

15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 17

http://graphics.cs.cmu.edu/courses/15-463

Course announcements

- Homework 4 is out.
 - Due October 26th.
 - There was another typo in HW4, download new version.
 - Drop by Yannis' office to pick up cameras any time.
- Homework 5 will be out on Thursday.
 - You will need cameras for that one as well, so keep the ones you picked up for HW4.
- Project ideas were due on Piazza on Friday 20th.
 - Responded to most of you.
 - Some still need to post their ideas.
- Project *proposals* are due on Monday 30th.

Overview of today's lecture

- Telecentric lenses.
- Sources of blur.
- Deconvolution.
- Blind deconvolution.

Slide credits

Most of these slides were adapted from:

- Fredo Durand (MIT).
- Gordon Wetzstein (Stanford).

Why are our images blurry?

Why are our images blurry?

- Lens imperfections.
- Camera shake.
- Scene motion.
- Depth defocus.

• Ideal lens: An point maps to a point at a certain plane.

- Ideal lens: An point maps to a point at a certain plane.
- Real lens: A point maps to a circle that has non-zero minimum radius among all planes.

What is the effect of this on the images we capture?

- Ideal lens: An point maps to a point at a certain plane.
- Real lens: A point maps to a circle that has non-zero minimum radius among all planes.

Shift-invariant blur.

What causes lens imperfections?

What causes lens imperfections?

• Aberrations.

• Diffraction.

small aperture

large aperture

Point spread function (PSF): The blur kernel of a lens.

• "Diffraction-limited" PSF: No aberrations, only diffraction. Determined by aperture shape.

Point spread function (PSF): The blur kernel of a lens.

• "Diffraction-limited" PSF: No aberrations, only diffraction. Determined by aperture shape.

Optical transfer function (OTF): The Fourier transform of the PSF. Equal to aperture shape.

image from imperfect lens

image from a perfect lens

imperfect lens PSF

If we know c and b, can we recover x?

image from imperfect lens

image from a perfect lens

imperfect lens PSF

Deconvolution X + C = b

If we know c and b, can we recover x?

Deconvolution X + C = b

Reminder: convolution is multiplication in Fourier domain:

$$F(x) \cdot F(c) = F(b)$$

If we know c and b, can we recover x?

Deconvolution X + C = b

Reminder: convolution is multiplication in Fourier domain:

$$F(x) \cdot F(c) = F(b)$$

Deconvolution is division in Fourier domain:

$$F(x_{est}) = F(c) \setminus F(b)$$

After division, just do inverse Fourier transform:

$$x_{est} = F^{-1} (F(c) \setminus F(b))$$

Any problems with this approach?

• The OTF (Fourier of PSF) is a low-pass filter

zeros at high frequencies

• The measured signal includes noise

b = c * x + n — noise term

Any problems with this approach?

• The OTF (Fourier of PSF) is a low-pass filter

zeros at high frequencies

• The measured signal includes noise

$$b = c * x + n$$
 — noise term

• When we divide by zero, we amplify the high frequency noise

Naïve deconvolution

Even tiny noise can make the results awful.

• Example for Gaussian of $\sigma = 0.05$

Wiener Deconvolution

Apply inverse kernel and do not divide by zero:

- Derived as solution to maximum-likelihood problem under Gaussian noise assumption
- Requires noise of signal-to-noise ratio at each frequency

SNR(
$$\omega$$
) = $\frac{1}{1000}$ mean signal at ω
noise std at ω

Deconvolution comparisons

naïve deconvolution

Wiener deconvolution

Deconvolution comparisons

 $\sigma = 0.01$

σ = 0.05

 $\sigma = 0.01$

Wiener Deconvolution

Apply inverse kernel and do not divide by zero:

$$x_{est} = F^{-1} \left(\frac{|F(c)|^2}{|F(c)|^2 + 1/SNR(\omega)} \cdot \frac{F(b)}{F(c)} \right)$$

amplitude-dependent damping factor

- Derived as solution to maximum-likelihood problem under Gaussian noise assumption
- Requires noise of signal-to-noise ratio at each frequency

SNR(
$$\omega$$
) = $\frac{\text{mean signal at }\omega}{\text{noise std at }\omega}$

Natural image and noise spectra

Natural images tend to have spectrum that scales as 1 / ω^2

• This is a *natural image statistic*

Natural image and noise spectra

Natural images tend to have spectrum that scales as 1 / ω^2

• This is a *natural image statistic*

Noise tends to have flat spectrum, $\sigma(\omega) = constant$

• We call this white noise

What is the SNR?

Natural image and noise spectra

Natural images tend to have spectrum that scales as 1 / ω^2

• This is a *natural image statistic*

Noise tends to have flat spectrum, $\sigma(\omega) = constant$

• We call this white noise

Therefore, we have that: $SNR(\omega) = 1 / \omega^2$

Wiener Deconvolution

Apply inverse kernel and do not divide by zero:

$$x_{est} = F^{-1} \left(\frac{|F(c)|^2}{|F(c)|^2 + 1/SNR(\omega)} \cdot \frac{F(b)}{F(c)} \right)$$

amplitude-dependent damping factor

- Derived as solution to maximum-likelihood problem under Gaussian noise assumption
- Requires noise of signal-to-noise ratio at each frequency

$$SNR(\omega) = \frac{1}{\omega^2}$$

Wiener Deconvolution

For natural images and white noise, it can be re-written as the minimization problem

 $\min_{x} ||b - c * x||^{2} + ||\nabla x||^{2}$

gradient regularization

- What does this look like?
- How can it be solved?

Deconvolution comparisons

blurry input

naive deconvolution

gradient regularization

original

Deconvolution comparisons

blurry input

naive deconvolution

gradient regularization

original

... and a proof-of-concept demonstration

noisy input

naive deconvolution

gradient regularization

Can we do better than that?

Can we do better than that?

Use different gradient regularizations:

• L₂ gradient regularization (Tikhonov regularization, same as Wiener deconvolution)

$$min_{x} ||b - c * x||^{2} + ||\nabla x||^{2}$$

• L₁ gradient regularization (sparsity regularization, same as total variation)

$$\min_{x} ||b - c * x||^{2} + ||\nabla x||^{1}$$

All of these are motivated by natural image statistics. Active research area.

Comparison of gradient regularizations

input

squared gradient regularization

fractional gradient regularization

High quality images using cheap lenses

[Heide et al., "High-Quality Computational Imaging Through Simple Lenses," TOG 2013]

If we know b and c, can we recover x?

Х

How do we measure this?

*

*

PSF calibration

Image of PSF

Image with sharp lens

Image with cheap lens

If we know b and c, can we recover x?

Х

*

Blind deconvolution

If we know b, can we recover x and c?

Х

*

*

Camera shake

Removing Camera Shake from a Single Photograph

Rob Fergus¹ Barun Singh¹ Aaron Hertzmann² Sam T. Roweis² William T. Freeman¹ ¹MIT CSAIL ²University of Toronto

Figure 1: Left: An image spoiled by camera shake. Middle: result from Photoshop "unsharp mask". Right: result from our algorithm.

Camera shake as a filter

If we know b, can we recover x and c?

image from static camera

Х

PSF from camera motion

image from shaky camera

Multiple possible solutions

How do we detect this one?

Use prior information

Among all the possible pairs of images and blur kernels, select the ones where:

• The image "looks like" a natural image.

• The kernel "looks like" a motion PSF.

Use prior information

Among all the possible pairs of images and blur kernels, select the ones where:

• The image "looks like" a natural image.

• The kernel "looks like" a motion PSF.

Shake kernel statistics

Gradients in natural images follow a characteristic "heavy-tail" distribution.

sharp natural image

blurry natural image

Shake kernel statistics

Gradients in natural images follow a characteristic "heavy-tail" distribution.

sharp natural image

blurry natural image

Use prior information

Among all the possible pairs of images and blur kernels, select the ones where:

• The image "looks like" a natural image.

Gradients in natural images follow a characteristic "heavy-tail" distribution.

• The kernel "looks like" a motion PSF.

Shake kernels are very sparse, have continuous contours, and are always positive

How do we use this information for blind deconvolution?

Solve regularized least-squares optimization

$$\min_{x,b} ||b - c * x||^2 + ||\nabla x||^{0.8} + ||c||_1$$

What does each term in this summation correspond to?

Solve regularized least-squares optimization

Note: Solving such optimization problems is complicated (no longer *linear* least squares).

Gradient

A demonstration

input

A demonstration

input

deconvolved image and kernel

This image looks worse than the original...

This doesn't look like a plausible shake kernel...

Solve regularized least-squares optimization

$$\min_{x,b} \underbrace{||b - c * x||^2 + ||\nabla x||^{0.8} + ||c||_1}_{1}$$

loss function

Solve regularized least-squares optimization

$$\min_{x,b} \underbrace{\|b - c * x\|^2 + \|\nabla x\|^{0.8} + \|c\|_1}_{\text{loss function}}$$
inverse loss function
Where in this graph is the solution we find?

Solve regularized least-squares optimization

$$\min_{x,b} ||b - c * x||^2 + ||\nabla x||^{0.8} + ||c||_1$$
inverse loss function
inverse optimal solution
inverse pixel intensity
inverse optimal solution
inverse optimal soluti
inverse optimal solution

A demonstration

input

maximum-only

More examples

More advanced motion deblurring

[Shah et al., High-quality Motion Deblurring from a Single Image, SIGGRAPH 2008]

Why are our images blurry?

- Lens imperfections.
- Camera shake. Can we solve all of these problems in the same way?
- Scene motion.
- Depth defocus.

Why are our images blurry?

- Lens imperfections.
- Camera shake.
- Scene motion.
- Depth defocus.

Can we solve all of these problems in the same way?

- No, because blur is not always shift invariant.
- See next lecture.

References

Basic reading:

- Szeliski textbook, Sections 3.4.3, 3.4.4, 10.1.4, 10.3.
- Fergus et al., "Removing camera shake from a single image," SIGGRAPH 2006. the main motion deblurring and blind deconvolution paper we covered in this lecture.

Additional reading:

- Heide et al., "High-Quality Computational Imaging Through Simple Lenses," TOG 2013. the paper on high-quality imaging using cheap lenses, which also has a great discussion of all matters relating to blurring from lens aberrations and modern deconvolution algorithms.
- Levin, "Blind Motion Deblurring Using Image Statistics," NIPS 2006.
- Levin et al., "Image and depth from a conventional camera with a coded aperture," SIGGRAPH 2007.
- Levin et al., "Understanding and evaluating blind deconvolution algorithms," CVPR 2009 and PAMI 2011.
- Krishnan and Fergus, "Fast Image Deconvolution using Hyper-Laplacian Priors," NIPS 2009.
- Levin et al., "Efficient Marginal Likelihood Optimization in Blind Deconvolution," CVPR 2011.

 a sequence of papers developing the state of the art in blind deconvolution of natural images, including the use Laplacian (sparsity) and hyper-Laplacian priors on gradients, analysis of different loss functions and maximum a-posteriori versus Bayesian estimates, the use of variational inference, and efficient optimization algorithms.
- Minskin and MacKay, "Ensemble Learning for Blind Image Separation and Deconvolution," AICA 2000. the paper explaining the mathematics of how to compute Bayesian estimators using variational inference.
- Shah et al., "High-quality Motion Deblurring from a Single Image," SIGGRAPH 2008. a more recent paper on motion deblurring.