Image correspondences and structure from motion

15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 20

http://graphics.cs.cmu.edu/courses/15-463

Course announcements

- Homework 5 posted.
 - It is a merged version of the original HW5 and the planned HW6.
 - You will need cameras for second part that one as well, so keep the ones you picked up for HW4 (or use your phone cameras.
 - Start in the first week or else you won't finish it $\ensuremath{\mathfrak{O}}$.
- Homework 4 has been graded.
 - Mean: 76:68.
 - Median: 80.
 - Tonemapped (i.e., LDR) images should be stored as .PNG, not .HDR.
- Next guest lecture on Wednesday: Suren Jayasuriya.
 - Will talk about computational sensors.

Overview of today's lecture

- The image correspondence pipeline.
- Describing interest points.
- Matching interest points and RANSAC.
- Structure from motion.

Slide credits

Most of these slides were adapted from:

- Kris Kitani (15-463, Fall 2016).
- Noah Snavely (Cornell).

The image correspondence pipeline

Create point correspondences

original image

target image

Can we automate this step?

The image correspondence pipeline

- 1. Feature point detection
 - Detect corners using the Harris corner detector.

2. Feature point description

3. Feature matching and homography estimation

The image correspondence pipeline

- 1. Feature point detection
 - Detect corners using the Harris corner detector.

2. Feature point description

3. Feature matching and homography estimation

How do we match features robustly?

How do we match features robustly?

- We need a way to *describe* regions around each feature.
- How do you account for changes in viewpoint or scale?
- Tradeoff between discriminative power and invariance to appearance changes.

Multi-Image Matching using Multi-Scale Oriented Patches. M. Brown, R. Szeliski and S. Winder. International Conference on Computer Vision and Pattern Recognition (CVPR2005). pages 510-517

Multi-Image Matching using Multi-Scale Oriented Patches. M. Brown, R. Szeliski and S. Winder. International Conference on Computer Vision and Pattern Recognition (CVPR2005). pages 510-517

Given a feature (x, y, s, θ)

Get 40 x 40 image patch, subsample every 5th pixel (*what's the purpose of this step?*)

Subtract the mean, divide by standard deviation (*what's the purpose of this step?*)

•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
•		•	•	•	•	•	•
•	•	•	•	•	•	•	•
•		•	•	•	•	•	•

Orientation normalization

Use the dominant image gradient direction to normalize the orientation of the patch

This is how you compute the theta of the feature

Multi-Image Matching using Multi-Scale Oriented Patches. M. Brown, R. Szeliski and S. Winder. International Conference on Computer Vision and Pattern Recognition (CVPR2005). pages 510-517

Given a feature (x, y, s, θ)

Get 40 x 40 image patch, subsample every 5th pixel (*what's the purpose of this step?*)

Subtract the mean, divide by standard deviation (*what's the purpose of this step?*)

•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
•		•	•	•	•	•	•
•	•	•	•	•	•	•	•
•		•	•	•	•	•	•

Multi-Image Matching using Multi-Scale Oriented Patches. M. Brown, R. Szeliski and S. Winder. International Conference on Computer Vision and Pattern Recognition (CVPR2005). pages 510-517

Given a feature (x, y, s, θ)

Get 40 x 40 image patch, subsample every 5th pixel (low frequency filtering, absorbs localization errors)

Subtract the mean, divide by standard deviation (what's the purpose of this step?)

Multi-Image Matching using Multi-Scale Oriented Patches. M. Brown, R. Szeliski and S. Winder. International Conference on Computer Vision and Pattern Recognition (CVPR2005). pages 510-517

Given a feature (x, y, s, θ)

Get 40 x 40 image patch, subsample every 5th pixel (low frequency filtering, absorbs localization errors)

Subtract the mean, divide by standard deviation (removes bias and gain)

Multi-Image Matching using Multi-Scale Oriented Patches. M. Brown, R. Szeliski and S. Winder. International Conference on Computer Vision and Pattern Recognition (CVPR2005). pages 510-517

Given a feature (x, y, s, θ)

Get 40 x 40 image patch, subsample every 5th pixel (low frequency filtering, absorbs localization errors)

Subtract the mean, divide by standard deviation (removes bias and gain)

Haar Wavelet Transform (low frequency projection)

Haar Wavelets

(actually, Haar-like features)

Use responses of a bank of filters as a descriptor

Computing Haar wavelet responses

Haar wavelet responses can be computed with filtering. 1.

image patch

Haar wavelet responses can be computed efficiently (in constant time) with integral images. 2.

Computing Haar wavelet responses

Given an image patch, compute filter responses

filter bank (20 Haar wavelet filters)

Responses are usually computed at specified location as a face patch descriptor

The image correspondence pipeline

- 1. Feature point detection
 - Detect corners using the Harris corner detector.

- 2. Feature point description
 - Describe features using the Multi-scale oriented patch descriptor.

3. Feature matching and homography estimation

The image correspondence pipeline

- 1. Feature point detection
 - Detect corners using the Harris corner detector.

- 2. Feature point description
 - Describe features using the Multi-scale oriented patch descriptor.

3. Feature matching and homography estimation

Up to now, we've assumed correct correspondences

What if there are mismatches?

How would you find just the inliers?

RANSAC RANdom SAmple Consensus

[Fischler & Bolles in '81]

- 1. Sample (randomly) the number of points required to fit the model
- 2. Solve for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

- 1. Sample (randomly) the number of points required to fit the model
- 2. Solve for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

- 1. Sample (randomly) the number of points required to fit the model
- 2. Solve for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

- 1. Sample (randomly) the number of points required to fit the model
- 2. Solve for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

- 1. Sample (randomly) the number of points required to fit the model
- 2. Solve for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

How to choose parameters?

- Number of samples N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)
- Number of sampled points s
 - -Minimum number needed to fit the model
- Distance threshold δ
 - Choose δ so that a good point with noise is likely (e.g., prob=0.95) within threshold
 - Zero-mean Gaussian noise with std. dev. σ : t²=3.84 σ^2

$$N = \frac{\log(1-p)}{\log\left(1-(1-e)^s\right)}$$

	proportion of outliers e							
S	5%	10%	20%	25%	30%	40%	50%	
2	2	3	5	6	7	11	17	
3	3	4	7	9	11	19	35	
4	3	5	9	13	17	34	72	
5	4	6	12	17	26	57	146	
6	4	7	16	24	37	97	293	
7	4	8	20	33	54	163	588	
8	5	9	26	44	78	272	1177	

Matched points

Least Square fit finds the 'average' transform

RANSAC: Use one correspondence, find inliers

RANSAC: Use one correspondence, find inliers

RANSAC: Use one correspondence, find inliers

RANSAC: Use one correspondence, find inliers

Estimating homography using RANSAC

- RANSAC loop
 - 1. Get four point correspondences (randomly)
 - 2. Compute homography H (DLT)
 - 3. Count inliers
 - 4. Keep if largest number of inliers
- Recompute H using all inliers

Why four point correspondences?

Useful for...

The image correspondence pipeline

- 1. Feature point detection
 - Detect corners using the Harris corner detector.

- 2. Feature point description
 - Describe features using the Multi-scale oriented patch descriptor.

- 3. Feature matching and homography estimation
 - Do both simultaneously using RANSAC.

Given many images, how can we

a) figure out where they were all taken from?b) build a 3D model of the scene?

This is (roughly) the **structure from motion** problem

Input: images with points in correspondence
p_{i,j} = (u_{i,j}, v_{i,j})

Reconstruction (side)

- (top)
- Input: images with points in correspondence $p_{i,j} = (u_{i,j}, v_{i,j})$
- Output
 - structure: 3D location **x**_i for each point *p*_i
 - motion: camera parameters **R**_i, **t**_i possibly **K**_i
- Objective function: minimize reprojection error

Camera calibration & triangulation

- Suppose we know 3D points
 - And have matches between these points and an image
 - How can we compute the camera parameters?
- Suppose we have know camera parameters, each of which observes a point
 - How can we compute the 3D location of that point?

- SfM solves both of these problems at once
- A kind of chicken-and-egg problem
 - (but solvable)

Standard way to view photos

Input: Point correspondences

Feature detection

Detect features using SIFT [Lowe, IJCV 2004]

Feature description

Describe features using SIFT [Lowe, IJCV 2004]

Feature matching

Match features between each pair of images

Feature matching

Refine matching using RANSAC to estimate fundamental matrix between each pair

Correspondence estimation

 Link up pairwise matches to form connected components of matches across several images

Image connectivity graph

(graph layout produced using the Graphviz toolkit: http://www.graphviz.org/)

The pinhole camera

real-world object

The (rearranged) pinhole camera

real-world object

The (rearranged) pinhole camera

Camera projection matrix

 $\mathbf{P} = \mathbf{KR}[\mathbf{I}| - \mathbf{C}]$

3x33x33x1intrinsics3D rotationidentity3D translation

Another way to write the mapping:

$$\mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}]$$

 $\mathbf{t} = -\mathbf{R}\mathbf{C}$

• Minimize sum of squared reprojection errors:

- Minimizing this function is called *bundle adjustment*
 - Optimized using non-linear least squares, e.g. Levenberg-Marquardt

Problem size

- What are the variables?
- How many variables per camera?
- How many variables per point?

- Trevi Fountain collection
 - 466 input photos
 - + > 100,000 3D points
 - = very large optimization problem

Is SfM always uniquely solvable?

Is SfM always uniquely solvable?

• No...

Incremental structure from motion

Incremental structure from motion

Final reconstruction

69		6			
			and		
6				a entration	

Even larger scale SfM

City-scale structure from motion

• "Building Rome in a day"

http://grail.cs.washington.edu/projects/rome/

SfM – Failure cases

• Necker reversal

Structure from Motion – Failure cases

• Repetitive structures

SfM applications

- 3D modeling
- Surveying
- Robot navigation and mapmaking
- Visual effects ("Match moving")
 - <u>https://www.youtube.com/watch?v=RdYWp70P_kY</u>

Applications – Photosynth

Applications – Hyperlapse

https://www.youtube.com/watch?v=SOpwHaQnRSY

References

Basic reading:

• Szeliski textbook, Sections 4, 6.1.4, 7.

Additional reading:

- Hartley and Zisserman, "Multiple View Geometry," Cambridge University Press 2003. as usual when it comes to geometry and vision, this book is the best reference; Sections 10, 11, and 14 in particular discuss everything about structure from motion.
- Snavely et al., "Photo tourism: Exploring photo collections in 3D," SIGGRAPH 2006.
- Snavely et al., "Finding Paths through the World's Photos," SIGGRAPH 2008.
- Snavely et al., "Modeling the world from Internet photo collections," IJCV 2008. the series of papers on developing Photo Tourism and large scale structure from motion.
- Agarwal et al., "Building Rome in a Day," ICCV 2009.

a follow-up on even larger-scale structure from motion (using "city-scale" photo collections).