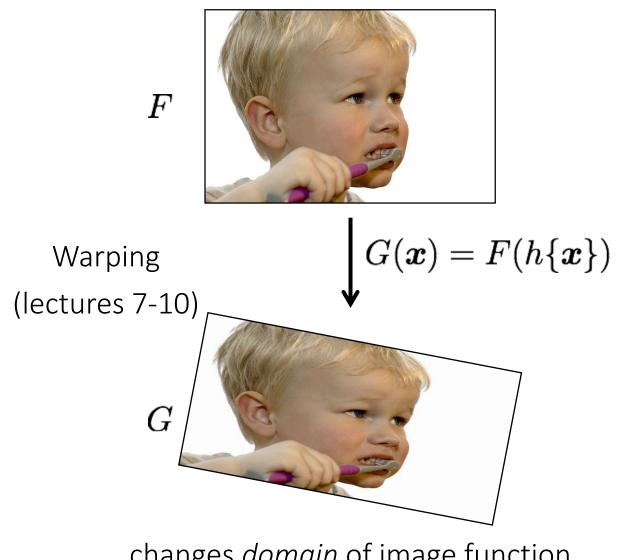
Which of these transformations are filtering and which are warping?



What types of image transformations can we do?



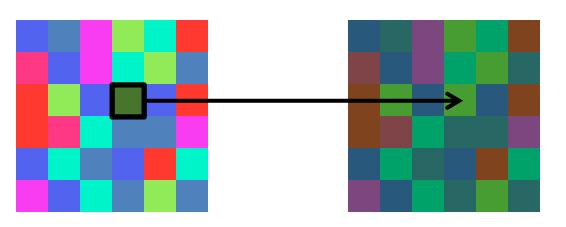
changes range of image function



changes domain of image function

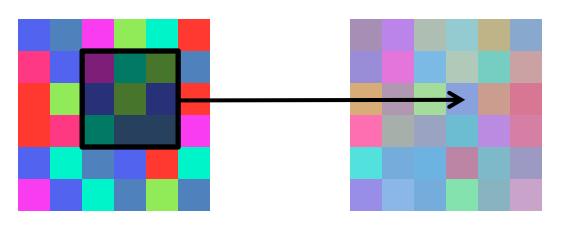
What types of image filtering can we do?

Point Operation



point processing

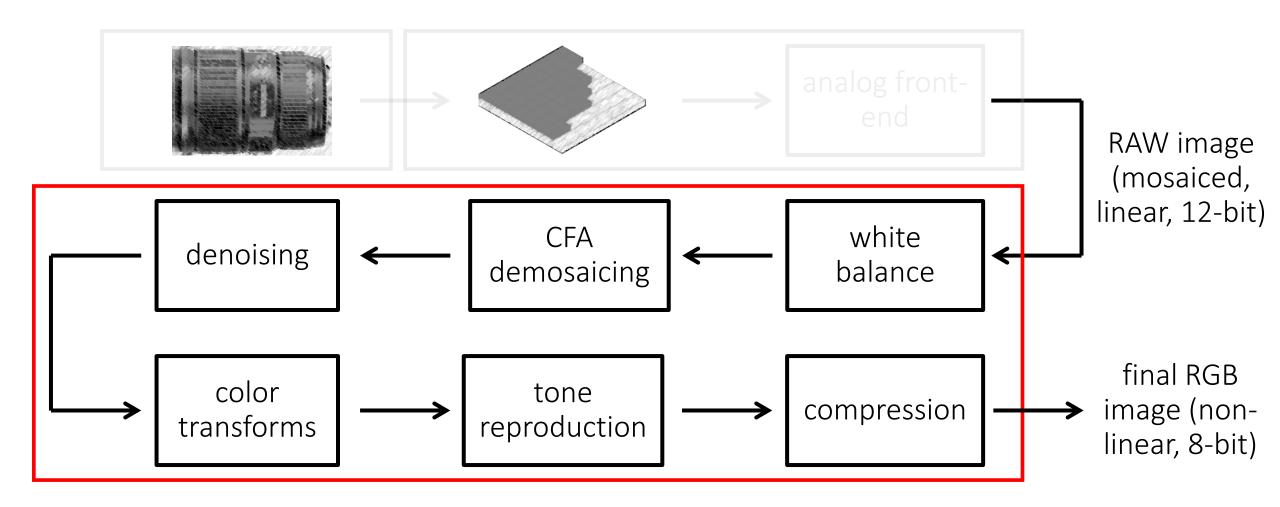
Neighborhood Operation



"filtering"

The (in-camera) image processing pipeline

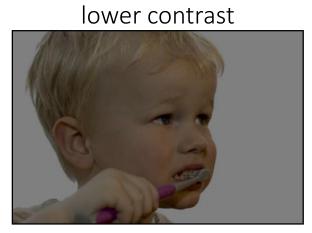
Which of these transformations are (neighborhood) filtering and which are point processing?

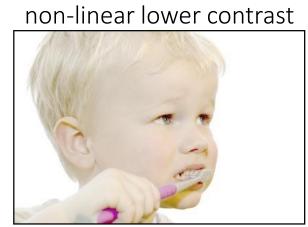


Point processing

Examples of point processing

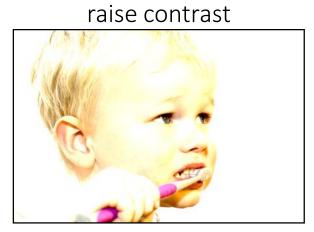
original





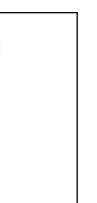
invert



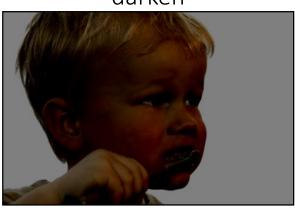


Examples of point processing

original



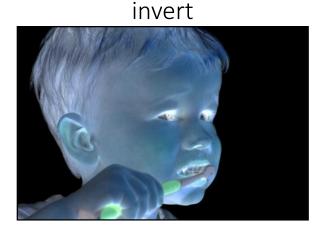
darken



lower contrast

non-linear lower contrast

 \boldsymbol{x}



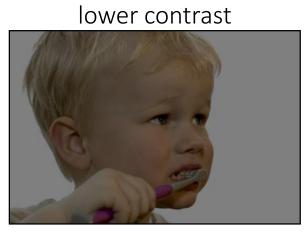
lighten

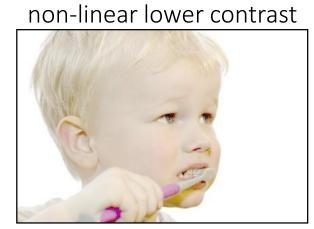
raise contrast

non-linear raise contrast

Examples of point processing

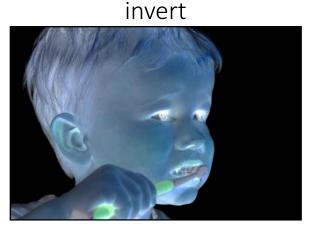
original

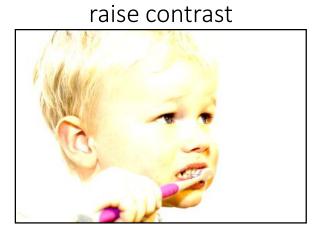




 \boldsymbol{x}

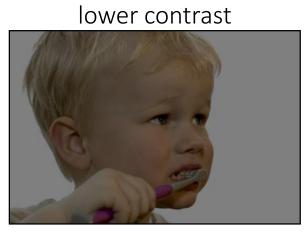
x - 128

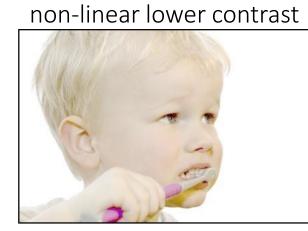




Examples of point processing

original



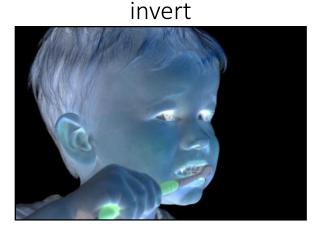


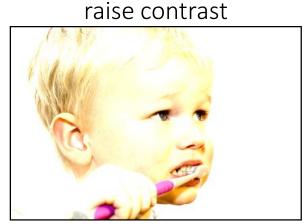
 \boldsymbol{x}

x - 128

 $\frac{x}{2}$

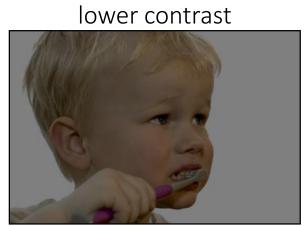
non-linear raise contrast

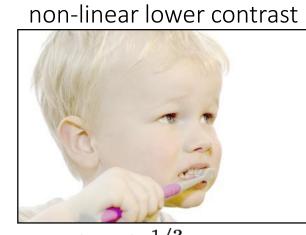




Examples of point processing

original





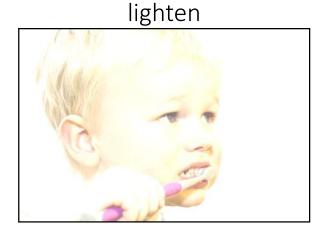
x

x - 128

 $\frac{x}{2}$

 $\left(\frac{x}{255}\right)^{1/3} \times 255$

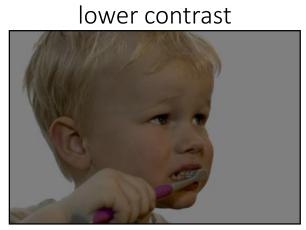
invert

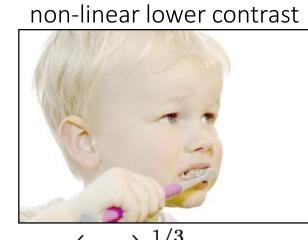


non-linear raise contrast

Examples of point processing

original





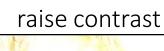
 \boldsymbol{x}

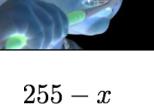
x - 128

 $\frac{x}{2}$

 $\left(\frac{x}{255}\right)^{1/3} \times 255$

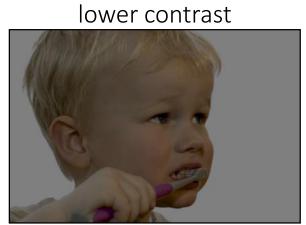
invert

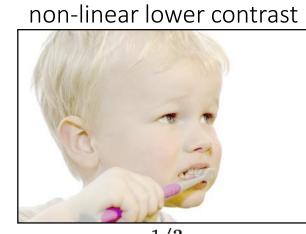




Examples of point processing

original





 \boldsymbol{x}

x - 128

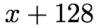
 $\frac{x}{2}$

 $\left(\frac{x}{255}\right)^{1/3} \times 255$

invert

raise contrast

255 - x



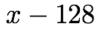
Examples of point processing

original

lower contrast

non-linear lower contrast

 \boldsymbol{x}



 $\frac{x}{2}$

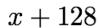
 $\left(\frac{x}{255}\right)^{1/3} \times 255$

invert

raise contrast

non-linear raise contrast

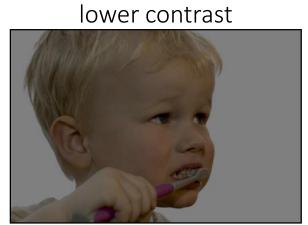
255 - x

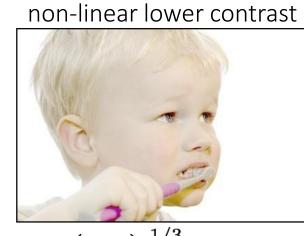


 $x \times 2$

Examples of point processing

original





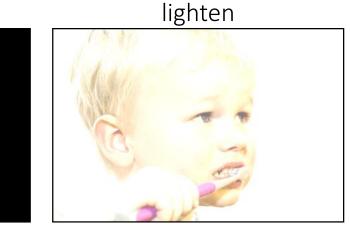
 \boldsymbol{x}

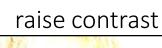
x - 128

 $rac{x}{2}$

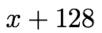
 $\left(\frac{x}{255}\right)^{1/3} \times 255$

invert





$$255 - x$$



 $x \times 2$

$$\left(\frac{x}{255}\right)^2 \times 255$$

A lot more point processing in lecture 12

camera output

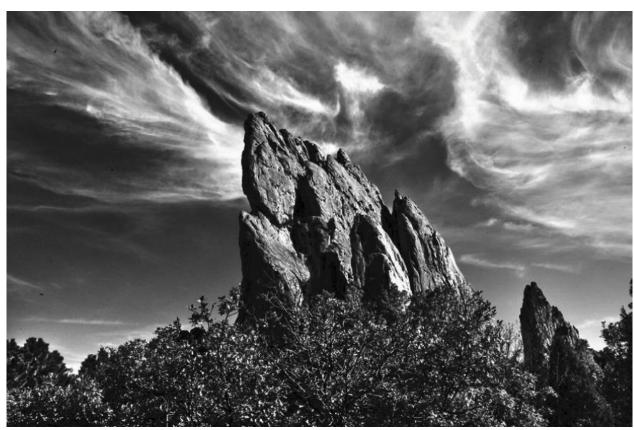


image after stylistic tonemapping

Linear shift-invariant image filtering

Linear shift-invariant image filtering

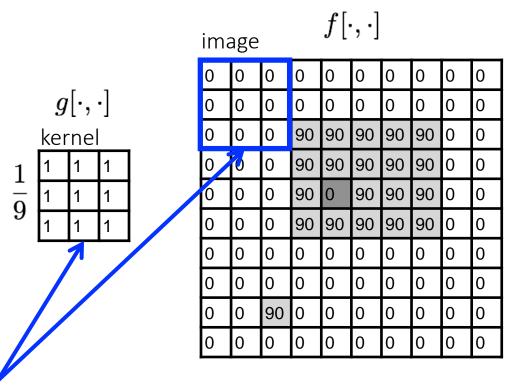
- Replace each pixel by a linear combination of its neighbors (and possibly itself).
- The combination is determined by the filter's kernel.
- The same kernel is shifted to all pixel locations so that all pixels use the same linear combination of their neighbors.

Example: the box filter

- also known as the 2D rect (not rekt) filter
- also known as the square mean filter

kernel
$$g[\cdot,\cdot] = rac{1}{9} egin{array}{c|cccc} 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline \end{array}$$

- replaces pixel with local average
- has smoothing (blurring) effect



ou	output $h[\cdot,\cdot]$									

note that we assume that the kernel coordinates are centered

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

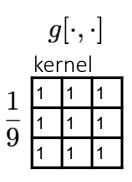
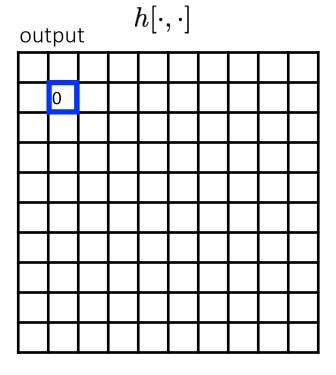
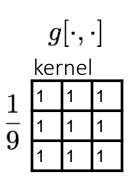


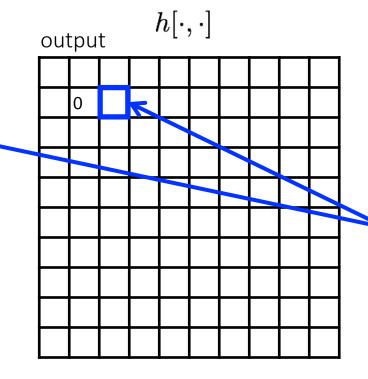
image $f[\cdot,\cdot]$									
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0



$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

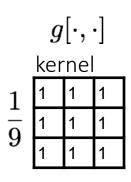


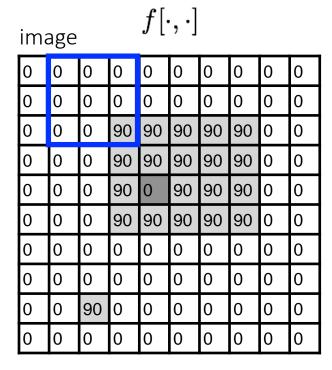
ima	image $f[\cdot,\cdot]$								
0	0	0	0	0	0	0	0	0	0
0	0	0	0	%	0	0	0	0	0
0	0	0	90	90	90	90	90	6	9
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

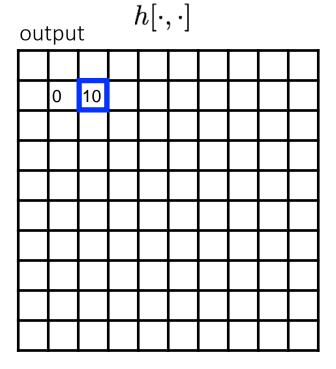


shift-invariant:
as the pixel
shifts, so does
the kernel

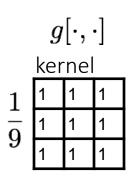
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

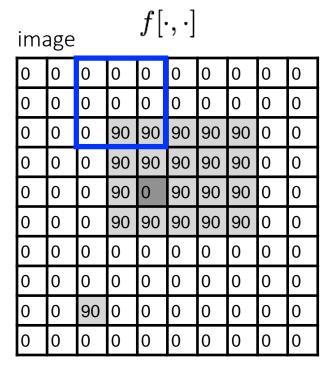


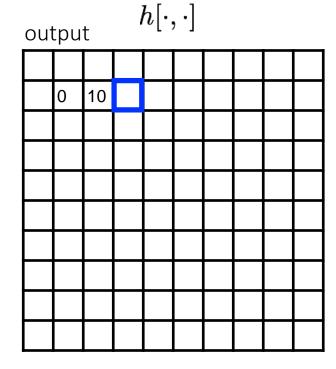




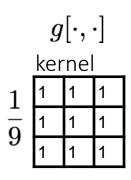
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

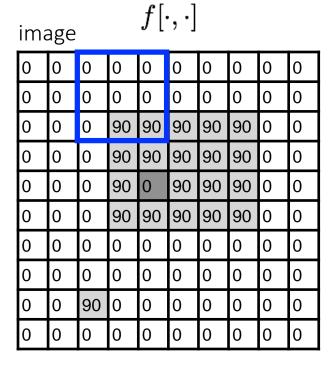


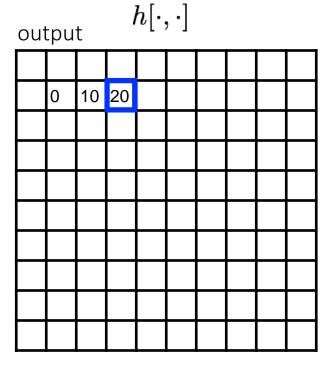




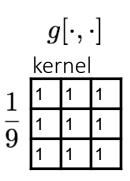
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

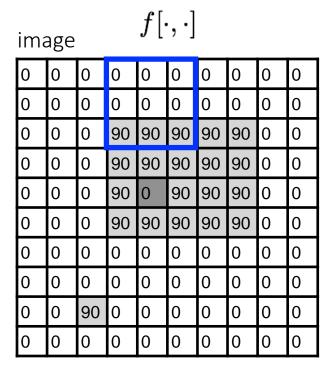


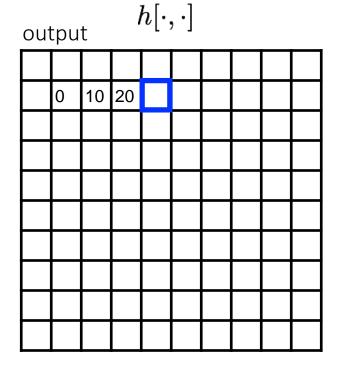




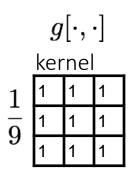
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

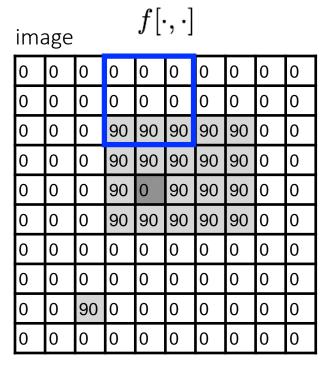


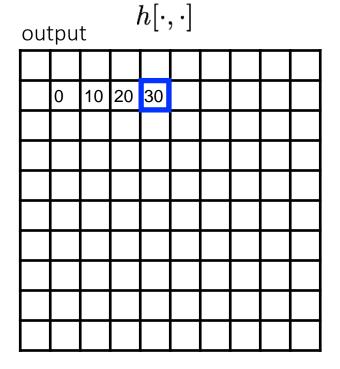




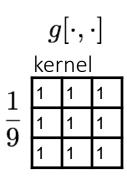
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

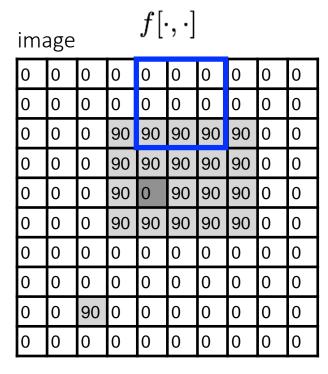


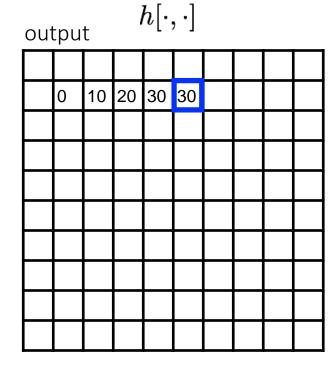




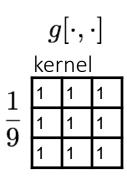
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

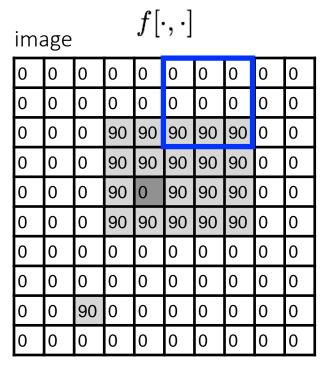


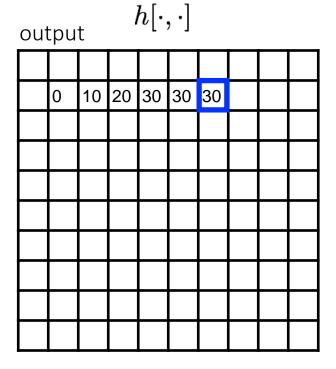




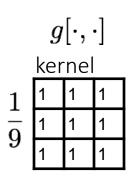
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

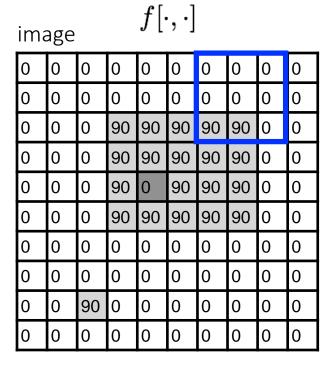


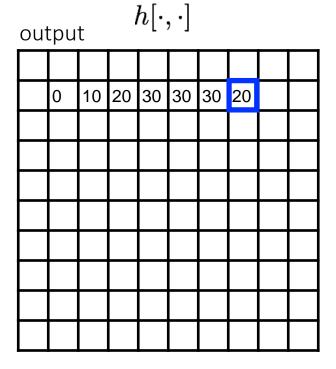




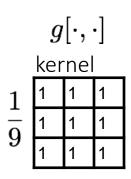
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

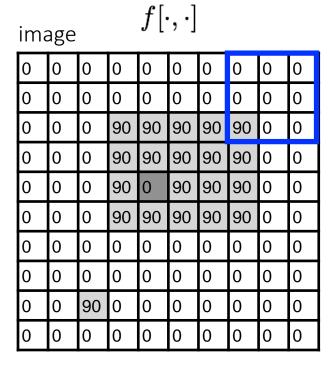






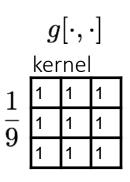
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)



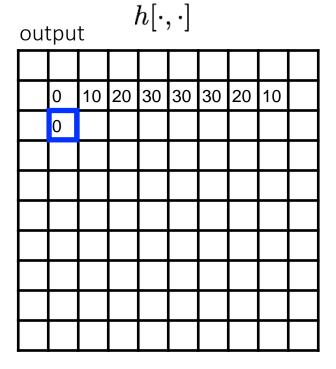


ou	output $h[\cdot,\cdot]$										
	0	10	20	30	30	30	20	10			

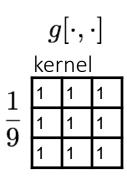
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

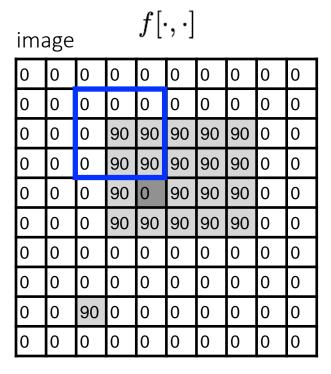


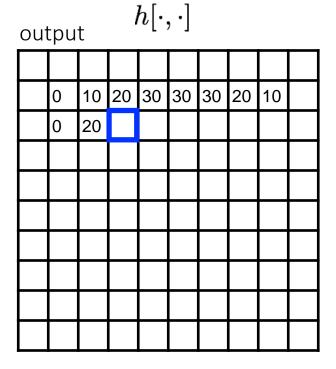
ima	image $f[\cdot,\cdot]$										
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	0	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	90	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		



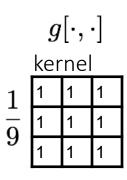
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)



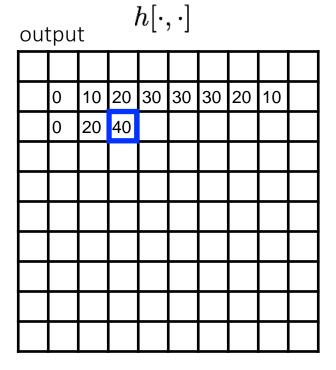




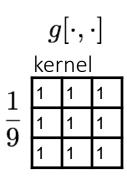
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)



ima	$f[\cdot,\cdot]$										
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	0	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	90	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		



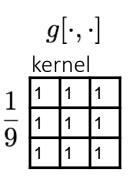
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)



ima	mage $f[\cdot,\cdot]$										
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	0	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	90	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		

ou	output $h[\cdot,\cdot]$										
	0	10	20	30	30	30	20	10			
	0	20	40	60	60	60	40	20			
	0										

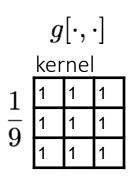
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)



ima	image $f[\cdot,\cdot]$										
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	0	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	90	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		

ΟL	output $h[\cdot,\cdot]$										
	0	10	20	30	30	30	20	10			
	0	20	40	60	60	60	40	20			
	0	30									

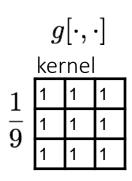
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)



ima	image $f[\cdot,\cdot]$										
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	0	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	90	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		

out	output $h[\cdot,\cdot]$										
	0	10	20	30	30	30	20	10			
	0	20	40	60	60	60	40	20			
	0	30	50	80	80	90	60	30			
	0	30	50	80	80	90	60	30			
	0	20	30	50	50	60	40	20			
	0	10	20	30	30	30	20	10			
	10	10	10	10	0	0	0	0			
	10										

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

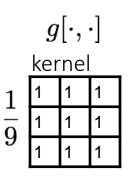


ima	$f[\cdot,\cdot]$										
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	0	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	90	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		

output $h[\cdot,\cdot]$										
	0	10	20	30	30	30	20	10		
	0	20	40	60	60	60	40	20		
	0	30	50	80	80	90	60	30		
	0	30	50	80	80	90	60	30		
	0	20	30	50	50	60	40	20		
	0	10	20	30	30	30	20	10		
	10	10	10	10	0	0	0	0		
	10	10	10	10	0	0	0	0		

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

... and the result is

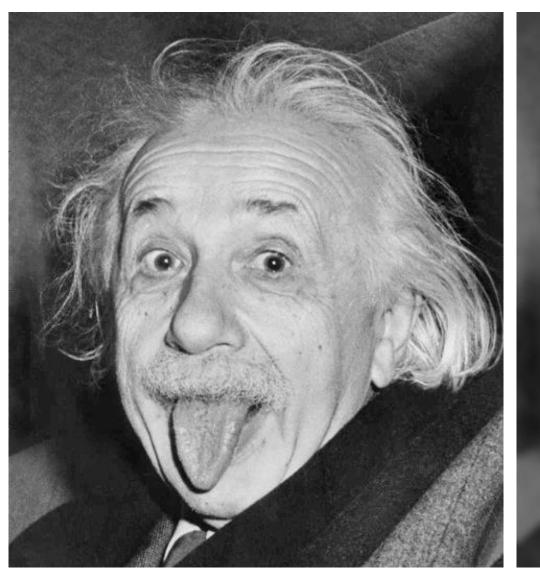


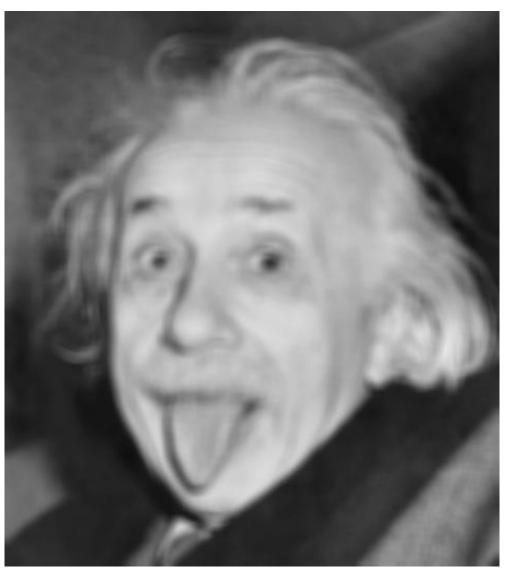
ima	$f[\cdot,\cdot]$										
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	0	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	90	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		

ou	output $h[\cdot,\cdot]$										
	0	10	20	30	30	30	20	10			
	0	20	40	60	60	60	40	20			
	0	30	50	80	80	90	60	30			
	0	30	50	80	80	90	60	30			
	0	20	30	50	50	60	40	20			
	0	10	20	30	30	30	20	10			
	10	10	10	10	0	0	0	0			
	10	10	10	10	0	0	0	0			

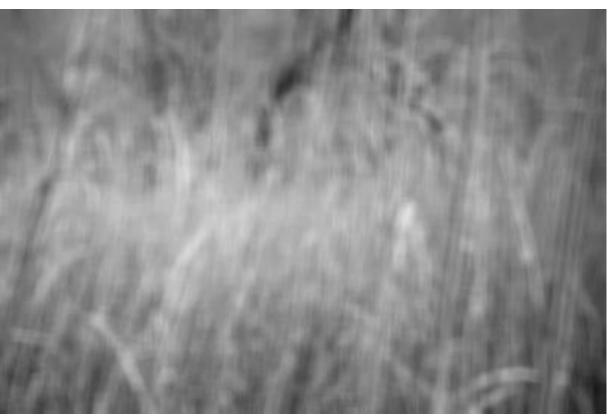
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

Some more realistic examples





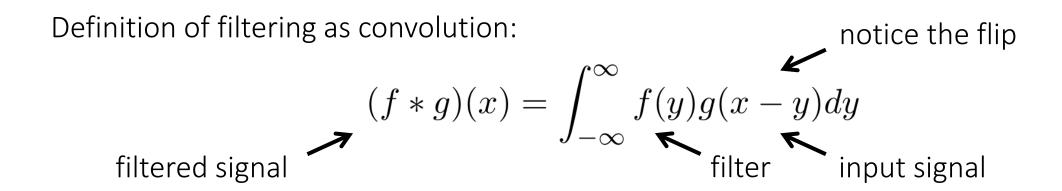
Some more realistic examples



Some more realistic examples

Convolution

Convolution for 1D continuous signals



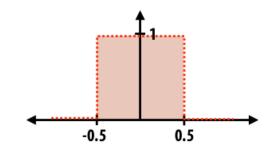
Convolution for 1D continuous signals

Definition of filtering as convolution:

filtering as convolution: notice the flip
$$(f*g)(x) = \int_{-\infty}^{\infty} f(y)g(x-y)dy$$
 filter input signal

Consider the box filter example:

$$f(x) = \begin{cases} 1 & |x| \le 0.5 \\ 0 & otherwise \end{cases}$$



filtering output is a blurred version of g
$$(f*g)(x) = \int_{-0.5}^{0.5} g(x-y) dy$$

Convolution for 2D discrete signals

Definition of filtering as convolution:

filtered image filtering as convolution:
$$(f*g)(x,y) = \sum_{i,j=-\infty}^{\infty} f(i,j)I(x-i,y-j)$$
 filter input image

Convolution for 2D discrete signals

Definition of filtering as convolution:

filtered image
$$(f*g)(x,y) = \sum_{i,j=-\infty}^{\infty} f(i,j)I(x-i,y-j)$$
 filter input image

If the filter f(i,j) is non-zero only within $-1 \leq i,j \leq 1$, then

$$(f * g)(x,y) = \sum_{i,j=-1}^{1} f(i,j)I(x-i,y-j)$$

The kernel we saw earlier is the 3x3 matrix representation of f(i,j) .

Convolution vs correlation

Definition of discrete 2D convolution:

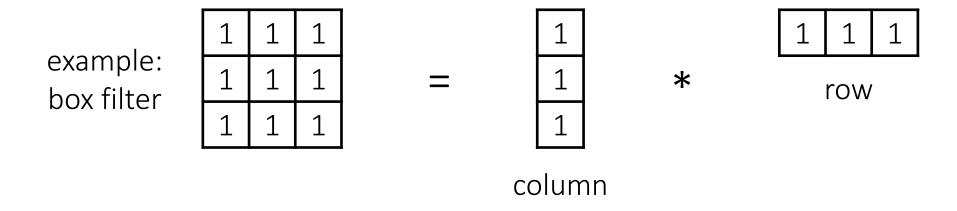
rete 2D convolution: notice the flip
$$(f*g)(x,y) = \sum_{i,j=-\infty}^{\infty} f(i,j)I(x-i,y-j)$$

Definition of discrete 2D correlation:

rete 2D correlation: notice the lack of a flip
$$(f*g)(x,y) = \sum_{i,j=-\infty}^{\infty} f(i,j)I(x+i,y+j)$$

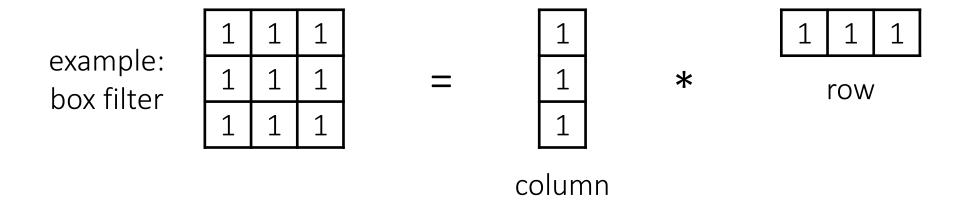
- Most of the time won't matter, because our kernels will be symmetric.
- Will be important when we discuss frequency-domain filtering (lectures 5-6).

A 2D filter is separable if it can be written as the product of a "column" and a "row".



What is the rank of this filter matrix?

A 2D filter is separable if it can be written as the product of a "column" and a "row".



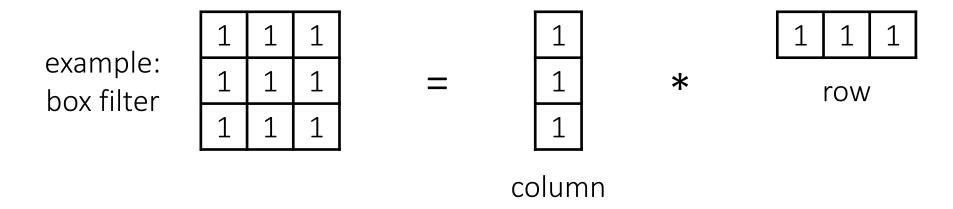
Why is this important?

A 2D filter is separable if it can be written as the product of a "column" and a "row".

1	1	1	1		1		1	1	1
example: box filter	1	1 1 1 =		=	1	*	row		
DOX TITLET	1	1	1		1				
				CO	olum	nn			

2D convolution with a separable filter is equivalent to two 1D convolutions (with the "column" and "row" filters).

A 2D filter is separable if it can be written as the product of a "column" and a "row".

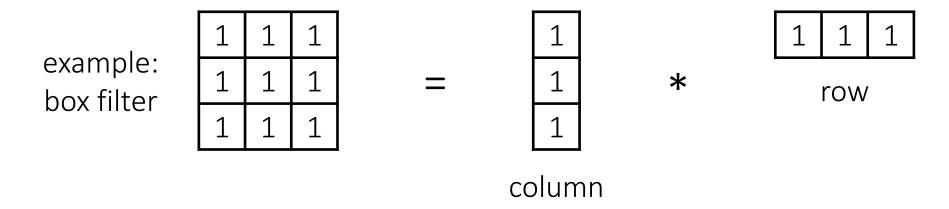


2D convolution with a separable filter is equivalent to two 1D convolutions (with the "column" and "row" filters).

If the image has M x M pixels and the filter kernel has size N x N:

• What is the cost of convolution with a non-separable filter?

A 2D filter is separable if it can be written as the product of a "column" and a "row".

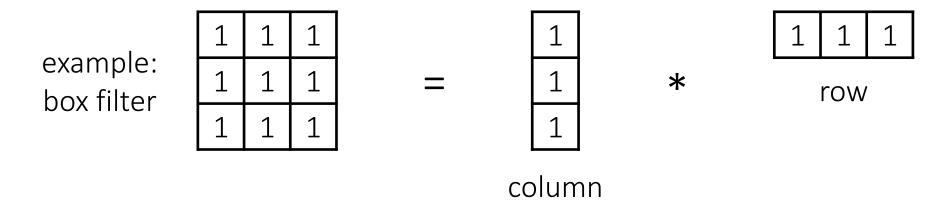


2D convolution with a separable filter is equivalent to two 1D convolutions (with the "column" and "row" filters).

If the image has M x M pixels and the filter kernel has size N x N:

- What is the cost of convolution with a non-separable filter? \longrightarrow $M^2 \times N^2$
- What is the cost of convolution with a separable filter?

A 2D filter is separable if it can be written as the product of a "column" and a "row".



2D convolution with a separable filter is equivalent to two 1D convolutions (with the "column" and "row" filters).

 $M^2 \times N^2$

 $2 \times N \times M^2$

If the image has M x M pixels and the filter kernel has size N x N:

- What is the cost of convolution with a non-separable filter?
- What is the cost of convolution with a separable filter?

A few more filters

original

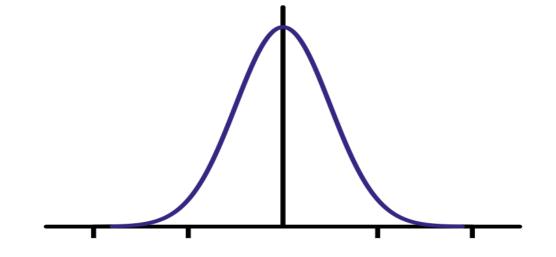
3x3 box filter

do you see any problems in this image?

The Gaussian filter

- named (like many other things) after Carl Friedrich Gauss
- kernel values sampled from the 2D Gaussian function:

$$f(i,j) = \frac{1}{2\pi\sigma^2} e^{-\frac{i^2+j^2}{2\sigma^2}}$$



- weight falls off with distance from center pixel
- theoretically infinite, in practice truncated to some maximum distance

Any heuristics for selecting where to truncate?

The Gaussian filter

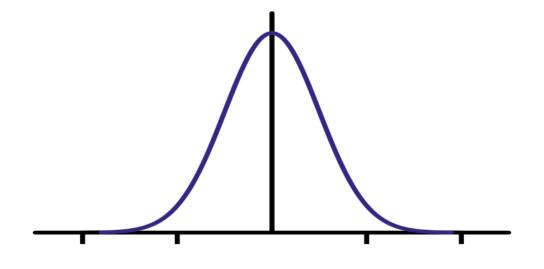
- named (like many other things) after Carl Friedrich Gauss
- kernel values sampled from the 2D Gaussian function:

$$f(i,j) = \frac{1}{2\pi\sigma^2} e^{-\frac{i^2+j^2}{2\sigma^2}}$$

- weight falls off with distance from center pixel
- theoretically infinite, in practice truncated to some maximum distance

Any heuristics for selecting where to truncate?

usually at 2-3σ



Is this a separable filter?

kernel $\frac{1}{16}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

The Gaussian filter

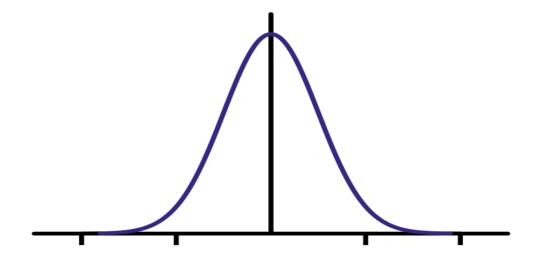
- named (like many other things) after Carl Friedrich Gauss
- kernel values sampled from the 2D Gaussian function:

$$f(i,j) = \frac{1}{2\pi\sigma^2} e^{-\frac{i^2+j^2}{2\sigma^2}}$$

- weight falls off with distance from center pixel
- theoretically infinite, in practice truncated to some maximum distance

Any heuristics for selecting where to truncate?

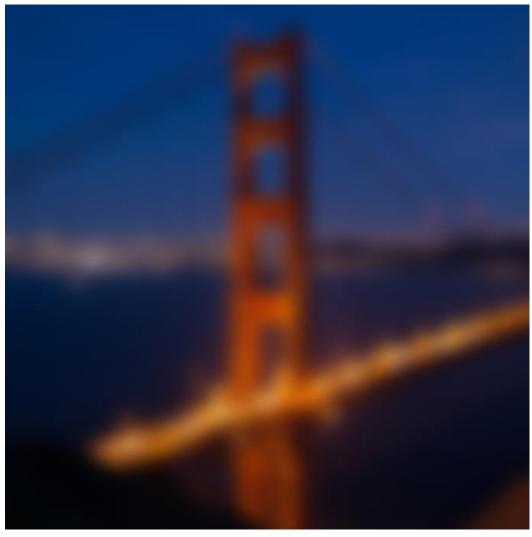
usually at 2-3σ



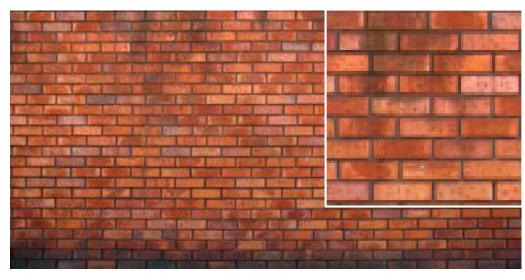
Is this a separable filter? Yes!

kernel $\frac{1}{16}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

Gaussian filtering example

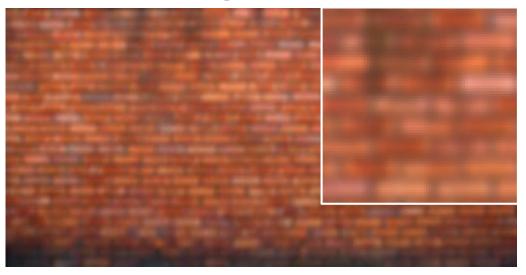


Gaussian vs box filtering



original

Which blur do you like better?



7x7 Gaussian

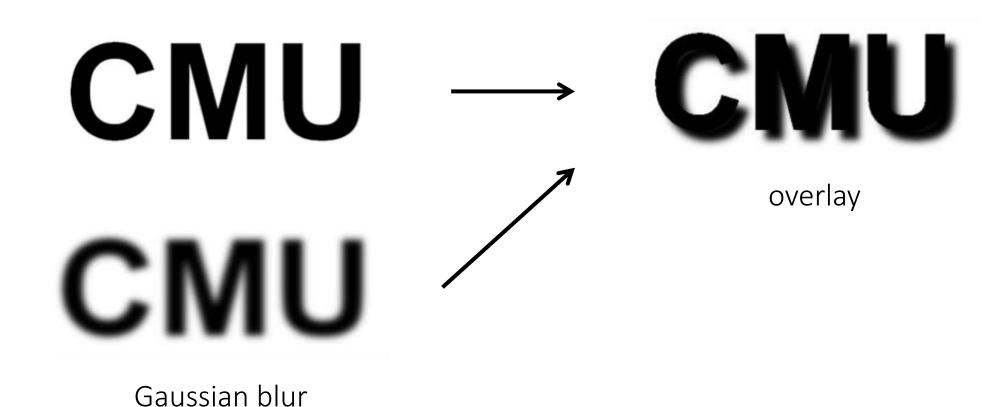


7x7 box

How would you create a soft shadow effect?

CMU — CMU

How would you create a soft shadow effect?



input

filter

0	0	0
0	1	0
0	0	0

output

input

filter

0	0	0
0	1	0
0	0	0

output

unchanged

input

filter

0	0	0
0	1	0
0	0	0

output

unchanged

input

filter

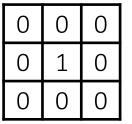
0	0	0
0	0	1
0	0	0

output

?

input

filter



output

unchanged

input

filter

0	0	0
0	0	1
0	0	0

output

shift to left by one

input

filter

0	0	0	1	1	1	1
0	2	0	$-\frac{1}{9}$	1	1	1
0	0	0	9	1	1	1

output

input

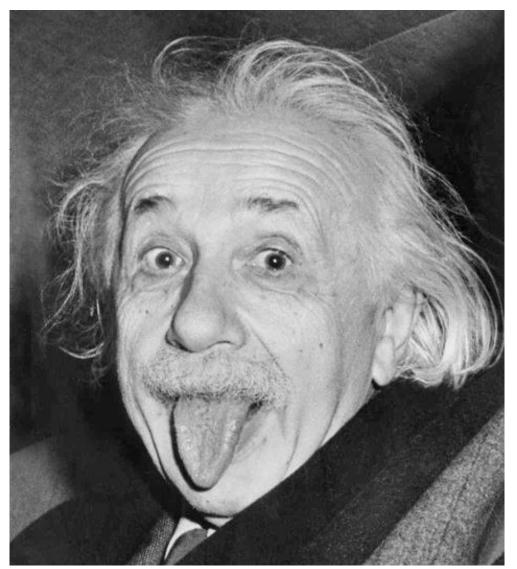
filter

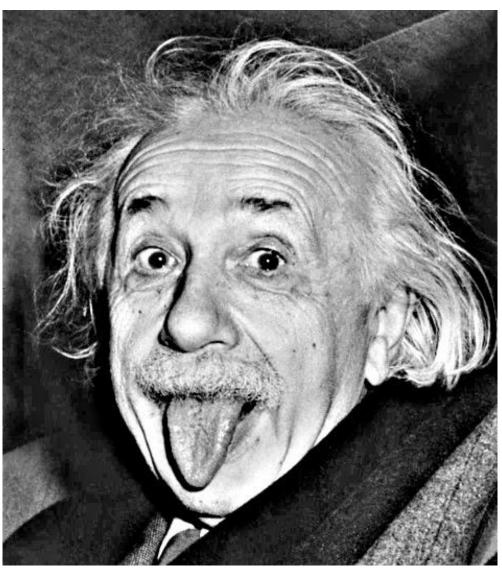
0	0	0	1	1	1	1
0	2	0	$-\frac{1}{9}$	1	1	1
0	0	0	9	1	1	1

output

sharpening

- do nothing for flat areas
- stress intensity peaks





do you see any problems in this image?

Do not overdo it with sharpening

original

sharpened

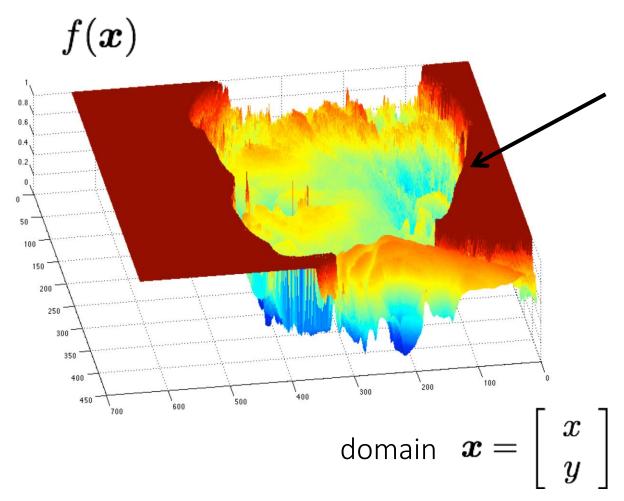
oversharpened

What is wrong in this image?

Image gradients

What are image edges?

grayscale image



Very sharp discontinuities in intensity.

Detecting edges

How would you go about detecting edges in an image (i.e., discontinuities in a function)?

Detecting edges

How would you go about detecting edges in an image (i.e., discontinuities in a function)?

✓ You take derivatives: derivatives are large at discontinuities.

How do you differentiate a discrete image (or any other discrete signal)?

Detecting edges

How would you go about detecting edges in an image (i.e., discontinuities in a function)?

✓ You take derivatives: derivatives are large at discontinuities.

How do you differentiate a discrete image (or any other discrete signal)?

✓ You use finite differences.

High-school reminder: definition of a derivative using forward difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

High-school reminder: definition of a derivative using forward difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Alternative: use central difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

For discrete signals: Remove limit and set h = 2

$$f'(x) = rac{f(x+1) - f(x-1)}{2}$$
 What convolution kernel does this correspond to?

High-school reminder: definition of a derivative using forward difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Alternative: use central difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

For discrete signals: Remove limit and set h = 2

$$f'(x) = \frac{f(x+1) - f(x-1)}{2}$$

High-school reminder: definition of a derivative using forward difference

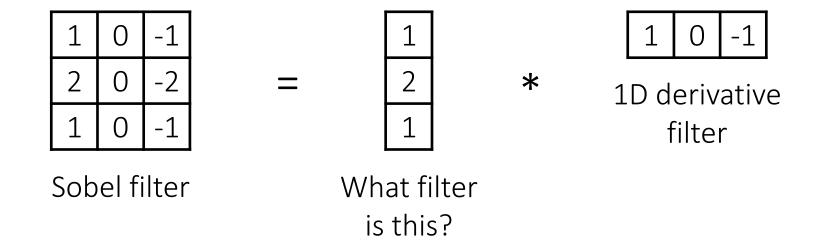
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

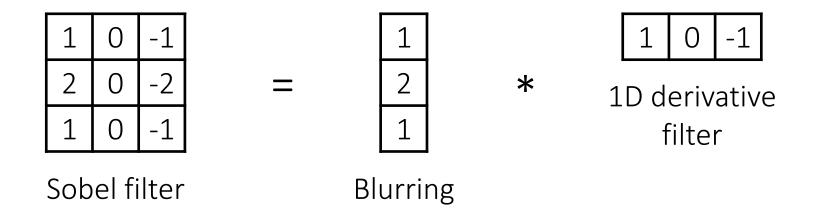
Alternative: use central difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

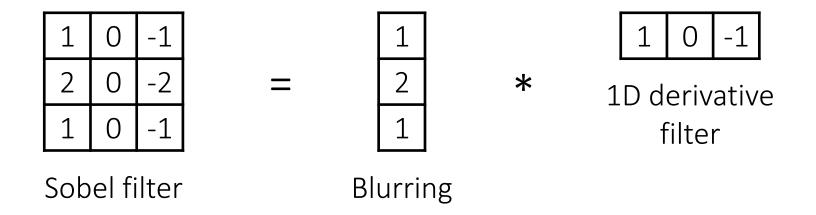
For discrete signals: Remove limit and set h = 2

$$f'(x) = rac{f(x+1) - f(x-1)}{2}$$
 1D derivative filter





In a 2D image, does this filter responses along horizontal or vertical lines?



Does this filter return large responses on vertical or horizontal lines?

Horizontal Sober filter:

1	0	-1		1		1	0 -1
2	0	-2	=	2	*		
1	0	-1		1			

What does the vertical Sobel filter look like?

Horizontal Sober filter:

1	0	-1
2	0	-2
1	0	-1

=

*

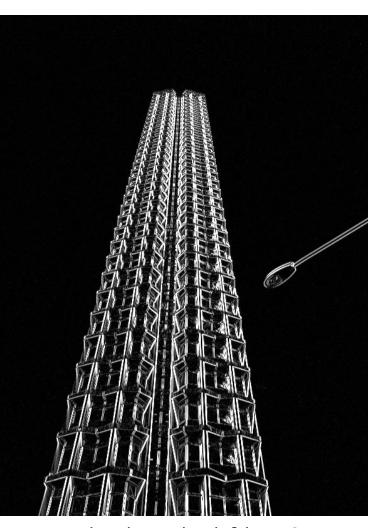
Vertical Sobel filter:

=

*

Sobel filter example

original



which Sobel filter?

which Sobel filter?

Sobel filter example

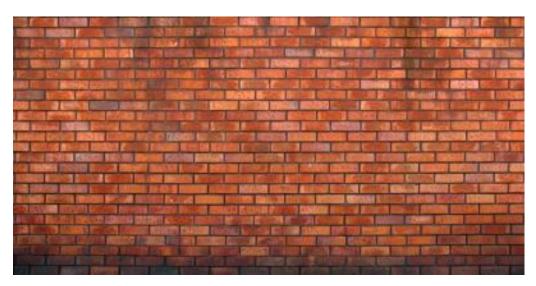
original



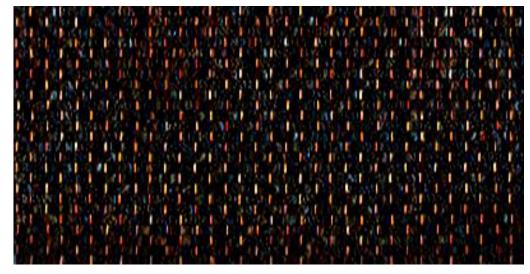
horizontal Sobel filter

vertical Sobel filter

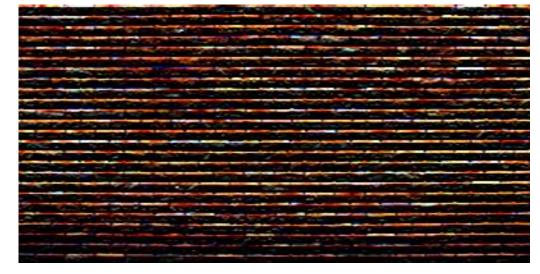
Sobel filter example



original

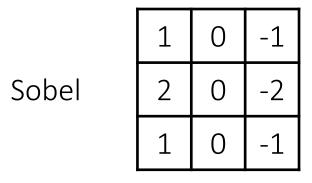


horizontal Sobel filter



vertical Sobel filter

Several derivative filters



1	2	1
0	0	0
-1	-2	-1

3 0 -3 Scharr 10 0 -10 3 0 -3

3	10	3
0	0	0
-3	-10	-3

Prewitt

1	0	-1
1	0	-1
1	0	-1

1	1	1
0	Ο	0
-1	-1	-1

Roberts

0	1
-1	0

1	0
O	-1

- How are the other filters derived and how do they relate to the Sobel filter?
- How would you derive a derivative filter that is larger than 3x3?

Computing image gradients

1. Select your favorite derivative filters.

$$S_x = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix}$$

$$m{S}_{m{y}} = egin{array}{c|ccc} 1 & 2 & 1 \\ \hline 0 & 0 & 0 \\ \hline -1 & -2 & -1 \end{array}$$

Computing image gradients

1. Select your favorite derivative filters.

$$S_x = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix}$$

$$m{S}_y = egin{array}{c|ccc} 1 & 2 & 1 \\ \hline 0 & 0 & 0 \\ \hline -1 & -2 & -1 \end{array}$$

2. Convolve with the image to compute derivatives.

$$rac{\partial oldsymbol{f}}{\partial x} = oldsymbol{S}_x \otimes oldsymbol{f}$$

$$rac{\partial oldsymbol{f}}{\partial y} = oldsymbol{S}_y \otimes oldsymbol{f}$$

Computing image gradients

Select your favorite derivative filters.

$$m{S}_y = egin{array}{c|ccc} 1 & 2 & 1 \\ \hline 0 & 0 & 0 \\ \hline -1 & -2 & -1 \end{array}$$

Convolve with the image to compute derivatives.

$$egin{aligned} rac{\partial m{f}}{\partial x} = m{S}_x \otimes m{f} \end{aligned} \qquad \qquad rac{\partial m{f}}{\partial y} = m{S}_y \otimes m{f} \end{aligned}$$

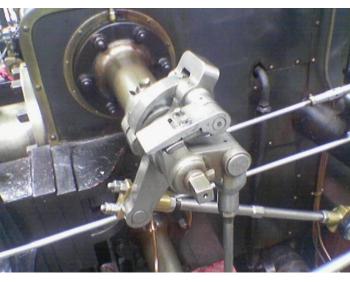
$$rac{\partial m{f}}{\partial y} = m{S}_y \otimes m{f}$$

Form the image gradient, and compute its direction and amplitude.

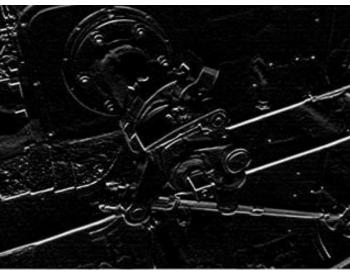
$$\nabla \boldsymbol{f} = \begin{bmatrix} \frac{\partial \boldsymbol{f}}{\partial x}, \frac{\partial \boldsymbol{f}}{\partial y} \end{bmatrix} \qquad \theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right) \qquad ||\nabla f|| = \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2}$$
 gradient direction amplitude

Image gradient example

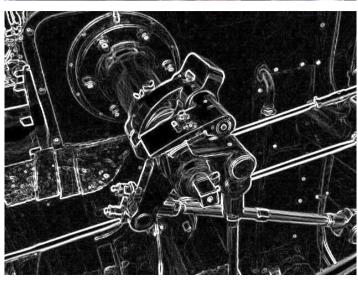
original



vertical derivative



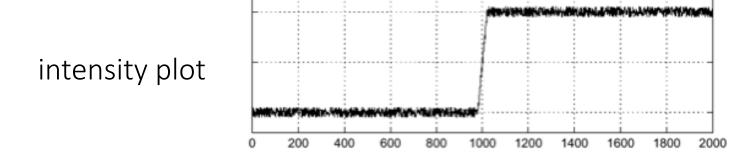
gradient amplitude



horizontal derivative

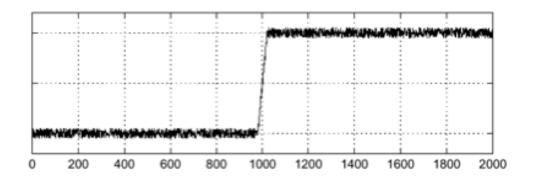
How does the gradient direction relate to these edges?

How do you find the edge of this signal?



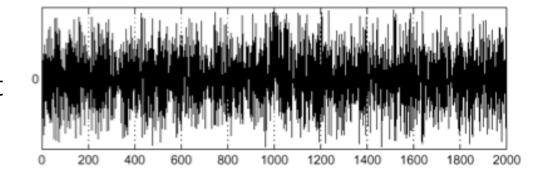
How do you find the edge of this signal?

intensity plot



Using a derivative filter:

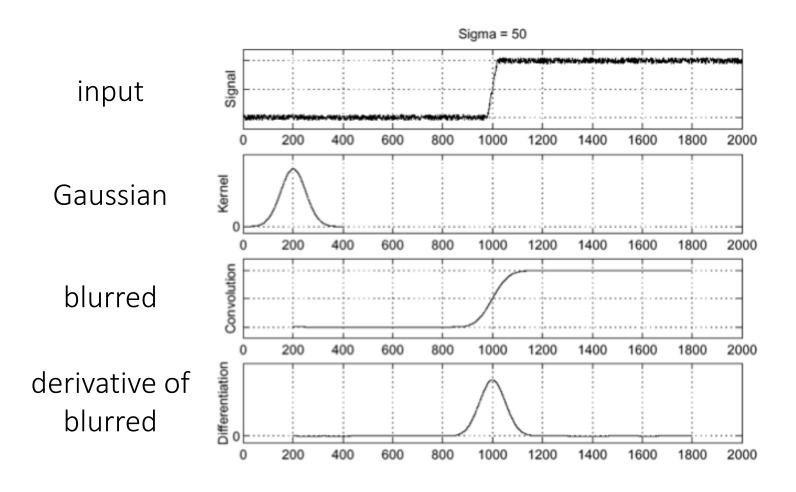
derivative plot



What's the problem here?

Differentiation is very sensitive to noise

When using derivative filters, it is critical to blur first!

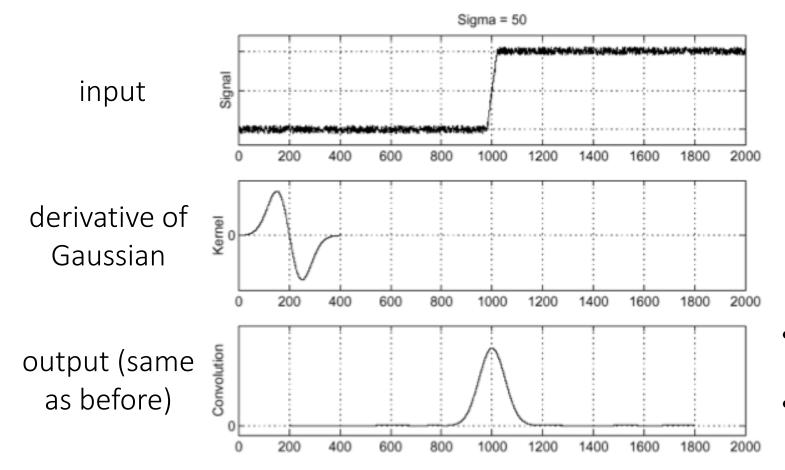


How much should we blur?

Derivative of Gaussian (DoG) filter

Derivative theorem of convolution:

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$



- How many operations did we save?
- Any other advantages beyond efficiency?

Laplace filter

Basically a second derivative filter.

We can use finite differences to derive it, as with first derivative filter.

first-order finite difference
$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

1D derivative filter

second-order finite difference
$$f''(x) = \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} \longrightarrow$$

Laplace filter

Laplace filter

Basically a second derivative filter.

We can use finite differences to derive it, as with first derivative filter.

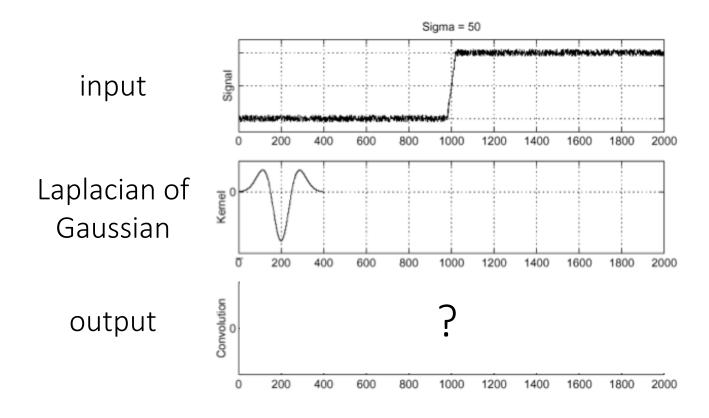
first-order finite difference
$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

1D derivative filter

second-order finite difference
$$f''(x) = \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} \longrightarrow$$

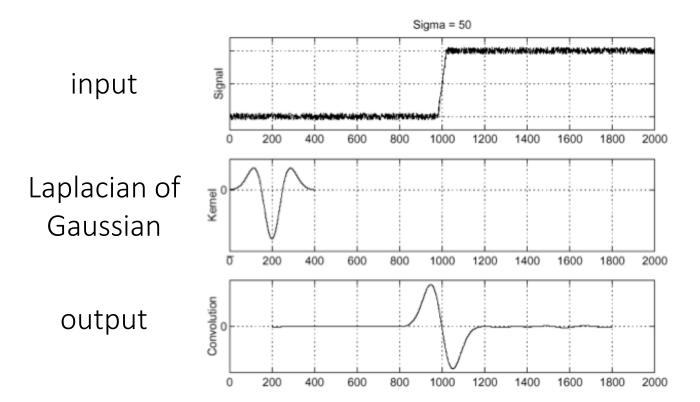
Laplacian of Gaussian (LoG) filter

As with derivative, we can combine Laplace filtering with Gaussian filtering



Laplacian of Gaussian (LoG) filter

As with derivative, we can combine Laplace filtering with Gaussian filtering



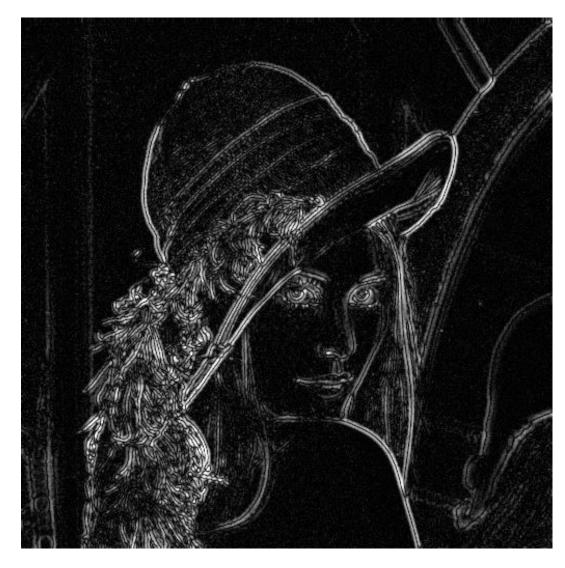
"zero crossings" at edges

Laplace and LoG filtering examples

Laplacian of Gaussian filtering

Laplace filtering

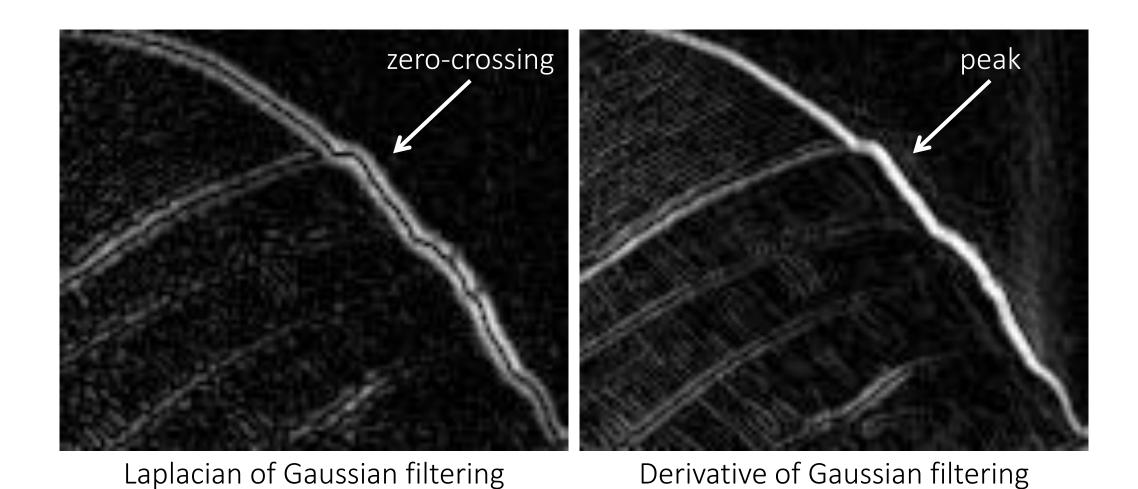
Laplacian of Gaussian vs Derivative of Gaussian



Laplacian of Gaussian filtering

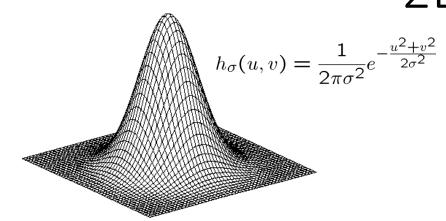
Derivative of Gaussian filtering

Laplacian of Gaussian vs Derivative of Gaussian

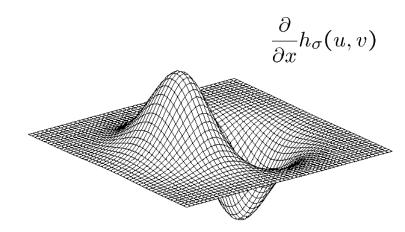


Zero crossings are more accurate at localizing edges (but not very convenient).

2D Gaussian filters

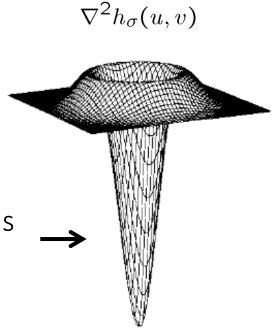


Gaussian



Derivative of Gaussian

how does this relate to this lecture's cover picture?



Laplacian of Gaussian

References

Basic reading:

• Szeliski textbook, Section 3.2