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Traditional Models for Sensing

« Linear (for the most part)
 Take as many measurements as unknowns




Traditional Models for Sensing

« Linear (for the most part)
 Take as many measurements as unknowns

Typically, M >= N

<+ noise

O N

M x 1 M x N measurement N-dim
measurements matrix signal



Under-determined problems

Y
M><1I F
N x 1

measurements

M X N signal

measurement matrix

An infinite number of solutions to such problems



Credit: Rob Fergus and Antonio Torralba
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Under-determined problems

- N x 1

measurements

M X N signal

measurement matrix

An infinite number of solutions to such problems

Is there any “hope” of solving these problems ?



Complete the sentences
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Complete the matrix
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Complete the image
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Real data has structure

Image gradients are sparse!

Image credit: David W Kennedy (Wikipedia)



Real data has structure
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Only a few non-zero coeffi

Real world images
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Compressive Sensing

M><1I F :i
- N x 1

measurements

M X N signal

measurement matrix

A toolset to solve
by exploiting additional structure/models
on the signal we are trying to sense.



Compressive Sensing

2 |- B

M><N
N x 1 K

Sparse signal nonzero entries

- Suppose measurement matrix A satisfied certain conditions

- All K-sparse signhals x can be recovered
- In the absence of noise, the recovery is exact!

[Candes and Tao, 2004]



Compressive Sensing: Big Picture

If signal has structure, exploit it to solve under-
determined problem

Structure: Refers to a lower-dimensional parametrization
of the signal class

— Sparsity in a basis (like Fourier or wavelets)
— Sparsity of gradients

— Low-rank, low-dim smooth manifold

— Any set with a projection operator

Number of measurement is often proportional to the
dim of the low-dim parameters

Range of recovery techniques
(Take 18-898G next semester for a deep dive)



High-speed videography using CS

Key papers

Veeraraghavan et al., Coded strobing, PAMI 2011
Reddy et al., P2C2, CVPR 2011

Hitomi et al., Coded exposure, ICCV 2011



Image Formation Model

Low-speed capture
\\i works well for static scenes



High-speed scenes
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High-speed scenes
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High speed scenes

Image credit: Boston.com



Spatio-Temporal Resolution Tradeoff

Bandwidth 1 Megapixel/s
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qu Single image

- Spatial Resolution = 1 Megapixel
‘= Temporal Resolution = 1 fps
S =

Q
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Temporal Resolution

Slide credit: Mohit Gupta (Hitomi et al. 2011)



Spatio-Temporal Resolution Tradeoff

—

Interpolated movie

Spatial Resolution = 1/4 Megapixel
Temporal Resolution = 4 fps
Bandwidth = 1 Megapixel/s

Spatial Resolution

Temporal Resolution

Slide credit: Mohit Gupta (Hitomi et al. 2011)



Spatio-Temporal Resolution Tradeoff
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- Spatial Resolution = 1/36 Megapixel
‘= Temporal Resolution = 36 fps

a Bandwidth = 1 Megapixel/s
N

_Q

Temporal Resolution

Slide credit: Mohit Gupta (Hitomi et al. 2011)



Spatio-Temporal Resolution Tradeoff

Spatial Resolution

.
® P

High-speed, High-res Video

Temporal Resolution

Challenges
1. Bandwidth of data
2. Light throughput

Slide credit: Mohit Gupta (Hitomi et al. 2011)



From this photo ...




... to this one

Credit: Edgerton

Harold Edgerton - "Moving Skip Rope", 1952. - Silver gelatin print. - Promised gift of the Harold and Esther Edgerton Family Foundation
® MIT 2010. Courtesy of MIT Museum.




Idea 1: Multiplexing in Time

O 33 ms




Idea 1: Multiplexing in Time

Benefits
1. Bandwidth of data remains the same
2. Light throughput is not significantly reduced



Idea 1: Multiplexing in Time

Challenge:
More unknowns than measurements
How do we recover ?



Idea 2: Signal Models

- Real-world signals are highly redundant



Sparsity
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Idea 2: Signal Models

- Real-world signals are highly redundant

 Models
— Sparse gradients
— Sparse in transform: Wavelets, Fourier
— Low rank: PCA, Union-of-subspaces

« Key idea: Constrain the solution space!

— Number of degrees of freedom significantly lesser than
ambient dimensionality



Periodic signals
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Credit: Veeraraghavan et al, 2011



High-speed Camera

Nyquist Sampling of x(t) - When each period of x has high frequency
variations, Nyquist sampling rate is high.

s — 1/(2 fMax)

Periodic signal has regularly spaced, sparse Fourier coefficients.

Is it necessary to use a high-speed video camera? Why waste bandwidth?

- fuax  -4fp -3fp -2f, -f, 0 f,=1/ 2f, 3f, 4f; Fmax
P



Camera

Solving for the video

observations at

Frame 1

Frame M

a pixel
e \

Coded
Strobing

Frame Integration

Period Tg

N unknowns
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Solving for the video

Fourier Basis
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Solving for the video
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Implementation

PGR Dragonfly2 FLC Shutter
(25 fps) Can flutter at 250us



Toothbrush (simulation)
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20fps normal camera 20fps coded strobing camera
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Reconstructed frames 1000fps hi-speed camera



Mill Tool

Mill tool rotating at 50Hz
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Coded Strobing Video: 25fps
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Reconstructed Video at 2000fps




Optical super-resolution

Key papers

Duarte et al., Single pixel camera, SPM 2008
Wang et al., LiSens, ICCP 2015

Chen et al., FPA-CS, CVPR 2015



Example
Video sensing in infrared

« Sensing in infra-red has

Table 1. Approximate per-pixel price of detector ele-

d pp|lcatlonS II"I N |g ht' ments in various spectral bands.
vision, astronomy, Approx.
. Spectral Detector per-pixel
MICroscopy, etc. band technology |price ($/pix)
mmW /THz Multiple
_ _ LWIR HgCdTe
« Materials that sense in Bolometer
= MWIR InSbh/PbSe
certain infrared bands are SWIR  |InGads/Pbe
extremely NIR/VIS/NUV Si
— A 64 x 64 sensor costs i SSIIP(‘IJE?EZ%
Upwa rds of USD 2000 Soft-xray Si (thinned)
— 1 Megapixel sensor costs Si-PIN/CdTe

> USD 100k Hard-xray/gamma| Multiple

Table courtesy of Gehm and Brady, Applied Optics, 2015



Can we super-resolve a low-
resolution sensor ?

« Spatial light modulation

— Introduce a between scene and sensor

Digital
micro-mirror
device




Single pixel camera

« Each pattern of micro-
mirrors yield ONE
compressive
measurement

A single photo-detector
tuned to the wavelength Digital

- micro-mirror
of interest Jevice-

« Resolution of the camera
is that of the DMD, and
not the sensor




CS-MUVI on SPC
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CS-MUVI: IR spectrum

InGaAs Photo-detector (Short-wave IR)

SPC sampling rate: 10,000 sample/s

Number of compressive measurements: M = 16,384
Recovered video: N = 128 x 128 x 61. Compression = 61x

% & %

Recovered Video

Joint work with Xu, Studer, Kelly, Baraniuk



Results

« Real data acquired using a single pixel camera
« Sampling rate: 10,000 Hz

« Number of compressive measurements: 65536

« Total duration of data acquisition: 6 seconds

« Reconstructed video resolution: 128x128x256

A BTN

Final estimate (6 different videos)




Motivation
SPC has very low measurement rate

objective lens

A digital
~ - B . . ... ... araan s L micromirror
.7 device
‘ (DMD)
detector ey
.' lens
DMD --- Rpyp patterns/sec (typically, in 10s kHz)
ADC --- R,y samples/sec (typically, in 10s MHz)

Measurement rate of the SPC = min(R,pc, Rpomp)



Parallel Compressive Imaging

« Use multiple pixels or a low-resolution sensor array

objective lens

I digital
...... s javasezaaccascaazeasos ol AN FiTEAIRIARE)T
" device
(DMD)
Low- relay
resolution . lens

array

« How do we decide the specifications of the low-
resolution sensor ?

— Number of pixels, geometry, etc ...



Measurement rate

Measurement rate

Fzﬁd)C

| Conventional
: sensor

# of pixels, F



Measurement rate

Measurement rate

Fzﬁd)C

| Conventional
: sensor

# of pixels, F



Optimal # of pixels

O]
2 |Rapc
© |IAPE 7 ~ Rapc
e optimal — R
CIE) DMD
)
= Foptimal is typically in 1000s
% of pixel for today’s DMDs and
] : ADCs
=
I:optimal
# of pixels, F
Implications.

Measurement rate of a conventional sensor but with a
fraction of the number of pixels! (less than 0.1% pixels)



Two Prototypes

Focal plane array-based CS

— SWIR EEE

— Map DMD onto a low-resolution HEEHEEIEﬁ -
2D sensor Eﬁﬁ gt

— Each pixel on the sensor observes resolution
a 2D patch of micromirrors on DMD Sensor
the DMD

Line-sensor based
Compressive Imager (LiSens)

— Map DMD onto a line-array
sensor

— Each pixel on the sensor observes
a line of micromirrors on the DMD

Line-sensor







FPA-CS Results

OIR Concsprzon OF IT7™

Scene Image seen by 64x64 SuperI;rels:%R/_e((::IS|mage
(seen in a visible SWIR sensor yr
camera) architecture

Chen et al. CVPR 2015



Line-Sensor-based compressive
camera (LiSens)

objective lens
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1. Use a linear array of pixels (a line-sensor)

2. Add a cylindrical lens



Hardware prototype

. relay
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Measurement rate: 1 MHz



Comparison against SPC

Capture duration: 880ms







Compressive Light Fields

Key Papers
Marwah et al., Compressive coded apertures, SIGGRAPH 2013
Tambe et al., Compressive LF videos, ICCV 2013
Ito et al., Compressive epsilon photography, SIGGRAPH 2014



Epsilon Photography

Capture stack of photographs by varying
camera parameters incrementally




Ex 1 - Epsilon photography applied
Lo exposure

— e 2

Exposure Bracketting for HDR

Slide credit: Verma and Mon-Ju. “High Dynamic Range Imaging”



Ex 2 — Epsilon photography
applied to focus

Focus stack

Slide credit: dpreview.com



Ex 3 — Epsilon photography
applied to aperture and focus

Confocal stereo
Per-pixel depth estimation

Hasinoff and Kutulakos, ECCV 2006



Confocal Stereo

\\\\\./, ’ .

Confocal stereo
Per-pixel depth estimation

Hasinoff and Kutulakos, ECCV 2006



Aperture Focus Images

focus

A\
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Hasinoff and Kutulakos, ECCV 2006




Pros and Cons

* Pros
— Per-pixel operations (for the most part)

« Cons
— Too many images
— Need texture (problem for everybody passive)
— Align ?



Epsilon Photography

Capture stack of photographs by varying
camera parameters incrementally

Extremely slow!



Compressive Epsilon Photography




Compressive Epsilon Photography
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Redundancies in Focus-Aperture Stacks
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Redundancies in Focus-Aperture Stacks




Redundancies In FOCUs-Aperture
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Per-pixel models

« Key idea: Model intensity variations observed at an
individual pixel

« Advantages
— No smoothing. Spatial resolution can be preserved

— Parallel recovery at each pixel

* Disadvantages
— Lack of spatial constraints



Gaussian Mixture Models
focus

>
>

aperture

>

>

A

focus-aperture variations

Observation: Structure of EP intensity profiles tied to depth at a pixel



Problem formulation

Given a few images captured with pre-selected
parameters

+
per-pixel GMM of intensity variations

recover the entire epsilon photography intensity profile at
each pixel.

Linear inverse problem
Lots of solvers
We use a maximum likelihood estimator



Advantages of the GMM model

Analytical bounds on performance.

Can pre-select camera parameters that maximize
average reconstruction performance

==Greedy sampling

=B-Focus stack (largest
aperture)

=t=Aperture stack (mid-
focus plane)

Focus aperture stack
(random sampling)

=*=Focus aperture stack
{(uniform sampling)

8 12

Number of images acquired



Advantages of the GMM model

Small aperture leads to large DOF
and provides textural cues

-
- Large aperture leads to small DOF
= and provides depth cues




Chess




File Edit View Insert Tools Desktop Window Help




Animals

File Edit View Insert Tools Desktop Window Help




CS Summary

« Three questions
— Is sensing costly ? (how? )
— Is there a sparsifying/parsimonious representation ?
— Acquire some sort of randomized measurements ?



A simple case study: MRI

MRI obtains samples
In Fourier space

Taking lesser
samples

higher speed of
operation, less time
etc.

Lustig et al., 2008



MRI

without a signal model

From 10 times lesser
number of
measurements

Lustig et al., 2008



with signal model

From 10 times lesser
number of
measurements

The recovery is exact,
provided some
conditions are satisfied

Lustig et al., 2008



Summary

« CS provides the ability to sense from far-fewer
measurements than the signal’s dimensionality

« Implications
— Fewer pixels on the sensor
— Shorter acquisition time
— Slower rate of acquisition



