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Traditional Models for Sensing

• Linear (for the most part)

• Take as many measurements as unknowns

sample



Traditional Models for Sensing

• Linear (for the most part)

• Take as many measurements as unknowns

sample
Typically, M >= N



signal

measurement matrix

measurements

Under-determined problems

Fewer measurements than unknowns!

An infinite number of solutions to such problems



Credit: Rob Fergus and Antonio Torralba
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signal

measurement matrix

measurements

Under-determined problems

Fewer measurements than unknowns!

An infinite number of solutions to such problems

Is there any “hope” of solving these problems ?



Complete the sentences

I cnt blv I m bl t rd ths sntnc.

Wntr s cmng. n wt, wntr hs cm.

Hy, I m slvng n ndr-dtrmnd lnr systm.

how: ?



Complete the matrix

How: ?



Complete the image

Model ?



Image Dictionaries



Real data has structure

Image gradients are sparse!

Image credit:  David W Kennedy   (Wikipedia)



Real data has structure

Real world images: Only a few non-zero coefficients 
in a transformation



signal

measurement matrix

measurements

Compressive Sensing

A toolset to solve under-determined systems 
by exploiting additional structure/models 

on the signal we are trying to sense.



Compressive Sensing

measurements

Sparse signal nonzero entries

- Suppose measurement matrix A satisfied certain conditions

- M ≥ c1K log(N/K)

- All K-sparse signals x can be recovered 

- In the absence of noise, the recovery is exact!

A

[Candes and Tao, 2004]

+ noise



Compressive Sensing: Big Picture

• If signal has structure, exploit it to solve under-
determined problem

• Structure: Refers to a lower-dimensional parametrization 
of the signal class

– Sparsity in a basis (like Fourier or wavelets)

– Sparsity of gradients

– Low-rank, low-dim smooth manifold

– Any set with a projection operator

• Number of measurement is often proportional to the 
dim of the low-dim parameters

• Range of recovery techniques

• (Take 18-898G next semester for a deep dive)



High-speed videography using CS

Key papers
Veeraraghavan et al., Coded strobing, PAMI 2011
Reddy et al., P2C2, CVPR 2011
Hitomi et al., Coded exposure, ICCV 2011



Image Formation Model

Low-speed capture
works well for static scenes



High-speed scenes

open shut

33 ms



High-speed scenes

Blurring in dynamic areas

High spatial resolution in 
static areas



High speed scenes

Image credit: Boston.com



Spatial Resolution    = 1 Megapixel
Temporal Resolution = 1 fps
Bandwidth = 1 Megapixel/s

Spatio-Temporal Resolution Tradeoff

Single image

Slide credit: Mohit Gupta (Hitomi et al. 2011)



Captured Thin-out Movie 

(Row-wise sub-sampling)

Spatio-Temporal Resolution Tradeoff

Interpolated movie

Spatial Resolution    = 1/4 Megapixel
Temporal Resolution = 4 fps
Bandwidth = 1 Megapixel/s

Slide credit: Mohit Gupta (Hitomi et al. 2011)



Captured Thin-out Movie 

(Row-wise sub-sampling)

Spatio-Temporal Resolution Tradeoff

Interpolated movie

Spatial Resolution    = 1/36 Megapixel
Temporal Resolution = 36 fps
Bandwidth = 1 Megapixel/s

Slide credit: Mohit Gupta (Hitomi et al. 2011)



Spatio-Temporal Resolution Tradeoff

High-speed, High-res Video

Challenges

1. Bandwidth of data

2. Light throughput

Slide credit: Mohit Gupta (Hitomi et al. 2011)



From this photo …



… to this one

Credit: Edgerton



Idea 1: Multiplexing in Time

33 ms



Idea 1: Multiplexing in Time

Optical 
coding

Benefits

1. Bandwidth of data remains the same

2. Light throughput is not significantly reduced



Idea 1: Multiplexing in Time

Optical 
coding

Challenge:

More unknowns than measurements

How do we recover ?

Ay = x



Idea 2: Signal Models

• Real-world signals are highly redundant
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Idea 2: Signal Models

• Real-world signals are highly redundant

• Models

– Sparse gradients

– Sparse in transform: Wavelets, Fourier

– Low rank: PCA, Union-of-subspaces

• Key idea: Constrain the solution space!

– Number of degrees of freedom significantly lesser than 
ambient dimensionality



Periodic signals

Bottling line Toothbrush

Credit: Veeraraghavan et al, 2011



High-speed Camera

0 fMax- fMax

Periodic signal has regularly spaced, sparse Fourier coefficients. 

Is it necessary to use a high-speed video camera? Why waste bandwidth?

fP=1/
P

2fP-fP-2fP-4fP -3fP 4fP3fP

Nyquist Sampling of x(t) – When each period of x has high frequency 
variations, Nyquist sampling rate is high.

P = 10ms Ts = 1/(2 fMax)



Solving for the video

y

Camera 
observations at 

a pixel

A x=

N unknowns

t

Coded 
Strobing

Frame 1

Frame M

Frame Integration 
Period TS



Solving for the video

Non-zero 
elements

Fourier Basis

Basis Coeff

x    =                  F               s

b1 b2 bN

t



Solving for the video

y F s= A



Solving for the video

y F s= A



Implementation

PGR Dragonfly2
(25 fps)

FLC Shutter

Can flutter at 250us



Toothbrush (simulation)

1000fps hi-speed camera

20fps normal camera 20fps coded strobing camera

Reconstructed frames



Mill Tool

Normal Video: 25fps

Reconstructed Video at 2000fps

Mill tool rotating at 50Hz

Coded Strobing Video: 25fps

Mill tool rotating at 50Hz

Mill tool rotating at 50Hz



Optical super-resolution

Key papers
Duarte et al., Single pixel camera, SPM 2008
Wang et al., LiSens, ICCP 2015
Chen et al., FPA-CS, CVPR 2015



Example

Video sensing in infrared

• Sensing in infra-red has 
applications in night-
vision, astronomy, 
microscopy, etc.

• Materials that sense in 
certain infrared bands are 
extremely costly

– A 64 x 64 sensor costs 
upwards of USD 2000

– 1 Megapixel sensor costs 

> USD 100k 

Table courtesy of Gehm and Brady, Applied Optics, 2015



Can we super-resolve a low-
resolution sensor ?

• Spatial light modulation

– Introduce a high-resolution mask between scene and sensor

Digital 
micro-mirror 

device

Photo-detector



Single pixel camera

• Each pattern of micro-
mirrors yield ONE 
compressive 
measurement

• A single photo-detector 
tuned to the wavelength 
of interest

• Resolution of the camera 
is that of the DMD, and 
not the sensor

with Kelly lab, Rice University

Digital 
micro-mirror 

device

Photo-detector



CS-MUVI on SPC

Single pixel camera setup



CS-MUVI: IR spectrum

Joint work with Xu, Studer, Kelly, Baraniuk

InGaAs Photo-detector (Short-wave IR)

SPC sampling rate: 10,000 sample/s

Number of compressive measurements: M  = 16,384

Recovered video: N = 128 x 128 x 61. Compression = 61x

Recovered Video



Results

Final estimate (6 different videos)

• Real data acquired using a single pixel camera

• Sampling rate: 10,000 Hz

• Number of compressive measurements: 65536

• Total duration of data acquisition: 6 seconds

• Reconstructed video resolution: 128x128x256



Motivation

SPC has very low measurement rate

DMD --- RDMD patterns/sec (typically, in 10s kHz)

ADC  --- RADC samples/sec (typically, in 10s MHz)

Measurement rate of the SPC = min(RADC, RDMD)

objective lens

relay 
lens

~ ~ ~
digital 
micromirror 
device
(DMD)

photo-
detector

ADC



Parallel Compressive Imaging

• Use multiple pixels or a low-resolution sensor array

• How do we decide the specifications of the low-
resolution sensor ?

– Number of pixels, geometry, etc …

objective lens

relay 
lens

~ ~ ~
digital 
micromirror 
device
(DMD)

Low-
resolution 

array ADC



Measurement rate

# of pixels, F

M
e
a
s
u
re

m
e
n
t 

ra
te

RADC

RDMD SPC

Conventional 
sensor

F = 1 F = 106



Measurement rate

# of pixels, F
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RDMD SPC

F = 1 F = 106

Conventional 
sensor



Optimal # of pixels

Foptimal is typically in 1000s 
of pixel for today’s DMDs and 
ADCs

Implications. 
Measurement rate of a conventional sensor but with a 
fraction of the number of pixels! (less than 0.1% pixels)

# of pixels, F

M
e
a
s
u
re

m
e
n
t 

ra
te RADC

Foptimal



Two Prototypes

• Focal plane array-based CS 
(FPA-CS)
– SWIR

– Map DMD onto a low-resolution 
2D sensor

– Each pixel on the sensor observes 
a 2D patch of micromirrors on 
the DMD

• Line-sensor based 
Compressive Imager (LiSens)
– Map DMD onto a line-array 

sensor

– Each pixel on the sensor observes 
a line of micromirrors on the DMD

DMD

Low-
resolution 

sensor

DMD

Line-sensor



FPA-CS

Objective 
Lens

DMD
(1140x940)

64x64 SWIR 
Sensor

Relay 
optics

Relay 
optics



FPA-CS Results

Scene 
(seen in a visible 

camera)

Super-resolved image 
by FPA-CS 

architecture

Image seen by 64x64 
SWIR sensor

Chen et al. CVPR 2015



objective lens

relay 
lens

digital 
micromirror 
device
(DMD)

cylindrical lens

~ ~ ~

1. Use a linear array of pixels (a line-sensor)

2. Add a cylindrical lens

line sensor

Line-Sensor-based compressive 
camera (LiSens) 



Hardware prototype

DMD

SPC

objective 
lens

relay 
lens

cylindrical lens
line-sensor

Measurement rate: 1 MHz







Compressive Light Fields

Key Papers

• Marwah et al., Compressive coded apertures, SIGGRAPH 2013

• Tambe et al., Compressive LF videos, ICCV 2013

• Ito et al., Compressive epsilon photography, SIGGRAPH 2014



Capture stack of photographs by varying 
camera parameters incrementally

Epsilon Photography



Ex 1 - Epsilon photography applied 
to exposure 

Slide credit: Verma and Mon-Ju. “High Dynamic Range Imaging”

Exposure Bracketting for HDR



Ex 2 – Epsilon photography 
applied to focus

Slide credit: dpreview.com

Focus stack



Ex 3 – Epsilon photography 
applied to aperture and focus

Hasinoff and Kutulakos, ECCV 2006

Confocal stereo
Per-pixel depth estimation



Confocal Stereo

Hasinoff and Kutulakos, ECCV 2006

Confocal stereo
Per-pixel depth estimation



Aperture Focus Images

focus

a
p
e
rt

u
re



Hasinoff and Kutulakos, ECCV 2006



Pros and Cons

• Pros

– Per-pixel operations (for the most part)

• Cons

– Too many images

– Need texture (problem for everybody passive)

– Align ?



Capture stack of photographs by varying 
camera parameters incrementally

Extremely slow!

Epsilon Photography
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Compressive Epsilon Photography
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Compressive Epsilon Photography



Redundancies in Focus-Aperture Stacks

focus

a
p
e
rt

u
re



Redundancies in Focus-Aperture Stacks

focus

a
p
e
rt

u
re



Redundancies in Focus-Aperture 
Stacks



Per-pixel models

• Key idea: Model intensity variations observed at an 
individual pixel

• Advantages

– No smoothing. Spatial resolution can be preserved

– Parallel recovery at each pixel

• Disadvantages

– Lack of spatial constraints



Gaussian Mixture Models

focus

a
p
e
rt

u
re

focus-aperture variations

Observation: Structure of EP intensity profiles tied to depth at a pixel



Problem formulation

Given a few images captured with pre-selected 
parameters

+

per-pixel GMM of intensity variations

recover the entire epsilon photography intensity profile at 
each pixel.

Linear inverse problem

Lots of solvers

We use a maximum likelihood estimator



Advantages of the GMM model

Figure 5: Greedy image selection. Comparison of PSNR as a
function of the number of acquired images for various methods of
sampling clearly shows the efficacy of our greedy sampling scheme.
Note that the proposed scheme provides almost 10dB improvement
over traditional sampling methods.

The MMSE estimator x(y) is the mean of the posterior f (x|y), i.e.,

x(y) =

K

k = 1

α
( k )

(y)u
( k )

x | y
(y).

The corresponding MMSE is given by

MMSE(H ) = E ||x − x(y)||
2

(2)

4.3 Greedy algorithm for image selection

Our goal is to reconstruct the focal and focus-aperture stacks by
observing a minimal number of images corresponding to certain
choices of camera focus and aperture settings. Thus, choice of
camera parameters to observe is an important consideration1. We
propose a greedy algorithm based on minimizing the MMSE (2).
A tight analytic lower bound for the MMSE has been derived by
[Flam et al. 2012][Flam et al. 2011] and we exploit this lower bound
to derive a greedy sampling strategy. The lower bound of MMSE is
given by:

MMSE(H ) =

K

k = 1

pk Tr C
( k )

x | y
, (3)

where C
( k )

x | y
is the posterior cluster Gaussian covariance (1).

Finding optimal camera parameters is a combinatorial problem
since we need to choose parameters from a pre-defined set of focus-
aperture values. We instead rely on a greedy strategy that selects
one camera setting at a time that best minimizes the MMSE given
previously selected camera parameters. Suppose that there are a
total of N f focus settings and a total of Na aperture settings in a
given camera. If we are interested in capturing only m images cor-
responding to m camera settings, then the brute-force version of the

algorithm will require evaluating the MMSE (3) for N f N a

m
times,

which becomes practically impossible. Hence we device a greedy
algorithm. We first find the optimal pair of camera parameters, i.e.,

m = 2 by evaluating the MMSE
N f N a

2
times. Given this pair,

we then update the posterior covariance matrices Cx |y to take into
account the effect of the current selected camera parameters. Each
choice of camera parameter correspond to a row hi in the H ma-

trix. After the i t h iteration, the posterior covariance is updated as
follows:

C
( k )

x |y , i
= C

( k )

x | y , i − 1
− C

( k )

x |y , i − 1
ĥ

T
i (ĥi C

( k )

x | y , i − 1
ĥ

T
i + Cn )

− 1
ĥi C

( k )

x |y , i − 1

1For focal stack, uniform sub-sampling of the focus axis is a good choice

as this corresponds to uniform sampling in scene depth. But for focus-

aperture stack, the choice of optimal camera parameters is not so obvious.

Figure 6: Geometric calibration for precise alignment. An input
near-side focus image (a) is calibrated (b) so that the correspond-
ing objects appear at the same locations in images captured with
a different focus-aperture setting. Calibration is performed using
a farthest focus image (c) as reference. The figures in (d) clearly
show that enlarged patches appearing at distinct depths are accu-
rately aligned against the reference image after calibration. In (e),
the trajectories of warping directions are shown which suggest that
the images corresponding to near-side focus (a) are magnified in
comparison with to far-side images (c) as can be seen clearly.

with the initial posterior covariances Ck
x |y ,0 being the same as the

prior GMM covariances, C
( k )
x . After this covariance update step,

we find the next camera setting by evaluating the MMSE expres-
sion with updated covariances. Note that from the second iteration,
we need to evaluate the MMSE expression just N f Na times, which
provides a significant reduction in computations. Figure 5 shows
how the MMSE decreases as a function of the number of chosen
camera parameters m . We can conclude that by capturing 8 im-
ages with this prescribed camera settings, we should be a able to
reconstruct the focus-aperture stack with N f = 45 and Na = 20.

Figure 5 shows a comparison of PSNR as a function of the num-
ber of acquired images for (a) proposed sampling strategy, (b) fo-
cus stack with large aperture (c) aperture stack with focus position
at mid point, (d) random sampling of focus-aperture pairs and (e)
uniform sampling of focus-aperture pairs. Note that the proposed
scheme provides almost 10 dB improvement over all traditional
sampling methods. This result indicates, that even when the goal
is not complete post-capture control, but rather traditional focal or
aperture stacking (say for depth estimation), our optimized sam-
pling strategy is significantly better.

5 Geometric and photometric calibration

Since we employ a per-pixel based model for learning and recon-
struction, precise geometric and photometric calibration with sub-
pixel level accuracy is essential. For this purpose, we adopt the
procedure in [Hasinoff and Kutulakos 2009].

Geometric Calibration. It is a well known fact that changes in fo-
cal settings result in a non-linear warp of the objects in the scene. In
[Hasinoff and Kutulakos 2009], it was shown that this warp can be
accurately modeled by considering parameters for image magnifi-
cation, lens distortion and translation. For estimating these param-
eters, we collected images of a calibration chart containing black
dots on a grid at the largest aperture (F/1.4). Registration among
images in the dataset was realized by unwarping the images ac-
cording to the estimated parameters. Figure 6 shows an example of
geometric calibration achieving precise alignment.

Photometric Calibration. Modifying the aperture causes a change
not only in depth of field but also results in vignetting. This vi-

Analytical bounds on performance. 

Can greedily pre-select camera parameters that maximize 
average reconstruction performance



Advantages of the GMM model

Small aperture leads to large DOF  
and provides textural cues

Large aperture leads to small DOF 
and provides depth cues



Chess



Fluffy



Animals



CS Summary

• Three questions

– Is sensing costly ? (how? )

– Is there a sparsifying/parsimonious representation ?

– Acquire some sort of randomized measurements ?



A simple case study: MRI

Lustig et al., 2008

MRI obtains samples 
in Fourier space

Taking lesser 
samples

==
higher speed of 
operation, less time 
etc.



MRI

without a signal model

From 10 times lesser 
number of 
measurements

Lustig et al., 2008



MRI + CS

with signal model

From 10 times lesser 
number of 
measurements

The recovery is exact, 
provided some 
conditions are satisfied

Lustig et al., 2008



Summary

• CS provides the ability to sense from far-fewer 
measurements than the signal’s dimensionality

• Implications

– Fewer pixels on the sensor

– Shorter acquisition time

– Slower rate of acquisition


