Non-line-of-sight imaging

15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 25

http://graphics.cs.cmu.edu/courses/15-463

Course announcements

- Homework 6 will be posted tonight.
 - Will be due Sunday 10th.
 - Almost no coding, only data capture and using existing code.
 - You will need high-sensitivity cameras, so use the DSLRs you have picked up.
- Final project report deadline moved to December 15th.
 Originally was December 11th.

Overview of today's lecture

- The non-line-of-sight (NLOS) imaging problem.
- Active NLOS imaging using time-of-flight imaging.
- Active NLOS imaging using WiFi.
- Passive NLOS imaging using accidental pinholes.
- Passive NLOS imaging using accidental reflectors.
- Passive NLOS imaging using corners.

Slide credits

Many of these slides were directly adapted from:

- Shree Nayar (Columbia).
- Fadel Adib (MIT).
- Katie Bouman (MIT).

The non-line-of-sight (NLOS) imaging problem

Time-of-flight (ToF) imaging

Looking around the corner

Looking around the corner

Active NLOS imaging using time-of-flight imaging

•

•

Elliptic backprojection

Elliptic backprojection

Elliptic backprojection

Intensity (a.u.)

e 253 mm 245 mm 222 mm x

Reconstructing Hidden Rooms

Visible wall Invisible walls

Reconstructing Rectangular Rooms

 Average AICP error for all the walls is TBD mm (TBD %). – Normalized with average room length of 1.1m

Reconstructing Complex Shape and Reflectance

Active NLOS imaging using WiFi

Imaging through occlusions

Imaging through occlusions using radio frequencies

Key Idea

Wall refection is 10,000x stronger than reflections coming from behind the wall

Tracking people from their reflections

Wi-Vi: Small, Low-Power, Wi-Fi

- Eliminate the wall's reflection
- Track people from reflections
- Gesture-based interface
- Implemented on software radios

How Can We Eliminate the Wall's Reflection?
<u>Idea:</u> transmit two waves that cancel each other when they reflect off static objects but not moving objects

Wall is static disappears People tend to move detectable

Eliminating the Wall's Reflection

Receive Antenna:

Х

αχ

Transmit Antennas

Eliminating the Wall's Reflection

Eliminating All Static Reflections

Eliminating All Static Reflections

Static objects (wall, furniture, etc.) have constant channels

$$y = h_1 x + h_2(-h_1/h_2)x$$

People move, therefore their channels change

 $y = h_1' x + h_2'(-h_1/h_2)x$ Not Zero

How Can We Track Using Reflections?

Antenna Array

Direction of motion

At any point in time, we have a single measurement

Antenna Array

Direction of motion

Direction of motion

Antenna Array

Direction of motion

Human motion emulates antenna array

Direction

Time (Seconds)

A Through-Wall Gesture Interface

• Sending Commands with Gestures

- Two simple gestures to represent bit '0' and bit '1'
- Can combine sequence of gestures to convey longer message

Gesture Encoding

Bit '0': step forward followed by step backward Bit '1': step backward followed by step forward Step Forward

Step Backward

Gesture Decoding

Gesture interface that works through walls and none-line-of-sight

Imaging through occlusions using radio frequencies

Our output

Traditional Imaging

 Cannot image through occlusions like walls

 Form 2D images using lenses **RF Imaging**

Walls are transparent and can image through them

No lenses at these frequencies

Imaging with RF No lens at these frequencies

Antenna cannot distinguish bounces from different directions

Imaging with RF

Beamforming: Use multiple antennas to scan reflections within a specific beam

Extend to 3D with time-of-flight measurements by repeating this at every depth

Coarse-to-fine Scan

Larger aperture (more antennas) means finer resolution

Used antennas

Traditional Imaging

 Cannot image through occlusions like walls

- Form 2D images using lenses
- Get a reflection from all points: can image all the body

RF Imaging

Walls are transparent and can image through them

No lenses at these frequencies

No reflections from most points: all reflections are specular

<u>Challenge:</u> Don't get reflections from most points in RF

Output of 3D RF Scan

Blobs of reflection power

<u>Challenge:</u> Don't get reflections from most points in RF

At frequencies that traverse walls, human body parts are specular (pure mirror)

<u>Challenge:</u> Don't get reflections from most points in RF

At frequencies that traverse walls, human body parts are specular (pure mirror)

Cannot Capture Reflection

At every point in time, get reflections from only a subset of body parts

Solution Idea: Exploit Human Motion and Aggregate over Time

Solution Idea: Exploit Human Motion and Aggregate over Time

Human Walks toward Sensor

Convex Reflector)

Use it as a pivot: for motion compensation and segmentation

Human Walks toward Sensor

Combine the various snapshots

Human Walks toward Sensor

Implementation

- Hardware
 - 2D Antenna Array
 - Built RF circuit
 - 1/1,000 power of WiFi
 - USB connection to PC

Software

 Coarse-to-fine algorithm implemented in GPU to generate reflection snapshots in real-time

Evaluation

- RF-Capture sensor placed behind the wall
- 15 participants
- Use Kinect as baseline when needed

Sample Captured Figures through Walls

Sample Captured Figures through Walls

Tracking result

Writing in the air

Device

Our Tracking Result

Kinect (in red) $2^{-1.5}_{-1.5}_{-1.6}_{-1.6}_{-1.4}_{-0.6}_{-1.2}_{-2.2}_{-2.2}_{-1.8}_{-1.8}_{-1.6}_{-1.4}_{-1.2}_{-1.4}_{-1.4}_{-1.2}_{-1.4}_{-1.4}_{-1.2}_{-1.4}_{-$

Median Accuracy is 2cm

Passive NLOS imaging using accidental pinholes

What does this image say about the world outside?

Accidental pinhole camera

Accidental pinhole camera

projected pattern on the wall

window is an aperture

upside down

window with smaller gap

view outside window

Accidental pinspeck camera

a) Difference image

b) Difference upside down

c) True outdoor view

Passive NLOS imaging using accidental reflectors

Corneal Imaging System

Geometric Model of the Cornea

$$t_b = 2.18$$
mm $r_L = 5.5$ mm
eccentricity = 0.5

Self-calibration: 3D Coordinates, 3D Orientation

Viewpoint Loci

Viewpoint Loci

Viewpoint Loci

Resolution and Field of View

Resolution and Field of View

Resolution and Field of View

Environment Map from an Eye

What Exactly You are Looking At

Eye Image:

Computed Retinal Image:

Watching a Bus

Corneal Stereo System

From Two Eyes in an Image ...

Reconstructed Structure (frontal and side view)

Eyes Reveal ...

- Where the person is
- What the person is looking at
- The structure of objects

Implications

Human Affect Studies: Social Networks

Security: Human Localization

Advanced Interfaces: Robots, Computers

Computer Graphics: Relighting [SIGGRAPH 04]

Dynamic Illumination in a Video

Point Source Direction from the Eye

Point Source Trajectory from the Eye

Inserting a Virtual Object

Sampling Appearance using Eyes

Sampling Annearance using Eyes

Computed Point Source Trajectory

Fitting a Reflectance Model

albedo map

normal map

3D Model Reconstruction

albedo map

3D model

Relighting under Novel Illumination

VisualEyes™ http://www.cs.columbia.edu/CAVE/

with Akira Yanagawa

Passive NLOS imaging using corners

Hidden Scene

Video of the Corner

What You Would See

What You Would See

What You Would See

What You Would See

A person makes a 0.1% difference in the reflected light at the base of a corner

Original Frame

Color Magnified

Left Wall

Right Wall

Full Scene

Zoom-in on Stereo Edge Cameras

References

Basic reading:

- Kirmani et al., "Looking around the corner using ultrafast transient imaging," ICCV 2009 and IJCV 2011.
- Velten et al., "Recovering three-dimensional shape around a corner using ultrafast time-offlight imaging," Nature Communications 2012.

the two papers showing how ToF imaging can be used for looking around the corner.

- Abib and Katabi, "See Through Walls with Wi-Fi!," SIGCOMM 2013.
- Abib et al., "Capturing the Human Figure Through a Wall," SIGGRAPH Asia 2015. the two papers showing that WiFi can be used to see through walls.
- Torralba and Freeman, "Accidental Pinhole and Pinspeck Cameras," CVPR 2012. the paper discussing passive NLOS imaging using accidental pinholes.
- Nishimo and Nayar, "Corneal Imaging System: Environment from Eyes," IJCV 2006. the paper discussing passive NLOS imaging using accidental reflectors.
- Bouman et al., "Turning corners into cameras: Principles and Methods," ICCV 2017. the paper discussing passive NLOS imaging using corners.

Additional reading:

- Pediredla et al., "Reconstructing rooms using photon echoes: A plane based model and reconstruction algorithm for looking around the corner," ICCP 2017. the paper on NLOS room reconstruction using ToF imaging.
- Nishimo and Nayar, "Eyes for relighting," SIGGRAPH 2004.

a follow-up paper to the paper on corneal imaging, show how similar ideas can be used for relighting and other image-based rendering tasks.