### **Compressive Imaging**

Aswin Sankaranarayanan (Computational Photography – Fall 2017)

# Traditional Models for Sensing

- Linear (for the most part)
- Take as many measurements as unknowns



# Traditional Models for Sensing

- Linear (for the most part)
- Take as many measurements as unknowns



#### **Under-determined problems**



#### Fewer measurements than unknowns!

An infinite number of solutions to such problems

Credit: Rob Fergus and Antonio Torralba

Credit: Rob Fergus and Antonio Torralba

#### **Under-determined problems**



#### Fewer measurements than unknowns!

An infinite number of solutions to such problems

Is there any "hope" of solving these problems ?

### Complete the sentences

I cnt blv I m bl t rd ths sntnc.

Wntr s cmng. n wt, wntr hs cm.

Hy, I m slvng n ndr-dtrmnd lnr systm.



### Complete the matrix

| 5 | 3 |   |   | 7 |   |   |   |   |
|---|---|---|---|---|---|---|---|---|
| 6 |   |   | 1 | 9 | 5 |   |   |   |
|   | 9 | 8 |   |   |   |   | 6 |   |
| 8 |   |   |   | 6 |   |   |   | 3 |
| 4 |   |   | 8 |   | 3 |   |   | 1 |
| 7 |   |   |   | 2 |   |   |   | 6 |
|   | 6 |   |   |   |   | 2 | 8 |   |
|   |   |   | 4 | 1 | 9 |   |   | 5 |
|   |   |   |   | 8 |   |   | 7 | 9 |

How: ?

# Complete the image



#### Model ?

### **Image Dictionaries**



#### Real data has structure



#### Image gradients are sparse!

Image credit: David W Kennedy (Wikipedia)

#### Real data has structure



Real world images: Only a few non-zero coefficients in a transformation

#### **Compressive Sensing**



A toolset to solve under-determined systems by exploiting additional structure/models on the signal we are trying to sense.

### **Compressive Sensing**



- Suppose measurement matrix A satisfied certain conditions
- $M \ge c_1 K \log(N/K)$
- All K-sparse signals x can be recovered
  - In the absence of noise, the recovery is exact!

[Candes and Tao, 2004]

#### **Compressive Sensing: Big Picture**

- If signal has structure, exploit it to solve underdetermined problem
- Structure: Refers to a lower-dimensional parametrization of the signal class
  - Sparsity in a basis (like Fourier or wavelets)
  - Sparsity of gradients
  - Low-rank, low-dim smooth manifold
  - Any set with a projection operator
- Number of measurement is often proportional to the dim of the low-dim parameters
- Range of recovery techniques
- (Take **18-898G** next semester for a deep dive)

#### High-speed videography using CS

#### **Key papers**

Veeraraghavan et al., *Coded strobing, PAMI 2011* Reddy et al., *P2C2, CVPR 2011* Hitomi et al., Coded exposure, *ICCV 2011* 

#### **Image Formation Model**





#### Low-speed capture works well for static scenes

### High-speed scenes



shut



#### High-speed scenes



# High speed scenes



Image credit: Boston.com



#### **Temporal Resolution**



#### **Temporal Resolution**







High-speed, High-res Video

#### Challenges

- 1. Bandwidth of data
- 2. Light throughput

#### From this photo ...



#### ... to this one



Harold Edgerton - "Moving Skip Rope", 1952. - Silver gelatin print. - Promised gift of the Harold and Esther Edgerton Family Foundation © MIT 2010. Courtesy of MIT Museum.

### Idea 1: Multiplexing in Time



### Idea 1: Multiplexing in Time



#### Benefits

- 1. Bandwidth of data remains the same
- 2. Light throughput is not significantly reduced

#### Idea 1: Multiplexing in Time



#### **Challenge:**

More unknowns than measurements How do we recover ?

#### Idea 2: Signal Models

• Real-world signals are highly *redundant* 

### Sparsity

N pixels



K < N
large
wavelet
coefficients
(blue = 0)</pre>

N wideband signal samples



#### Idea 2: Signal Models

- Real-world signals are highly redundant
- Models
  - Sparse gradients
  - Sparse in transform: Wavelets, Fourier
  - Low rank: PCA, Union-of-subspaces
- Key idea: **Constrain** the solution space!
  - Number of *degrees of freedom* significantly lesser than ambient dimensionality

#### Periodic signals





Bottling line

#### Toothbrush

Credit: Veeraraghavan et al, 2011

# High-speed Camera

Nyquist Sampling of x(t) – When each period of x has high frequency variations, Nyquist sampling rate is high.



Periodic signal has regularly spaced, sparse Fourier coefficients.

Is it necessary to use a high-speed video camera? Why waste bandwidth?



#### Solving for the video


## Solving for the video

Fourier Basis



## Solving for the video





A

F S

## Solving for the video



## Implementation



PGR Dragonfly2 (25 fps)



FLC Shutter Can flutter at 250us

## Toothbrush (simulation)





#### 20fps normal camera

20fps coded strobing camera



**Reconstructed frames** 



1000fps hi-speed camera

## Mill Tool

Mill tool rotating at 50Hz



Normal Video: 25fps

#### Mill tool rotating at 50Hz



Coded Strobing Video: 25fps

#### Mill tool rotating at 50Hz



Reconstructed Video at 2000fps

## **Optical super-resolution**

#### **Key papers**

Duarte et al., Single pixel camera, SPM 2008 Wang et al., LiSens, ICCP 2015 Chen et al., FPA-CS, CVPR 2015

## Example Video sensing in infrared

- Sensing in infra-red has applications in nightvision, astronomy, microscopy, etc.
- Materials that sense in certain infrared bands are extremely costly
  - A 64 x 64 sensor costs upwards of USD 2000
  - 1 Megapixel sensor costs> USD 100k

Table 1. Approximate per-pixel price of detector elements in various spectral bands.

|                                          |              | Approx.          |
|------------------------------------------|--------------|------------------|
| ${f Spectral}$                           | Detector     | per-pixel        |
| band                                     | technology   | price $(\$/pix)$ |
| $\mathrm{mmW/THz}$                       | Multiple     | $10^2 - 10^4$    |
| LWIR                                     | HgCdTe       | $< 10^{1}$       |
|                                          | Bolometer    | $10^{-2}$        |
| MWIR                                     | InSb/PbSe    | $10^{-1}$        |
| $\operatorname{SWIR}$                    | InGaAs/PbSe  | $10^{-1}$        |
| $\mathrm{NIR}/\mathrm{VIS}/\mathrm{NUV}$ | Si           | $< 10^{-6}$      |
| MUV                                      | Si (thinned) | $< 10^{-3}$      |
| $\mathrm{EUV}$                           | Si-PIN/CdTe  | $10^2 - 10^3$    |
| Soft-xray                                | Si (thinned) | $10^{-2}$        |
|                                          | Si-PIN/CdTe  | $10^2 - 10^3$    |
| Hard-xray/gamma                          | Multiple     | $10^2 - 10^4$    |

## Can we super-resolve a lowresolution sensor ?

- Spatial light modulation
  - Introduce a high-resolution mask between scene and sensor



# Single pixel camera

- Each pattern of micromirrors yield **ONE** compressive measurement
- A single photo-detector tuned to the wavelength of interest
- Resolution of the camera is that of the DMD, and not the sensor







## **CS-MUVI on SPC**



## Single pixel camera setup

## **CS-MUVI: IR spectrum**

#### InGaAs Photo-detector (Short-wave IR)

SPC sampling rate: 10,000 sample/s Number of compressive measurements: M = 16,384Recovered video:  $N = 128 \times 128 \times 61$ . Compression =  $61 \times 128 \times$ 



Joint work with Xu, Studer, Kelly, Baraniuk

## Results

- Real data acquired using a single pixel camera
- Sampling rate: 10,000 Hz
- Number of compressive measurements: 65536
- Total duration of data acquisition: 6 seconds
- Reconstructed video resolution: 128x128x256



Final estimate (6 different videos)

## Motivation

#### SPC has very low measurement rate



DMD ---  $R_{DMD}$  patterns/sec (typically, in 10s kHz) ADC ---  $R_{ADC}$  samples/sec (typically, in 10s MHz) Measurement rate of the SPC = min( $R_{ADC}$ ,  $R_{DMD}$ )

## Parallel Compressive Imaging

• Use multiple pixels or a low-resolution sensor array



- How do we decide the specifications of the lowresolution sensor ?
  - Number of pixels, geometry, etc ...

## Measurement rate



# of pixels, F

## Measurement rate



# of pixels, F

## Optimal # of pixels





Foptimal is typically in 1000s of pixel for today's DMDs and ADCs

# of pixels, F

## Implications.

Measurement rate of a conventional sensor but with a fraction of the number of pixels! (less than 0.1% pixels)

## **Two Prototypes**

- Focal plane array-based CS (FPA-CS)
  - SWIR
  - Map DMD onto a low-resolution 2D sensor
  - Each pixel on the sensor observes a 2D patch of micromirrors on the DMD





Lowresolution sensor

- Line-sensor based Compressive Imager (LiSens)
  - Map DMD onto a line-array sensor
  - Each pixel on the sensor observes a line of micromirrors on the DMD





Line-sensor

## **FPA-CS**



## **FPA-CS** Results







Scene (seen in a visible camera)

Image seen by 64x64 SWIR sensor Super-resolved image by FPA-CS architecture

# Line-Sensor-based compressive camera (LiSens)



1. Use a linear array of pixels (a line-sensor)

2. Add a cylindrical lens

## Hardware prototype



Measurement rate: 1 MHz

## Comparison against SPC Capture duration: 880ms 440ms 220ms 110ms















# **Compressive Light Fields**

Key Papers

- Marwah et al., *Compressive coded apertures, SIGGRAPH 2013*
- Tambe et al., *Compressive LF videos, ICCV 2013*
- Ito et al., *Compressive epsilon photography, SIGGRAPH 2014*

# **Epsilon Photography**

Capture stack of photographs by varying camera parameters incrementally



## Ex 1 - Epsilon photography applied to exposure



#### **Exposure Bracketting for HDR**

Slide credit: Verma and Mon-Ju. "High Dynamic Range Imaging"

## Ex 2 – Epsilon photography applied to focus



#### Focus stack

Slide credit: dpreview.com

## Ex 3 – Epsilon photography applied to aperture and focus



### Confocal stereo Per-pixel depth estimation

Hasinoff and Kutulakos, ECCV 2006

## **Confocal Stereo**



## Confocal stereo Per-pixel depth estimation

Hasinoff and Kutulakos, ECCV 2006

## **Aperture Focus Images**





focus



Hasinoff and Kutulakos, ECCV 2006

## Pros and Cons

- Pros
  - Per-pixel operations (for the most part)

- Cons
  - Too many images
  - Need texture (problem for everybody passive)
  - Align ?

## **Epsilon Photography**

Capture stack of photographs by varying camera parameters incrementally

## Extremely slow!

## Compressive Epsilon Photography


## **Compressive Epsilon Photography**



### Redundancies in Focus-Aperture Stacks





### Redundancies in Focus-Aperture Stacks







## Redundancies in Focus-Aperture Stacks





# Per-pixel models

- Key idea: Model intensity variations observed at an individual pixel
- Advantages
  - No smoothing. *Spatial resolution can be preserved*
  - Parallel recovery at each pixel
- Disadvantages
  - Lack of spatial constraints

## Gaussian Mixture Models



focus-aperture variations

Observation: Structure of EP intensity profiles tied to depth at a pixel

## **Problem formulation**

Given a few images captured with pre-selected parameters

+ per-pixel GMM of intensity variations

recover the entire epsilon photography intensity profile at each pixel.

Linear inverse problem Lots of solvers We use a maximum likelihood estimator

## Advantages of the GMM model

Analytical bounds on performance.

Can greedily pre-select camera parameters that maximize average reconstruction performance



## Advantages of the GMM model

Small aperture leads to large DOF and provides textural cues



#### Large aperture leads to small DOF and provides depth cues



Chess

Y

File Edit View Insert Tools Desktop Window Help



# Fluffy

э

File Edit View Insert Tools Desktop Window Help



## Animals

ъ

File Edit View Insert Tools Desktop Window Help



## CS Summary

- Three questions
  - Is sensing costly ? (how? )
  - Is there a sparsifying/parsimonious representation ?
  - Acquire some sort of randomized measurements ?

# A simple case study: MRI



MRI obtains samples in Fourier space

Taking lesser samples

higher speed of operation, less time etc.

Lustig et al., 2008

## MRI

without a signal model

From 10 times lesser number of measurements



### Lustig et al., 2008

## MRI + CS

### with signal model

From 10 times lesser number of measurements

The recovery is *exact*, provided some conditions are satisfied



#### Lustig et al., 2008

# Summary

• CS provides the ability to sense from far-fewer measurements than the signal's dimensionality

#### • Implications

- Fewer pixels on the sensor
- Shorter acquisition time
- Slower rate of acquisition