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Course announcements

• Homework 4 is out.
- Due October 26th.
- There was another typo in HW4, download new version.
- Drop by Yannis’ office to pick up cameras any time.

• Homework 5 will be out on Thursday.
- You will need cameras for that one as well, so keep the ones you picked up for HW4.

• Project ideas were due on Piazza on Friday 20th.
- Responded to most of you.
- Some still need to post their ideas.

• Project proposals are due on Monday 30th
.



Overview of today’s lecture

• Telecentric lenses.

• Sources of blur.

• Deconvolution.

• Blind deconvolution.



Slide credits

Most of these slides were adapted from:

• Fredo Durand (MIT).
• Gordon Wetzstein (Stanford).



Why are our images blurry?



Why are our images blurry?

• Lens imperfections.

• Camera shake.

• Scene motion.

• Depth defocus.



Lens imperfections

object distance D focus distance D’

• Ideal lens: An point maps to a point at a certain plane.



Lens imperfections

object distance D focus distance D’

• Ideal lens: An point maps to a point at a certain plane.
• Real lens: A point maps to a circle that has non-zero minimum radius among all planes.

What is the effect of this on the images we capture?



Lens imperfections

object distance D focus distance D’

• Ideal lens: An point maps to a point at a certain plane.
• Real lens: A point maps to a circle that has non-zero minimum radius among all planes.

Shift-invariant blur.

blur kernel



Lens imperfections
What causes lens imperfections?



Lens imperfections
What causes lens imperfections?
• Aberrations.

• Diffraction.

large 
aperture

small 
aperture



Lens as an optical low-pass filter

object distance D focus distance D’

Point spread function (PSF): The blur kernel of a lens.
• “Diffraction-limited” PSF: No aberrations, only diffraction. Determined by aperture shape.

diffraction-limited 
PSF of a circular 

aperture

blur kernel



Lens as an optical low-pass filter

object distance D focus distance D’

Point spread function (PSF): The blur kernel of a lens.
• “Diffraction-limited” PSF: No aberrations, only diffraction. Determined by aperture shape.

Optical transfer function (OTF): The Fourier transform of the PSF. Equal to aperture shape.

diffraction-limited 
PSF of a circular 

aperture

blur kernel

diffraction-limited 
OTF of a circular 

aperture



Lens as an optical low-pass filter

image from a perfect lens

*

imperfect lens PSF

=

image from imperfect lens

x * c = b



Lens as an optical low-pass filter

image from a perfect lens

*

imperfect lens PSF

=

image from imperfect lens

x * c = b

If we know c and b, can we recover x?



Deconvolution

x * c = b
If we know c and b, can we recover x?



Deconvolution

x * c = b
Reminder: convolution is multiplication in Fourier domain:

F(x) . F(c) = F(b)
If we know c and b, can we recover x?



Deconvolution

x * c = b

After division, just do inverse Fourier transform:

Reminder: convolution is multiplication in Fourier domain:

F(x) . F(c) = F(b)
Deconvolution is division in Fourier domain:

F(xest) = F(c) \ F(b)

xest = F-1 ( F(c) \ F(b) )



Deconvolution

Any problems with this approach?



Deconvolution

Any problems with this approach?

• The OTF (Fourier of PSF) is a low-pass filter

b  = c * x + n

• The measured signal includes noise

noise term

zeros at high 
frequencies



Deconvolution

• When we divide by zero, we amplify the high frequency noise

• The OTF (Fourier of PSF) is a low-pass filter

b  = c * x + n

• The measured signal includes noise

noise term

zeros at high 
frequencies



Naïve deconvolution

* =

b * c-1 = xest

-1

Even tiny noise can make the results awful.
• Example for Gaussian of σ = 0.05



Wiener Deconvolution

amplitude-dependent damping factor

Apply inverse kernel and do not divide by zero:

|F(c)|2

xest = F-1 (                                  ⋅ )                                
|F(c)|2 + 1/SNR(ω)

F(b)

F(c)

• Derived as solution to maximum-likelihood problem under Gaussian noise assumption
• Requires noise of signal-to-noise ratio at each frequency

SNR(ω) =
mean signal at ω

noise std at ω



Deconvolution comparisons

naïve deconvolution Wiener deconvolution



Deconvolution comparisons

σ = 0.01 σ = 0.05 σ = 0.01



Wiener Deconvolution

amplitude-dependent damping factor

Apply inverse kernel and do not divide by zero:

|F(c)|2

xest = F-1 (                                  ⋅ )                                
|F(c)|2 + 1/SNR(ω)

F(b)

F(c)

• Derived as solution to maximum-likelihood problem under Gaussian noise assumption
• Requires noise of signal-to-noise ratio at each frequency

SNR(ω) =
mean signal at ω

noise std at ω



Natural image and noise spectra
Natural images tend to have spectrum that scales as 1 / ω2

• This is a natural image statistic



Natural image and noise spectra
Natural images tend to have spectrum that scales as 1 / ω2

• This is a natural image statistic

Noise tends to have flat spectrum, σ(ω) = constant
• We call this white noise

What is the SNR?



Natural image and noise spectra
Natural images tend to have spectrum that scales as 1 / ω2

• This is a natural image statistic

Noise tends to have flat spectrum, σ(ω) = constant
• We call this white noise

Therefore, we have that: SNR(ω) = 1 / ω2



Wiener Deconvolution

amplitude-dependent damping factor

Apply inverse kernel and do not divide by zero:

|F(c)|2

xest = F-1 (                                  ⋅ )
|F(c)|2 + 1/SNR(ω)

F(b)

F(c)

• Derived as solution to maximum-likelihood problem under Gaussian noise assumption
• Requires noise of signal-to-noise ratio at each frequency

SNR(ω) =
1

ω2



Wiener Deconvolution

gradient regularization

For natural images and white noise, it can be re-written as the minimization problem

• What does this look like?
• How can it be solved?

minx ‖b – c ∗ x‖2 + ‖∇x‖2



Deconvolution comparisons

blurry input gradient regularizationnaive deconvolution original



Deconvolution comparisons

blurry input gradient regularizationnaive deconvolution original



… and a proof-of-concept demonstration

noisy input gradient regularizationnaive deconvolution



Can we do better than that?



Can we do better than that?

Use different gradient regularizations:

minx ‖b – c ∗ x‖2 + ‖∇x‖2

minx ‖b – c ∗ x‖2 + ‖∇x‖1

minx ‖b – c ∗ x‖2 + ‖∇x‖0.8

• L2 gradient regularization (Tikhonov regularization, same as Wiener deconvolution)

• L1 gradient regularization (sparsity regularization, same as total variation)

• Ln<1 gradient regularization (fractional regularization)

All of these are motivated by natural image statistics. Active research area.

How do 
we solve 

for these?



Comparison of gradient regularizations

input
squared gradient 

regularization
fractional gradient 

regularization



High quality images using cheap lenses

[Heide et al., “High-Quality Computational Imaging Through Simple Lenses,” TOG 2013]



Deconvolution

* =

x * c = b

If we know b and c, can we recover x?

?

How do we 
measure this?



PSF calibration

Take a photo of a point source

Image of PSF

Image with sharp lens Image with cheap lens



Deconvolution

* =

x * c = b

If we know b and c, can we recover x?

?



Blind deconvolution

* =

x * c = b

If we know b, can we recover x and c?

? ?



Camera shake



Camera shake as a filter

image from static camera

*

PSF from camera motion

=

image from shaky camera

x * c = b

If we know b, can we recover x and c?



Multiple possible solutions

How do we 
detect this 

one?



Use prior information

Among all the possible pairs of images and blur kernels, select the ones where:

• The image “looks like” a natural image.

• The kernel “looks like” a motion PSF.



Use prior information

Among all the possible pairs of images and blur kernels, select the ones where:

• The image “looks like” a natural image.

• The kernel “looks like” a motion PSF.



Shake kernel statistics
Gradients in natural images follow a 
characteristic “heavy-tail” distribution.

sharp 
natural 
image

blurry 
natural 
image



Shake kernel statistics
Gradients in natural images follow a 
characteristic “heavy-tail” distribution.

sharp 
natural 
image

blurry 
natural 
image

Can be approximated by ‖∇x‖0.8



Use prior information

Among all the possible pairs of images and blur kernels, select the ones where:

• The image “looks like” a natural image.

• The kernel “looks like” a motion PSF.

Gradients in natural images follow a 
characteristic “heavy-tail” distribution.

Shake kernels are very sparse, have 
continuous contours, and are always positive

How do we use this information for blind deconvolution?



Regularized blind deconvolution

Solve regularized least-squares optimization

minx,b ‖b – c ∗ x‖2 + ‖∇x‖0.8 + ‖c‖1

What does each term in this summation correspond to?



Regularized blind deconvolution

natural image prior

Solve regularized least-squares optimization

minx,b ‖b – c ∗ x‖2 + ‖∇x‖0.8 + ‖c‖1

data term shake kernel prior

Note: Solving such optimization problems is complicated (no longer linear least squares).



A demonstration

input deconvolved image and kernel



A demonstration

input deconvolved image and kernel

This image looks worse 
than the original…

This doesn’t look like a 
plausible shake kernel…



Regularized blind deconvolution

Solve regularized least-squares optimization

minx,b ‖b – c ∗ x‖2 + ‖∇x‖0.8 + ‖c‖1

loss function



Regularized blind deconvolution

Solve regularized least-squares optimization

minx,b ‖b – c ∗ x‖2 + ‖∇x‖0.8 + ‖c‖1

loss function
inverse 

loss

pixel intensity

Where in this graph is 
the solution we find?



Regularized blind deconvolution

Solve regularized least-squares optimization

minx,b ‖b – c ∗ x‖2 + ‖∇x‖0.8 + ‖c‖1

loss function
inverse 

loss

pixel intensityoptimal solution

many plausible 
solutions here

Rather than keep just 
maximum, do a weighted 

average of all solutions



A demonstration

input maximum-only

This image looks worse 
than the original…

average



More examples



Results on real shaky images



Results on real shaky images



Results on real shaky images



Results on real shaky images



More advanced motion deblurring

[Shah et al., High-quality Motion Deblurring from a Single Image, SIGGRAPH 2008]



Why are our images blurry?

• Lens imperfections.

• Camera shake.

• Scene motion.

• Depth defocus.

Can we solve all of these problems in the same way?



Why are our images blurry?

• Lens imperfections.

• Camera shake.

• Scene motion.

• Depth defocus.

Can we solve all of these problems in the same way?
• No, because blur is not always shift invariant.
• See next lecture.
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