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Course announcements

* Homework 5 still ongoing.
- Any questions?

* Project checkpoint meetings this week.
- Make sure to sign up for a timeslot if you have not already done so.



Overview of today’s lecture

Introduction to time-of-flight (ToF) imaging.

Impulse ToF imaging and single-photon avalanche diodes.
Continuous-wave ToF imaging.

Epipolar continuous-wave ToF imaging.

Interferometric ToF imaging.



Slide credits

A lot of these slides were adapted from:

* Mohit Gupta (Wisconsin).
* Supreeth Achar (Google, formerly CMU).



Introduction to time-of-flight (ToF) imaging



Time-of-flight (ToF) imaging




Time-of-flight (ToF) imaging

| i light source

 Conventional imaging: Measure all photons together regardless of time of travel.

Ccamerd

 Time-of-flight imaging: Measure photons separately based on time of travel.



Time-of-flight imaging in nature
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Time-of-flight applications: non-line of sight imaging
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Time-of-tlight applications: seeing inside objects
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Time-of-tlight applications: light-in-flight visulizion
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Time-of-tlight imaging technologies

interferometry
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Time-of-flight imaging technologies

interferometry | | streak cameras  single-photon time-of-flight
avalanche diodes cameras

1 femtosecond 1 picosecond ' 1 nanosecond | 10 nanoseconds
(101> secs) (1012 secs) - (108 secs)
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Impulse ToF imaging and single-photon avalanche
diodes



Impulse time-of-flight imaging
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Current (A)

How exactly is the transient formed?

Depends on the kind of sensor we use.
* Here we will examine only photodiodes.
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Current (A)

How exactly is the transient formed?

Depends on the kind of sensor we use.
* Here we will examine only photodiodes.
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How exactly is the transient formed?

Depends on the kind of sensor we use.
* Here we will examine only photodiodes.

Lle-08 g
) Avalanche photodiode (APD):
le-09 * Currentis roughly proportional to
Avalanche Photodiode Geiger mode number of photons.
< le-10F * One photon produces tiny current.
O le-llf Single-photon avalanche diode (SPAD):
* One photon produces huge current.
le-12|  Requires multiple low power pulses,
so that one photon returns from each.
le-13
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Geiger-mode impulse time-of-flight imaging

source :Cji

From each received
pulse, one photon
saturates the SPAD.
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 The SPAD records only photon arrival
times, no intensity.

e Additional electronics maintain a histogram
of arrival times over multiple pulses
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Geiger-mode impulse time-of-flight imaging

source :Cji

From each received
pulse, one photon
saturates the SPAD.

photon count

sensor ‘

discretized time

emitteq
light Pulse

\ scene
ceceN®

\ight pU\Se

scene

The SPAD records only photon arrival
times, no intensity.

Additional electronics maintain a histogram
of arrival times over multiple pulses



Geiger-mode impulse time-of-flight imaging

source

From each received
pulse, one photon
saturates the SPAD.

What determines which
photon gets picked?
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times, no intensity.

e Additional electronics maintain a histogram
of arrival times over multiple pulses



What hardware do we need for impulse ToF?
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Time-of-flight imaging technologies

interferometry | | streak cameras  single-photon time-of-flight
avalanche diodes cameras
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Continuous-wave ToF Imaging



Continuous-wave (CW) time-of-flight imaging
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Continuous-wave (CW) time-of-flight imaging
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Measuring phase shift
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Measuring phase shift: direct

Three Impulse Samples
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Measuring phase shift: correlation
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Measuring phase shift: correlation
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Phase ambiguity
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Different Scene Depths Have Same Phase
* Also known as “phase wrapping”.



Phase ambiguity

|
@ (4) <p(3)‘ 5
frequency 2 source
oA ®B

n

sensor

| 1

Unambiguous Depth Range: RunambiguouS — 2w

How can we resolve the phase ambiguity?



Disambiguating phase
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Implementation: two-well architectures
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Some examples

light source
(bank of laser diodes)

sensor
(PMD CamBoard Nano)

(only second generation of Kinect uses CW ToF)
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Epipolar continuous-wave ToF imaging
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Regular Imaging
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Regular Imaging
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Epipolar Imaging
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Epipolar Imaging
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Epipolar Imaging

Light Source Complete Image



Epipolar Imaging
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Epipolar Imaging
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Benefits of Epipolar ToF Imaging
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Epipolar ToF Prototype
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Epipolar ToF and Global lllumination
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Epipolar ToF and Global |l
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Epipolar ToF and Global |l
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Outdoors (Cloudy — 10 kilolux)

Scene Regular ToF Epipolar ToF

Depth (meters)

0 5 10 15

58



Outdoors (Sunny — 70 kilolux
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Outdoors (Sunny — 70 kilolux)
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Interferometric ToF imaging



Tiny scenes

> 0.5cm At ~ps

At ~1073 ps




Interferometry example
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Interferometry example
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Michelson interferometer
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Optical coherence tomography
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Temporal coherence length
bandwidth correlation
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Optical setup
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Some transient images

centimeter-sized objects




Material properties

birefringence dispersion scattering



Gummy bear and diffuse corner
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Chess knight and mirror
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Subsurface scattering
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Dispersion
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Visualizing dispersion
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Visualizing photoelasticity

detail undeceodarized light low resolution At =1 mm

high resolution At =10 um
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Direct-global separation

strawberry close-up direct component global component
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