Pinhole cameras

15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 14

Course announcements

- Homework 4 is out.
 - Due October 26th.
 - Bilateral filter will take a very long time to run.
 - Make sure to sign up for a camera and a team.
 - Drop by Yannis' office to pick up cameras any time.
- Yannis has extra office hours on Wednesday, 2-4pm.
 - You can come to ask questions about HW4 (e.g., "how do I use a DSLR camera?").
 - You can come to ask questions about final project.
- Project ideas are due on Piazza on Friday 20th.

Overview of today's lecture

- Some motivational imaging experiments.
- Pinhole camera.
- Accidental pinholes.
- Camera matrix.
- Perspective.
- Orthographic camera.

Slide credits

Most of these slides were adapted from:

Kris Kitani (15-463, Fall 2016).

Some slides inspired from:

Fredo Durand (MIT).

Some motivational imaging experiments

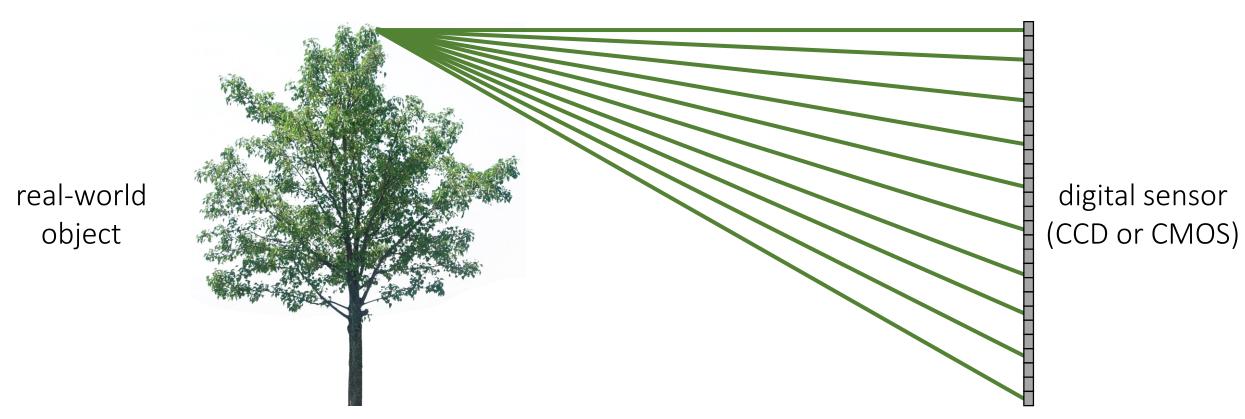
Let's say we have a sensor...

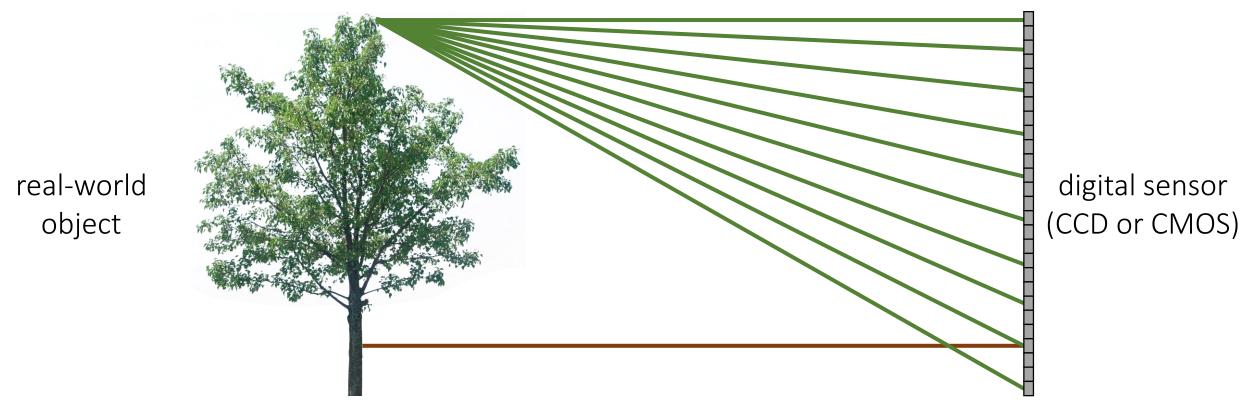
digital sensor (CCD or CMOS)

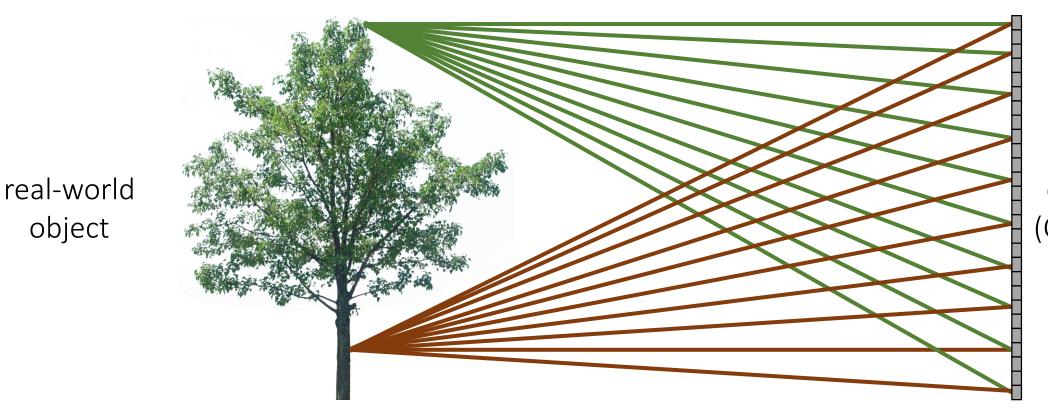
... and an object we like to photograph

digital sensor (CCD or CMOS)

What would an image taken like this look like?







digital sensor (CCD or CMOS)

All scene points contribute to all sensor pixels

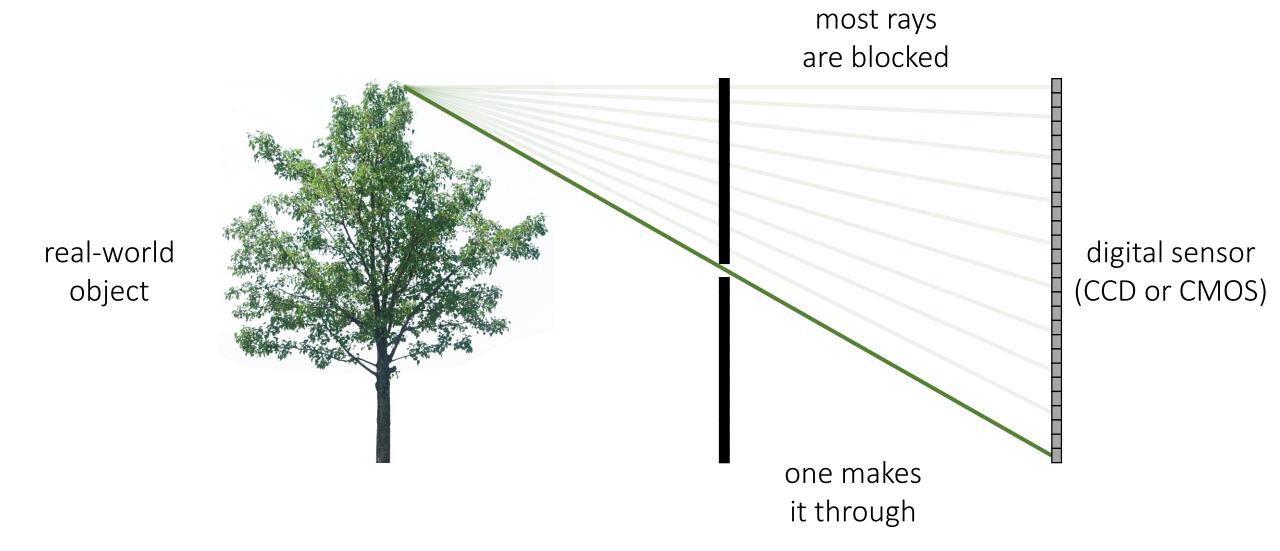
What does the image on the sensor look like?

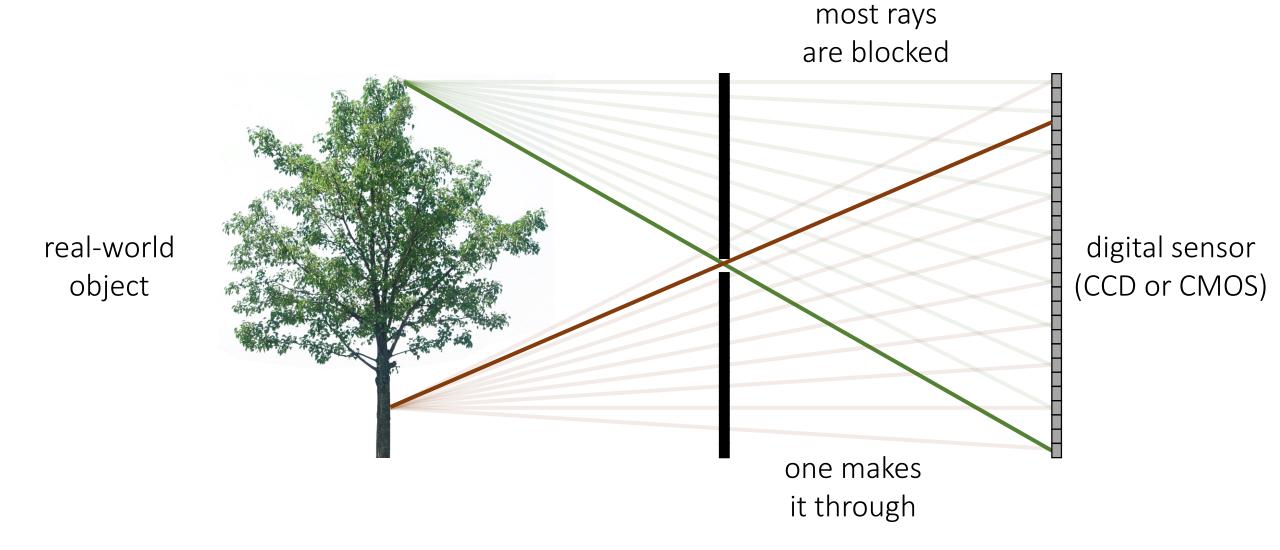
All scene points contribute to all sensor pixels

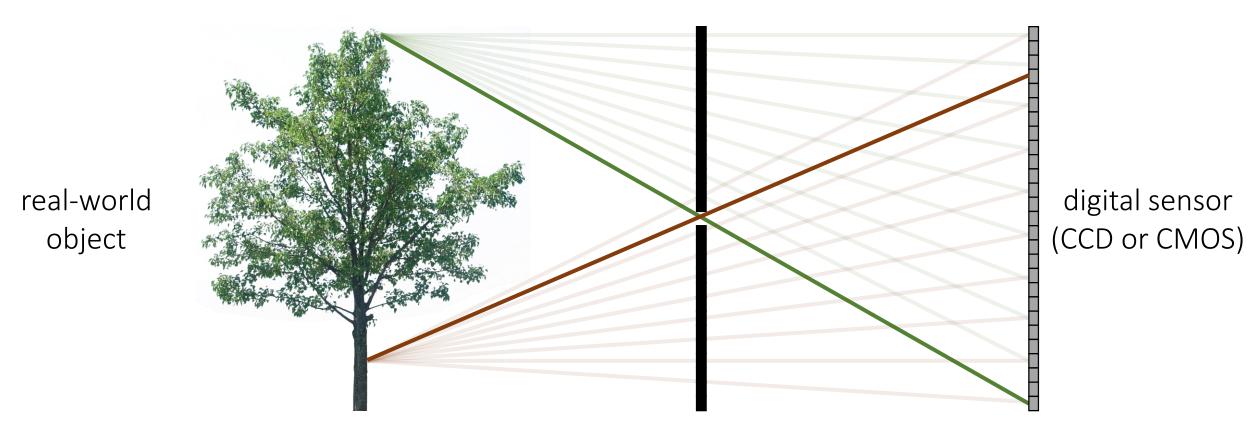
Let's add something to this scene



What would an image taken like this look like?

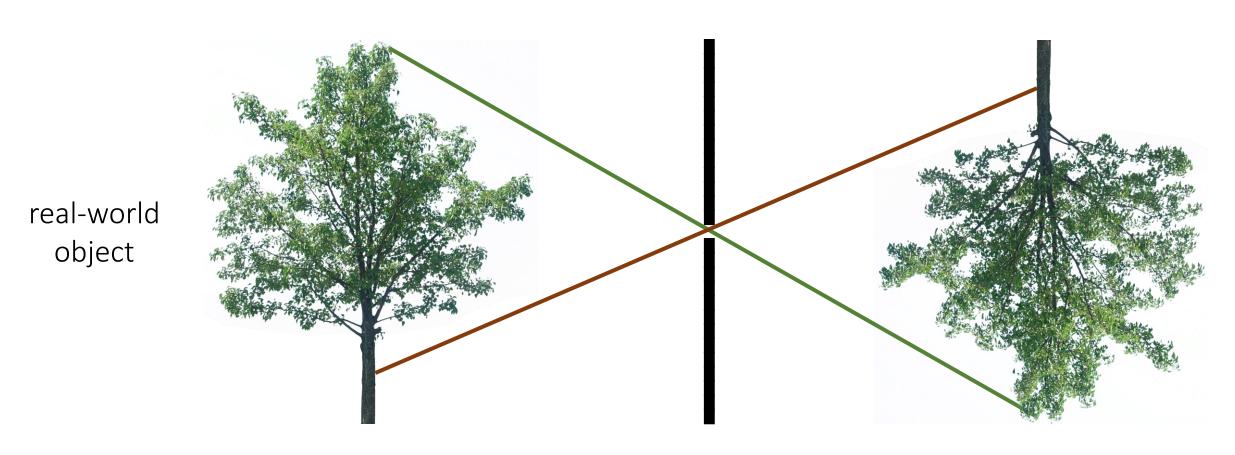






Each scene point contributes to only one sensor pixel

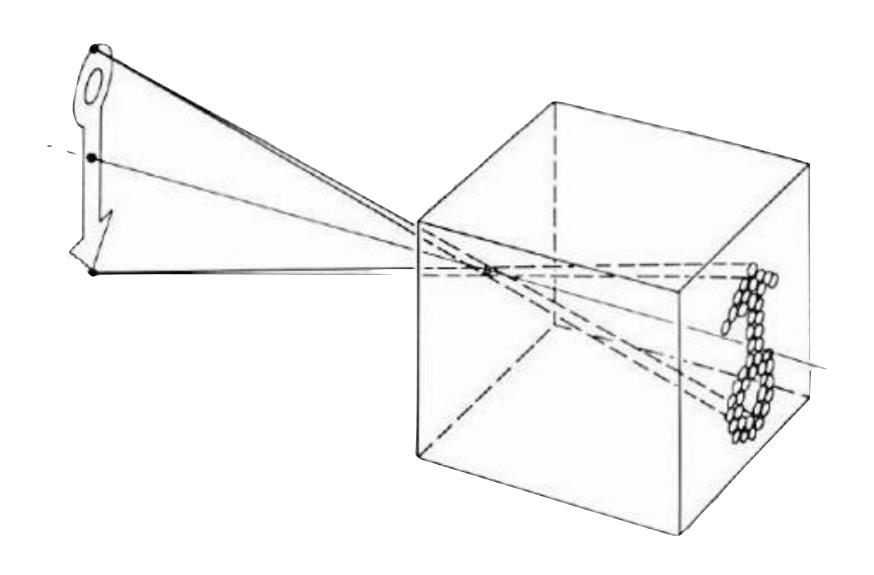
What does the image on the sensor look like?



copy of real-world object (inverted and scaled)

Pinhole camera

Pinhole camera a.k.a. camera obscura

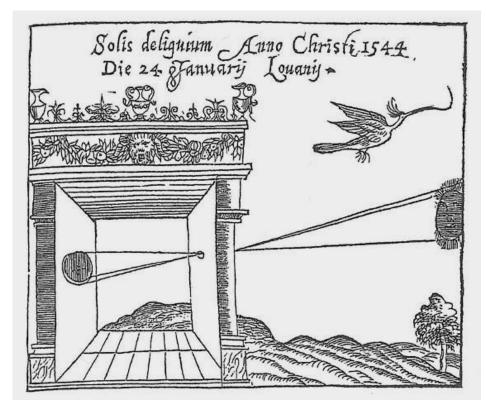


Pinhole camera a.k.a. camera obscura

First mention ...

Chinese philosopher Mozi (470 to 390 BC)

First camera ...



Greek philosopher Aristotle (384 to 322 BC)

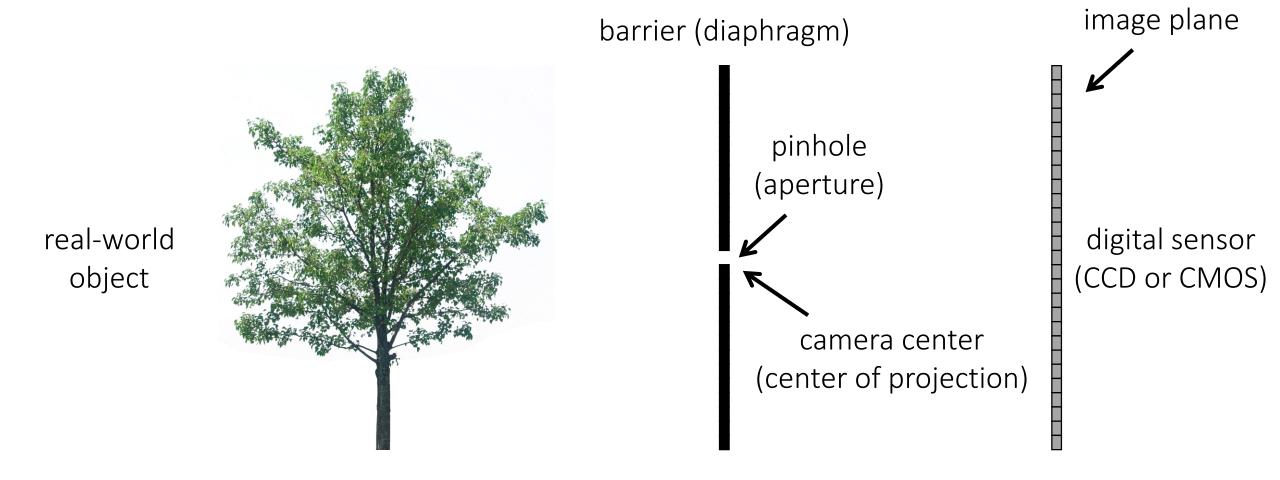
Pinhole camera terms

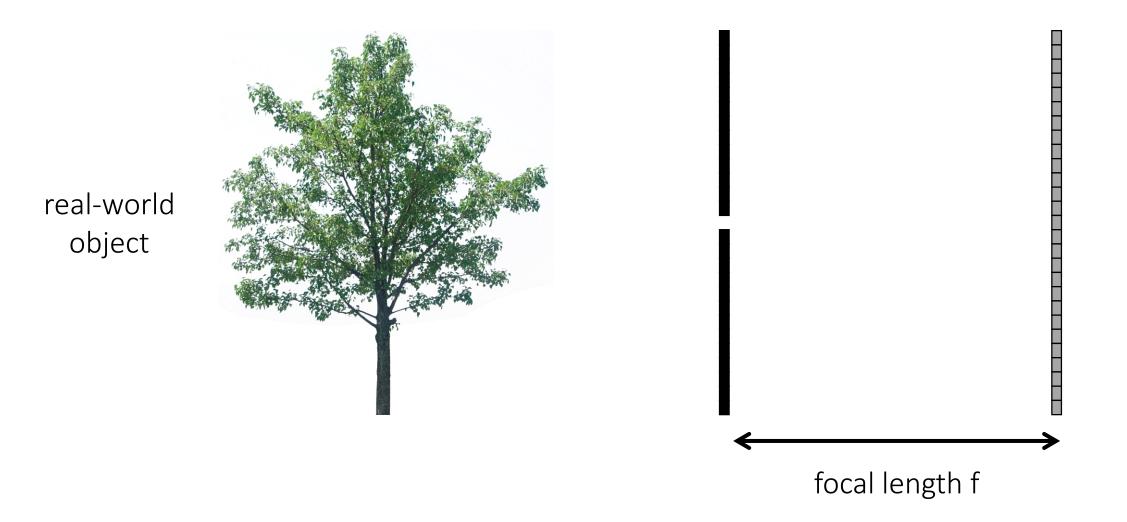
barrier (diaphragm)

pinhole (aperture) real-world object

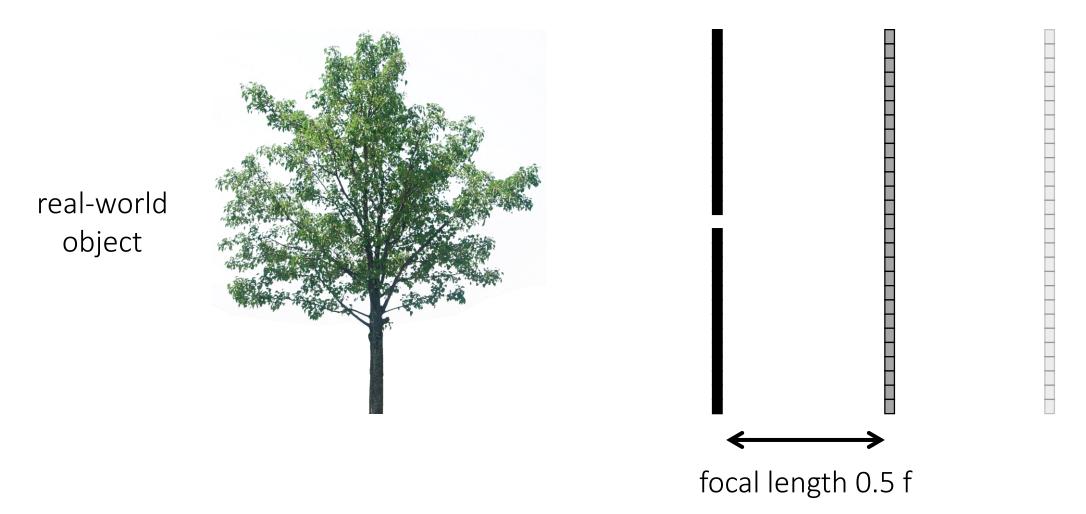
digital sensor (CCD or CMOS)

Pinhole camera terms

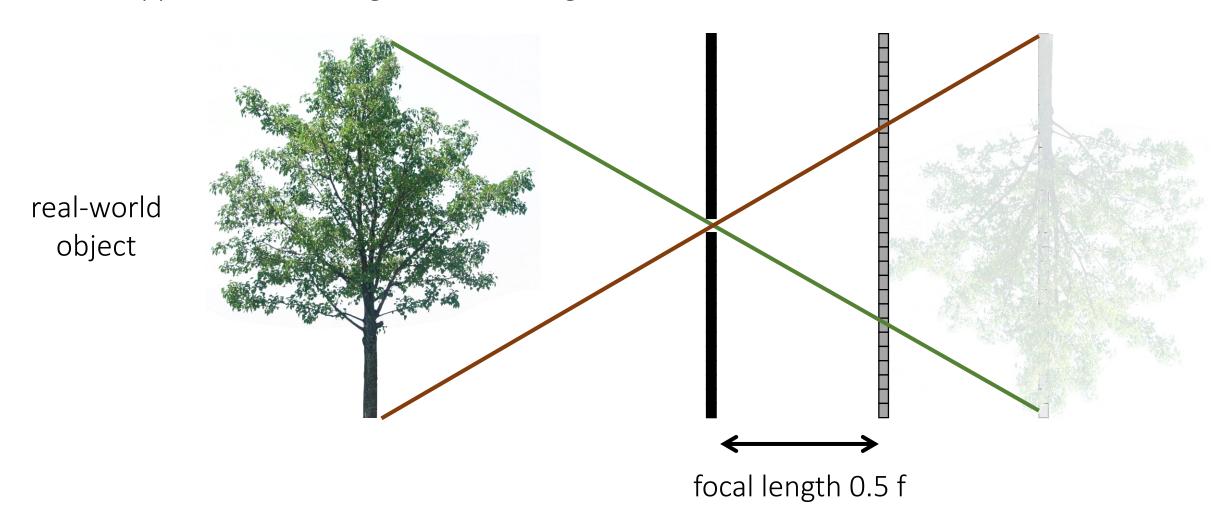




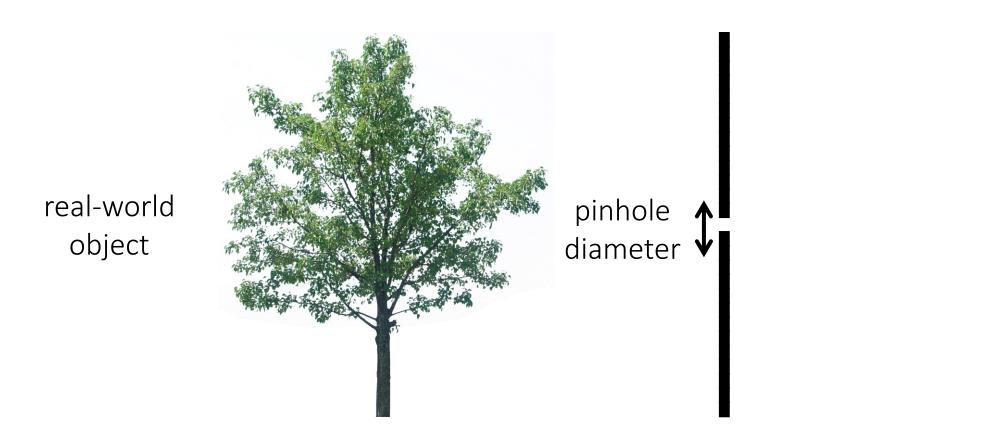
What happens as we change the focal length?



What happens as we change the focal length?



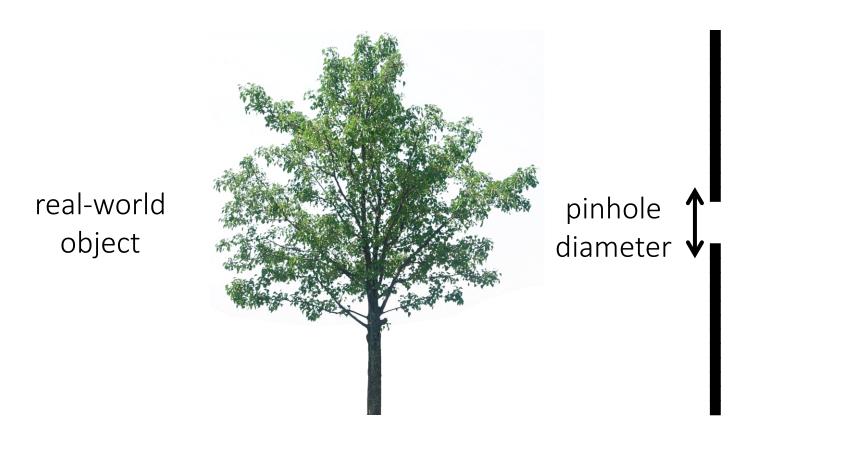
What happens as we change the focal length? object projection is half the size real-world object focal length 0.5 f



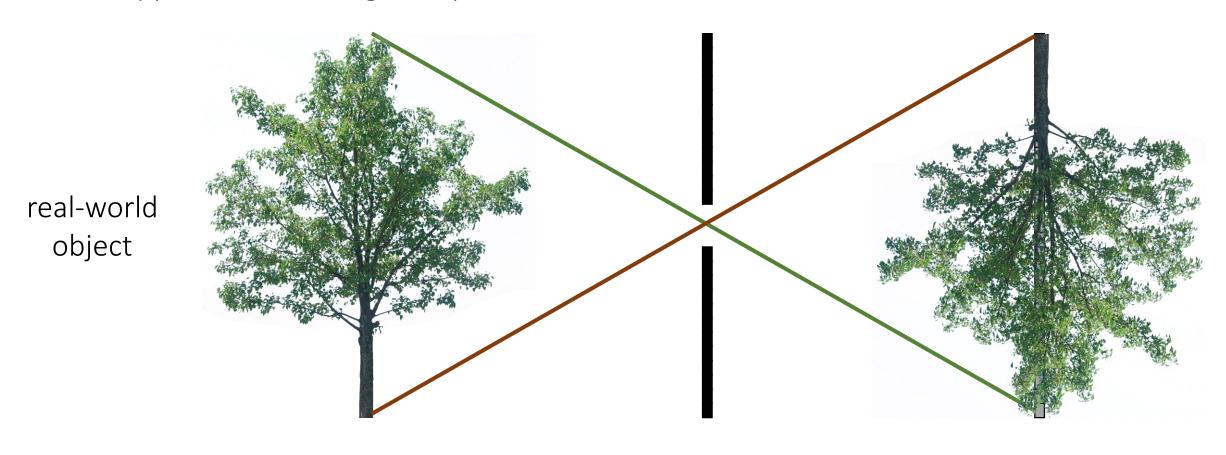
Ideal pinhole has infinitesimally small size

• In practice that is impossible.

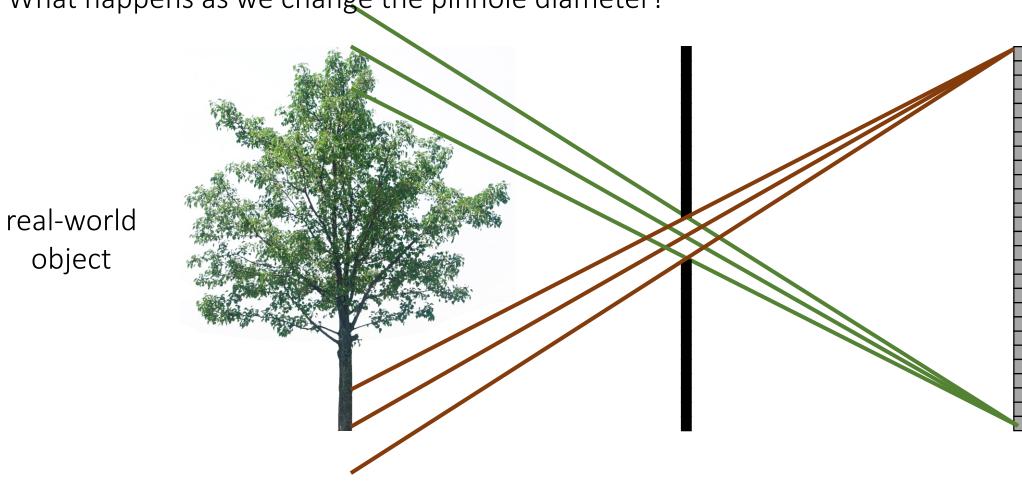
What happens as we change the pinhole diameter?

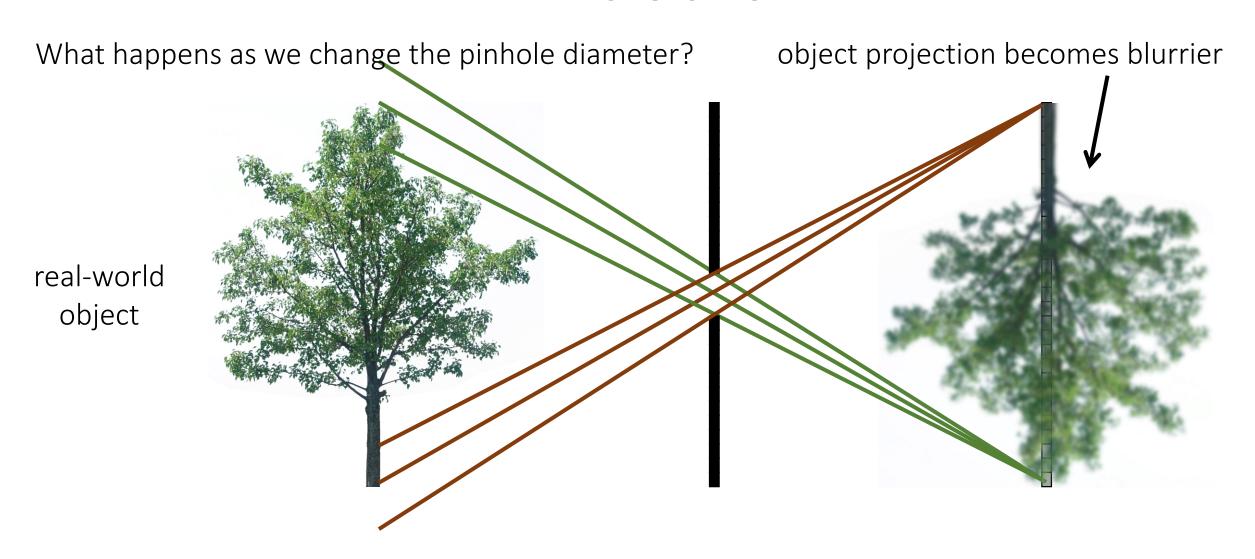


What happens as we change the pinhole diameter?

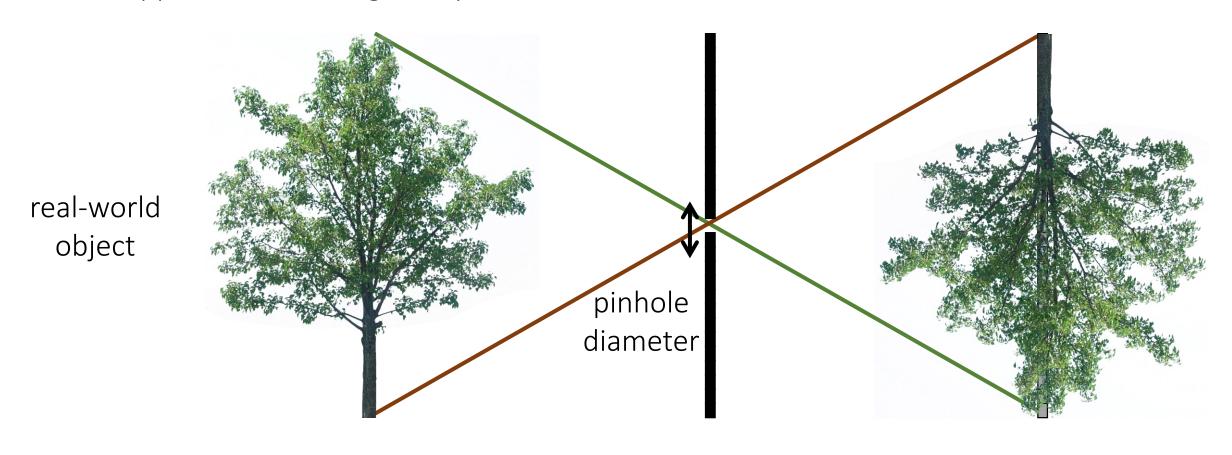


What happens as we change the pinhole diameter?



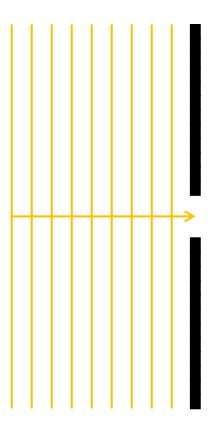


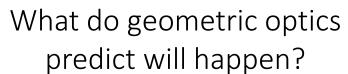
What happens as we change the pinhole diameter?

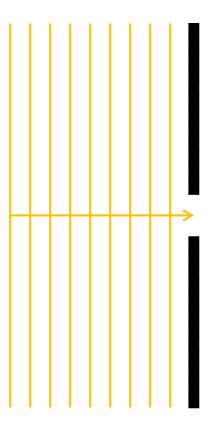


Will the image keep getting sharper the smaller we make the pinhole?

A consequence of the wave nature of light

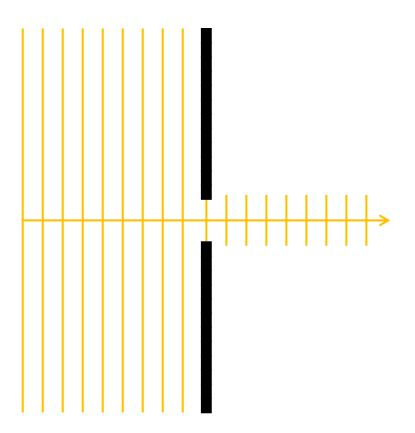




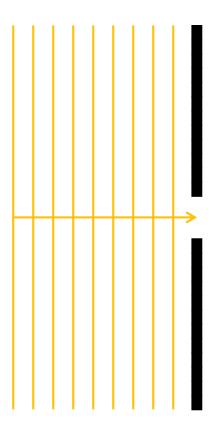


What do wave optics predict will happen?

A consequence of the wave nature of light

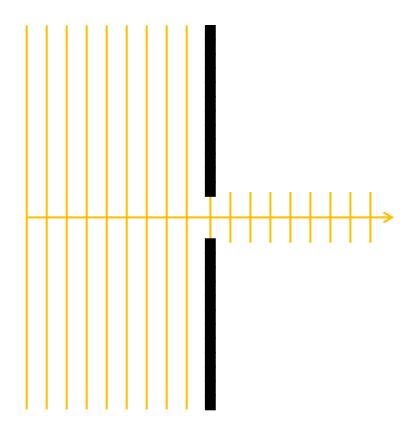


What do geometric optics predict will happen?

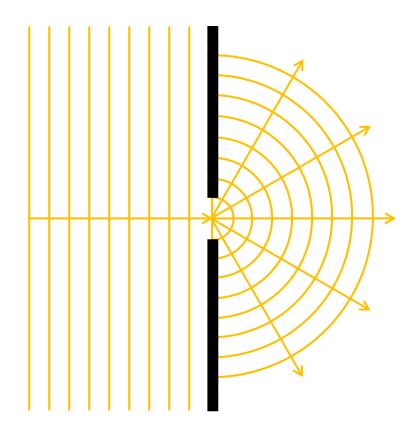


What do wave optics predict will happen?

A consequence of the wave nature of light



What do geometric optics predict will happen?



What do wave optics predict will happen?

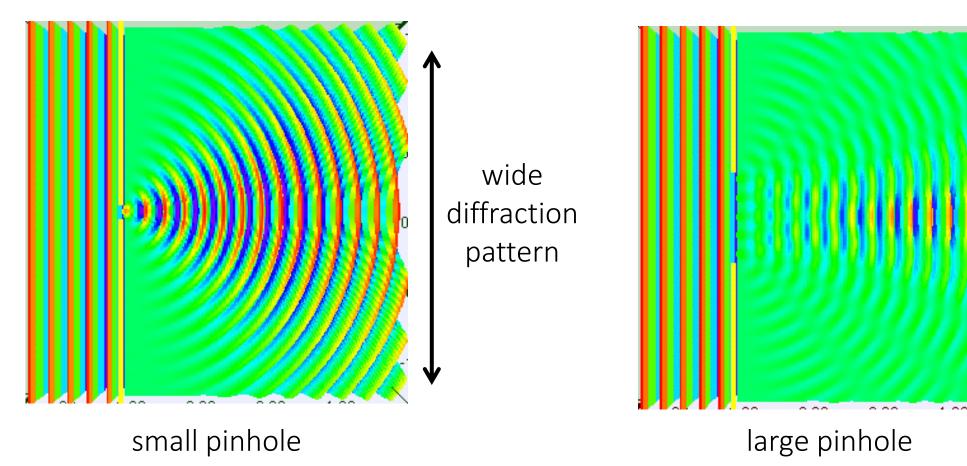
narrow

diffraction

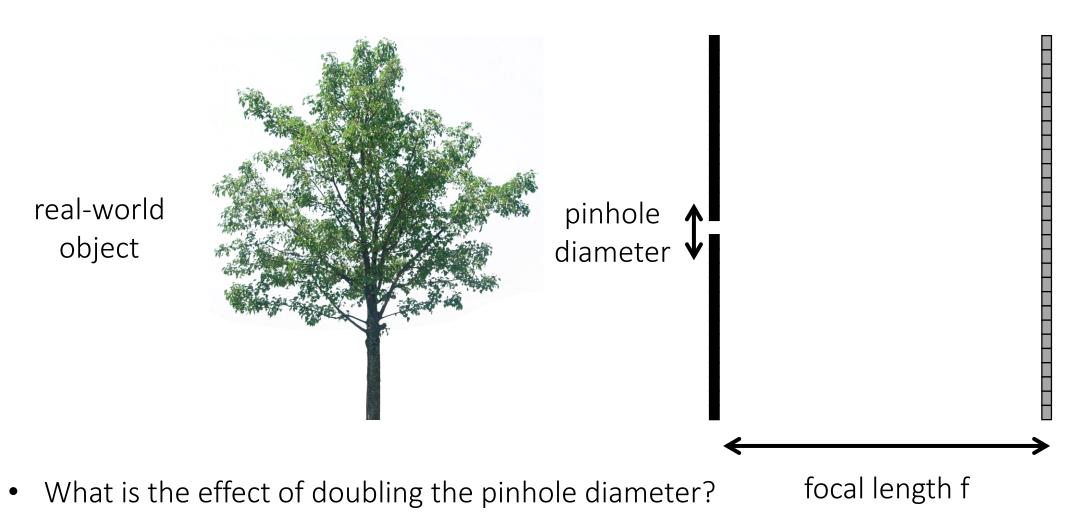
pattern

Diffraction pattern = Fourier transform of the pinhole.

- Smaller pinhole means bigger Fourier spectrum.
- Smaller pinhole means more diffraction.

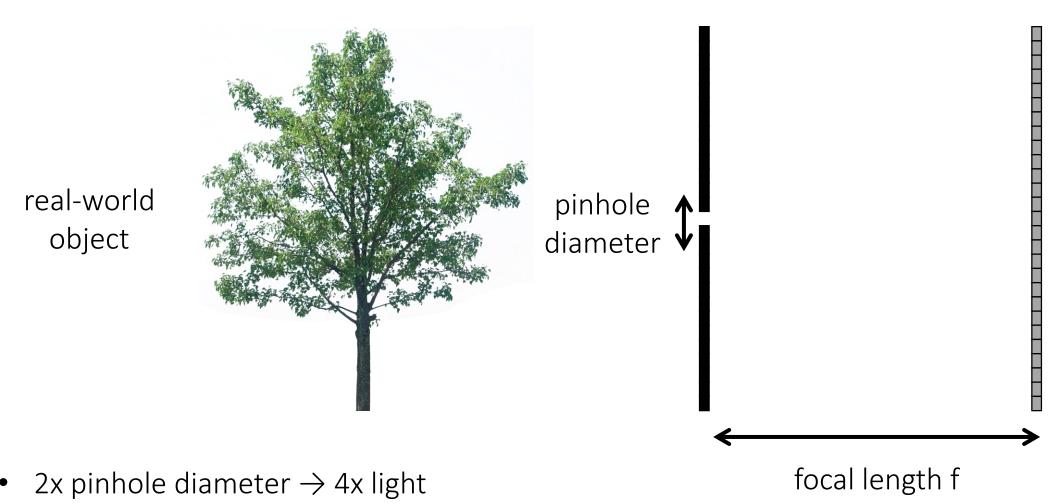


What about light efficiency?



What is the effect of doubling the focal length?

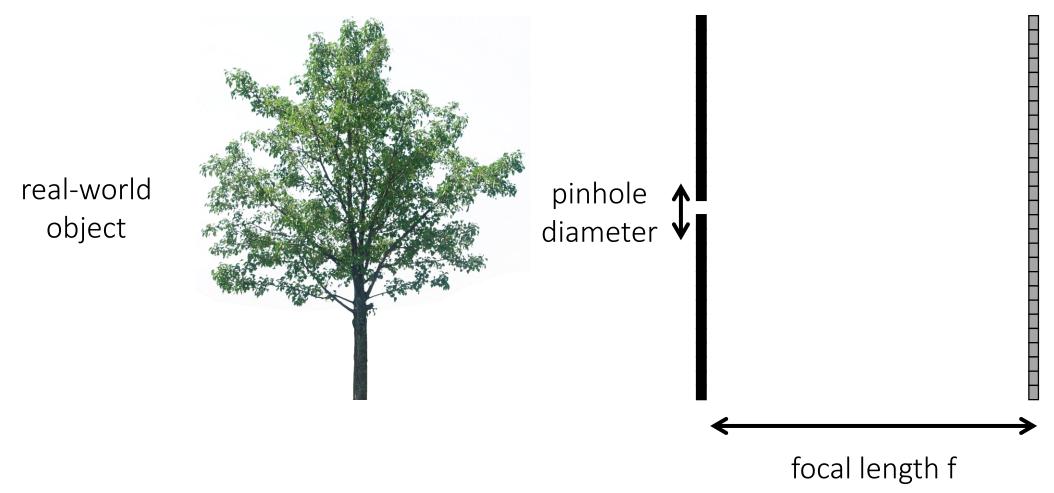
What about light efficiency?



• 2x focal length $\rightarrow \frac{1}{4}x$ light

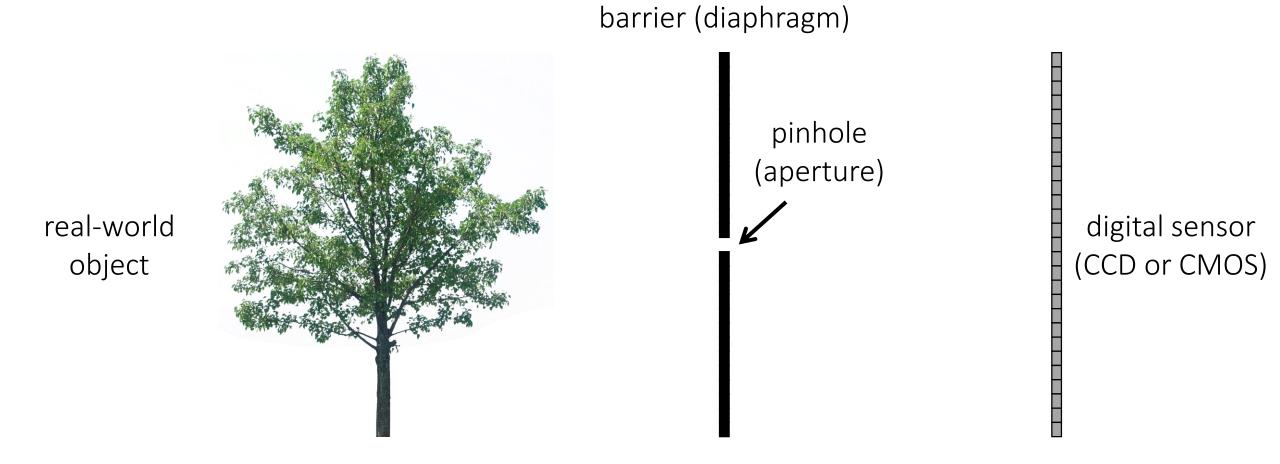
Some terminology notes

A "stop" is a change in camera settings that changes amount of light by a factor of 2



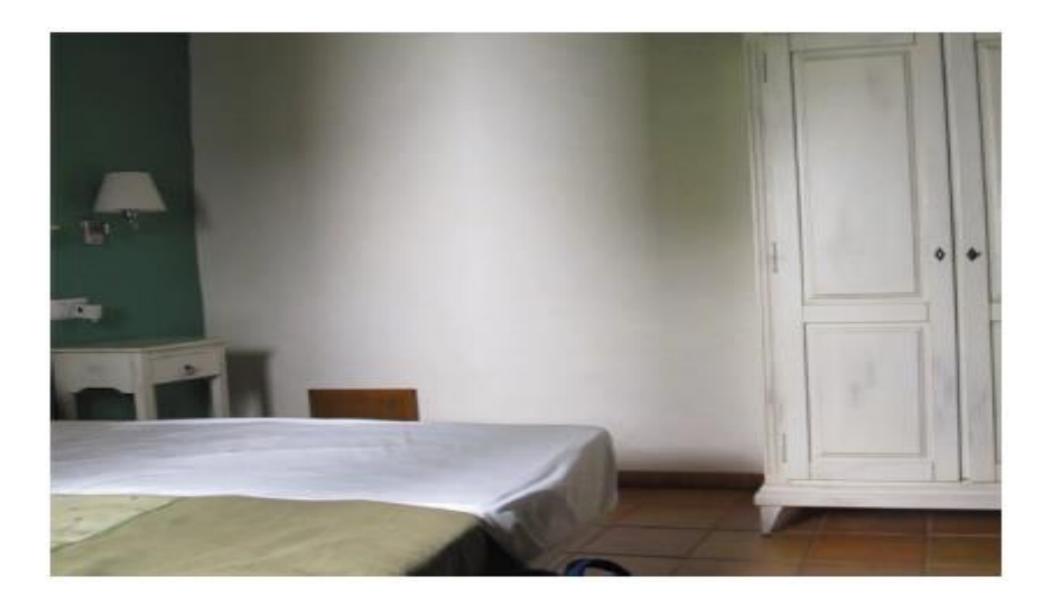
The "f-number" is the ratio: focal length / pinhole diameter

Can we do better than pinhole imaging?



Accidental pinholes

What does this image say about the world outside?



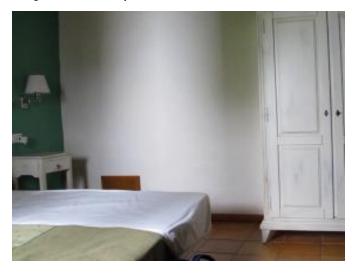
Accidental pinhole camera

Antonio Torralba, William T. Freeman Computer Science and Artificial Intelligence Laboratory (CSAIL) MIT

torralba@mit.edu, billf@mit.edu

Accidental pinhole camera

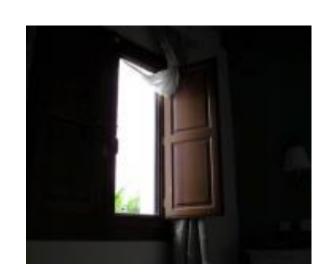
projected pattern on the wall



upside down

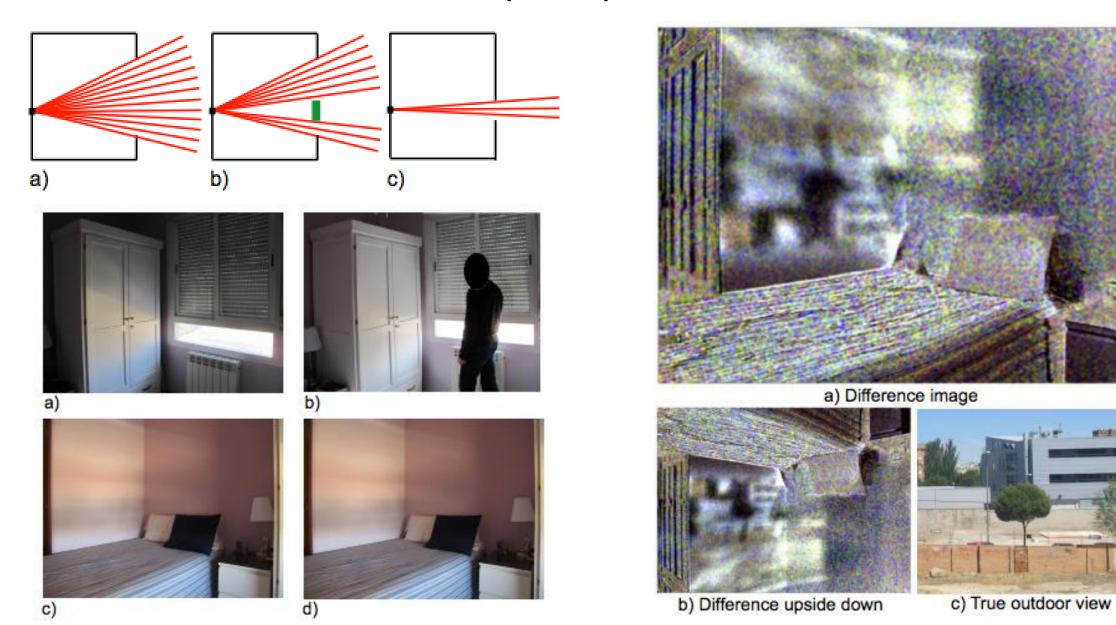
window with smaller gap

view outside window



window is an aperture

Accidental pinspeck camera



Camera matrix

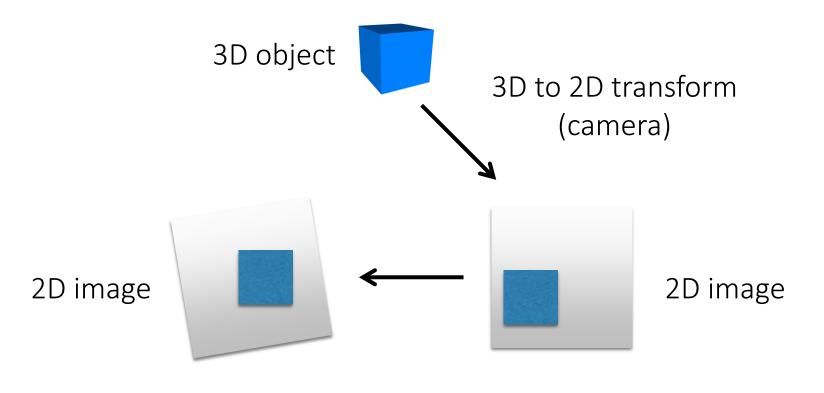
The camera as a coordinate transformation

A camera is a mapping from:

the 3D world

to:

a 2D image



2D to 2D transform (image warping)

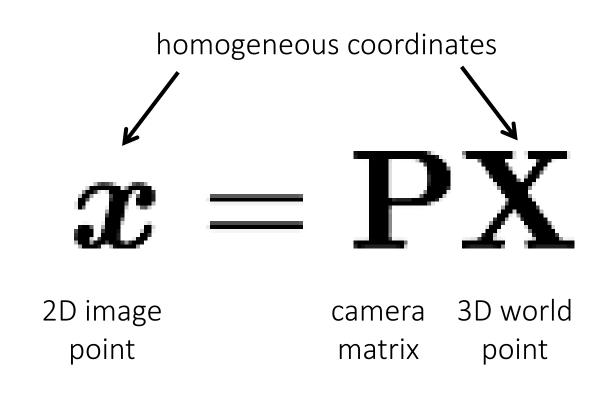
The camera as a coordinate transformation

A camera is a mapping from:

the 3D world

to:

a 2D image



What are the dimensions of each variable?

The camera as a coordinate transformation

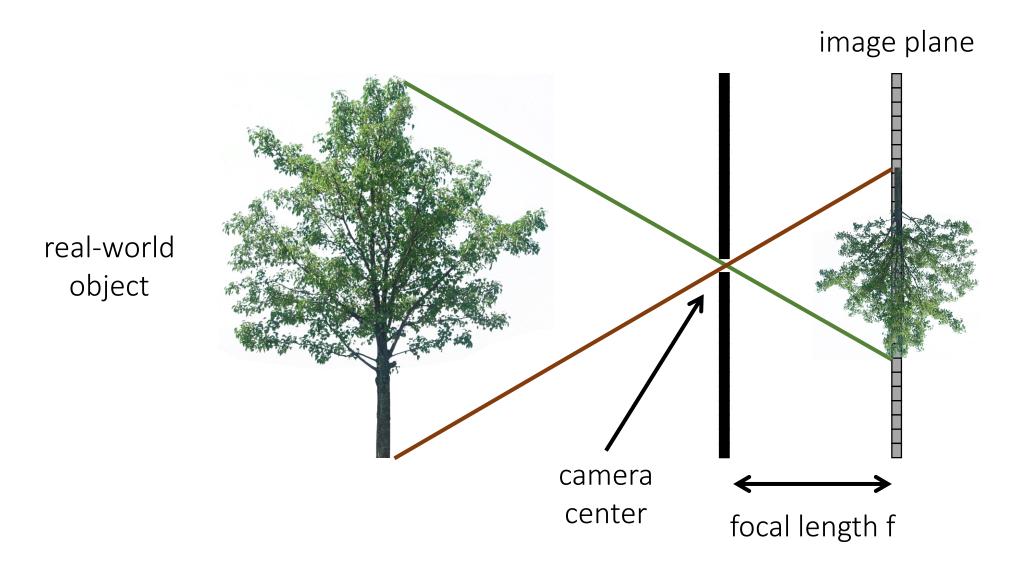
$$x = PX$$

$$\left[\begin{array}{c} X \\ Y \\ Z \end{array}\right] = \left[\begin{array}{cccc} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{array}\right] \left[\begin{array}{c} X \\ Y \\ Z \\ 1 \end{array}\right]$$

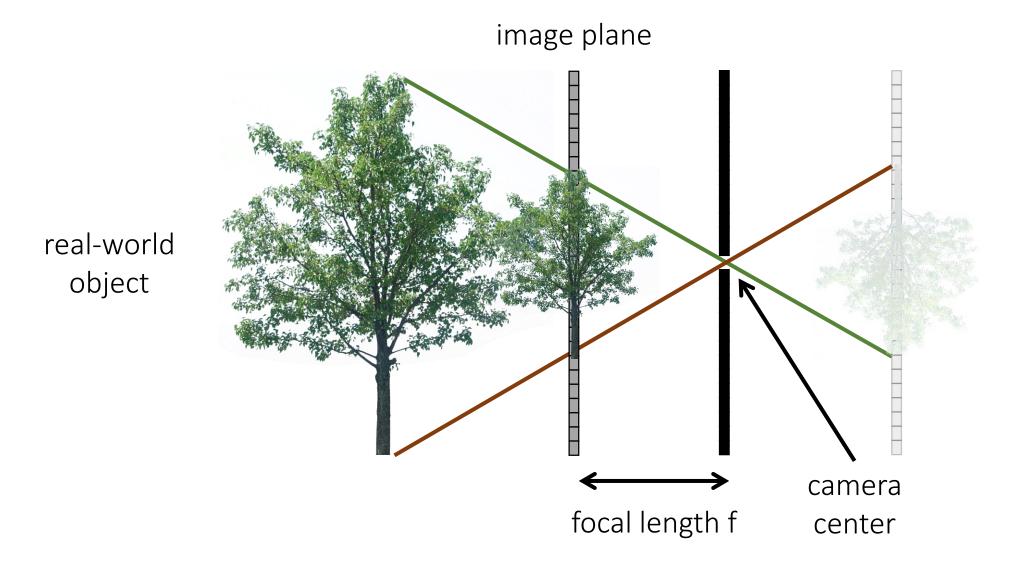
homogeneous image coordinates 3 x 1

camera matrix 3 x 4 homogeneous world coordinates 4 x 1

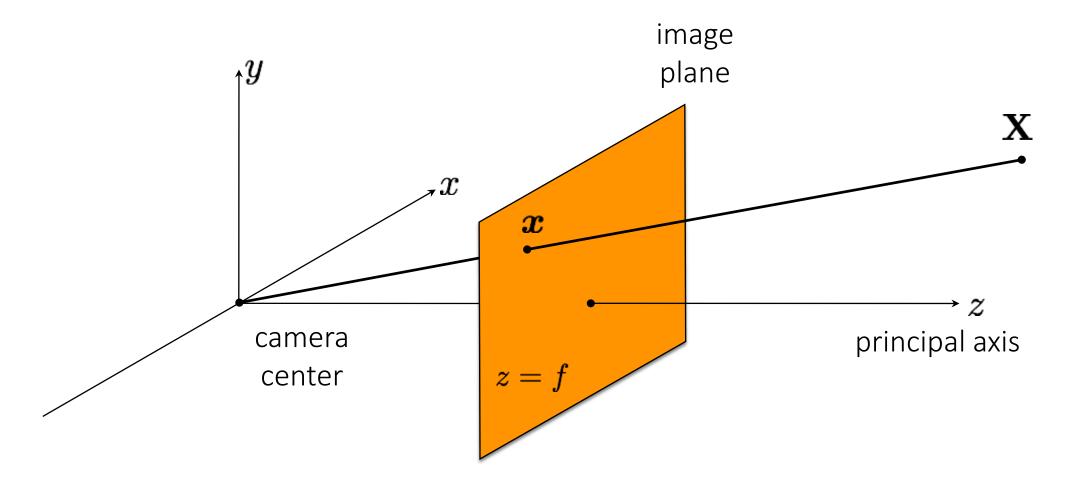
The pinhole camera



The (rearranged) pinhole camera

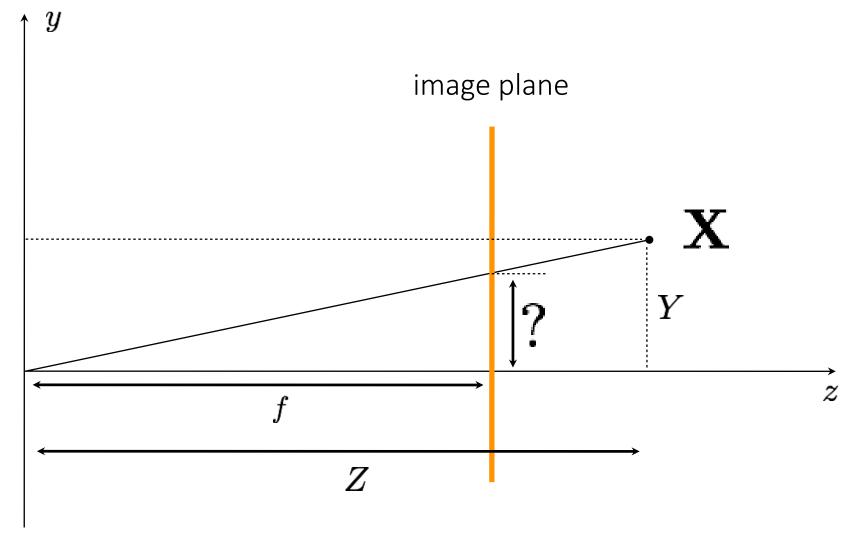


The (rearranged) pinhole camera



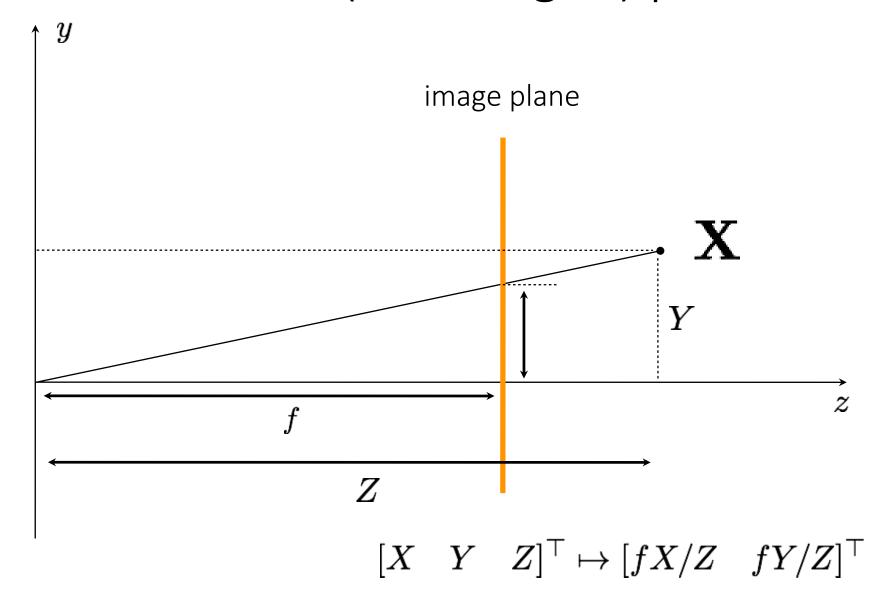
What is the equation for image coordinate \mathbf{x} in terms of \mathbf{X} ?

The 2D view of the (rearranged) pinhole camera

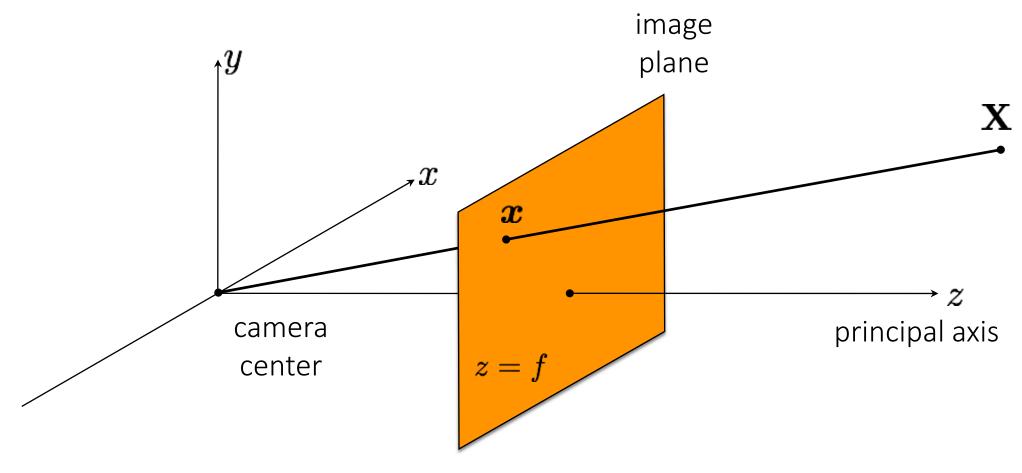


What is the equation for image coordinate \mathbf{x} in terms of \mathbf{X} ?

The 2D view of the (rearranged) pinhole camera



The (rearranged) pinhole camera



What is the camera matrix **P** for a pinhole camera?

$$x = PX$$

The pinhole camera matrix

Relationship from similar triangles:

$$[X \quad Y \quad Z]^{\top} \mapsto [fX/Z \quad fY/Z]^{\top}$$

General camera model:

$$\left[egin{array}{c} X \ Y \ Z \end{array}
ight] = \left[egin{array}{cccc} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{array}
ight] \left[egin{array}{c} X \ Y \ Z \ 1 \end{array}
ight]$$

What does the pinhole camera projection look like?

The pinhole camera matrix

Relationship from similar triangles:

$$\begin{bmatrix} X & Y & Z \end{bmatrix}^{\top} \mapsto \begin{bmatrix} fX/Z & fY/Z \end{bmatrix}^{\top}$$

General camera model:

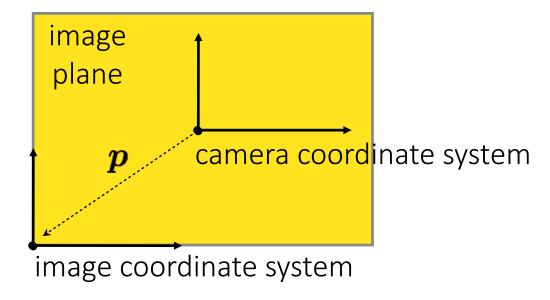
$$\left[egin{array}{c} X \ Y \ Z \end{array}
ight] = \left[egin{array}{cccc} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{array}
ight] \left[egin{array}{c} X \ Y \ Z \ 1 \end{array}
ight]$$

What does the pinhole camera projection look like?

$$\mathbf{P} = \left[egin{array}{cccc} f & 0 & 0 & 0 \ 0 & f & 0 & 0 \ 0 & 0 & 1 & 0 \end{array}
ight]$$

Generalizing the camera matrix

Camera origin and image origin might be different

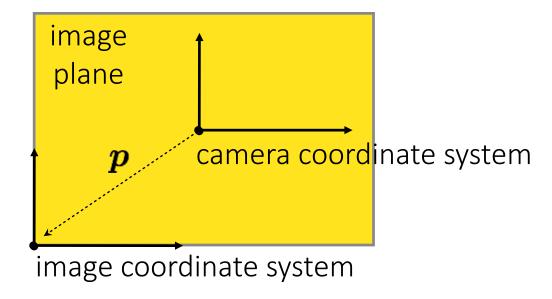


How does the camera matrix change?

$$\mathbf{P} = \left[egin{array}{cccc} f & 0 & 0 & 0 \ 0 & f & 0 & 0 \ 0 & 0 & 1 & 0 \end{array}
ight]$$

Generalizing the camera matrix

Camera origin and image origin might be different



How does the camera matrix change?

$$\mathbf{P} = \left[egin{array}{cccc} f & 0 & p_x & 0 \ 0 & f & p_y & 0 \ 0 & 0 & 1 & 0 \end{array}
ight]$$

Camera matrix decomposition

We can decompose the camera matrix like this:

$$\mathbf{P} = \left[egin{array}{cccc} f & 0 & p_x \ 0 & f & p_y \ 0 & 0 & 1 \end{array}
ight] \left[egin{array}{cccc} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \end{array}
ight]$$

intrinsic (3×3) extrinsic (3×4)

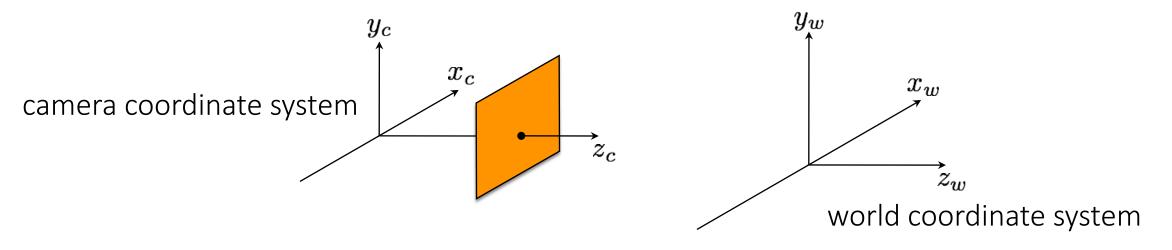
$$\mathbf{P} = \mathbf{K}[\mathbf{I}|\mathbf{0}]$$

$$\mathbf{K} = \left[egin{array}{cccc} f & 0 & p_x \ 0 & f & p_y \ 0 & 0 & 1 \end{array}
ight]$$
 calibration matrix

We can decompose the camera matrix like this:

$$\mathbf{P} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
 assumes camera and world share the same coordinate system intrinsic (3 x 3) extrinsic (3 x 4)

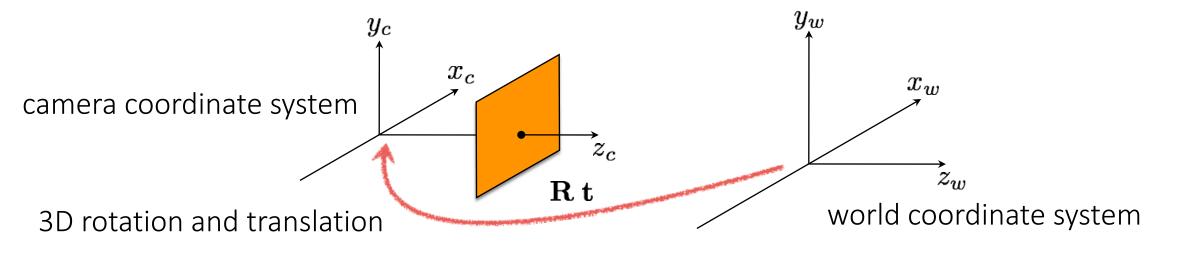
What if world and camera coordinate systems are different?



We can decompose the camera matrix like this:

$$\mathbf{P} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
 assumes camera and world share the same coordinate system intrinsic (3 x 3) extrinsic (3 x 4)

What if world and camera coordinate systems are different?



We can decompose the camera matrix like this:

$$\mathbf{P} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
 assumes camera and world share the same coordinate system intrinsic (3 x 3) extrinsic (3 x 4)

What if world and camera coordinate systems are different?

$$\left[egin{array}{c} X_c \ Y_c \ Z_c \ 1 \end{array}
ight] = \left[egin{array}{c} \mathbf{R} & -\mathbf{RC} \ \mathbf{0} & 1 \end{array}
ight] \left[egin{array}{c} X_w \ Y_w \ Z_w \ 1 \end{array}
ight]$$

We can decompose the camera matrix like this:

$$\mathbf{P} = \left[egin{array}{cccc} f & 0 & p_x \ 0 & f & p_y \ 0 & 0 & 1 \end{array}
ight] \left[egin{array}{cccc} \mathbf{R} & -\mathbf{RC} \ \mathbf{0} & 1 \end{array}
ight]$$

What if world and camera coordinate systems are different?

$$\left[egin{array}{c} X_c \ Y_c \ Z_c \ 1 \end{array}
ight] = \left[egin{array}{c} \mathbf{R} & -\mathbf{RC} \ \mathbf{0} & 1 \end{array}
ight] \left[egin{array}{c} X_w \ Y_w \ Z_w \ 1 \end{array}
ight]$$

intrinsic (3×3) extrinsic (3×4)

General pinhole camera matrix

We can decompose the camera matrix like this:

$$P = KR[I| - C]$$

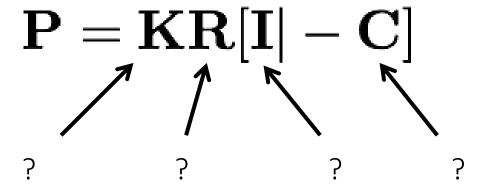
(translate first then rotate)

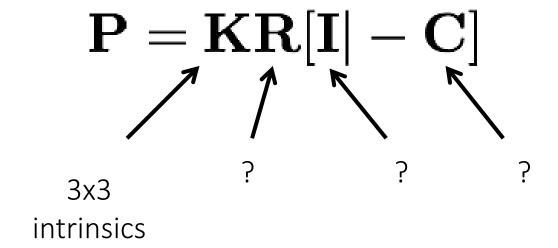
Another way to write the mapping:

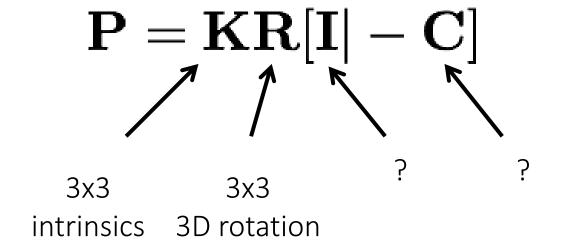
$$P = K[R|t]$$

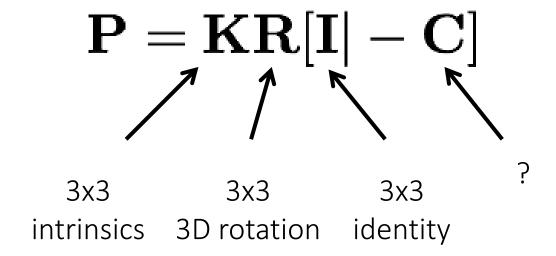
where $\mathbf{t} = -\mathbf{RC}$

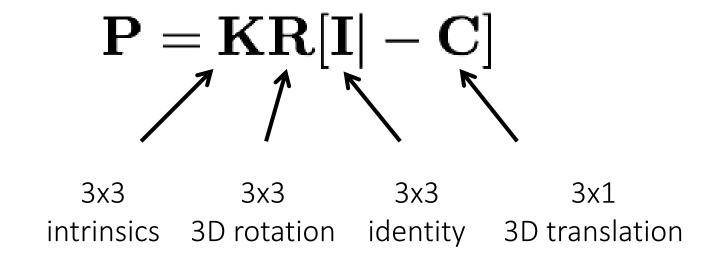
(rotate first then translate)









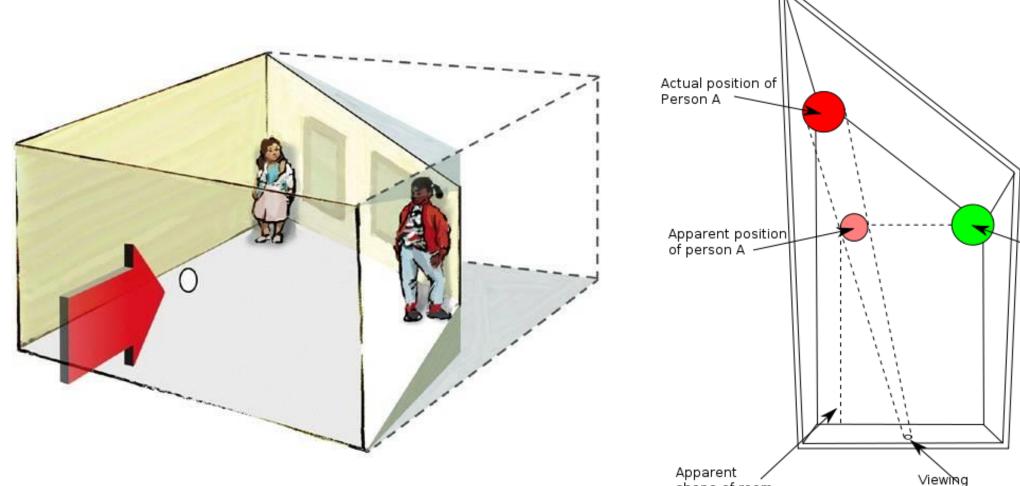


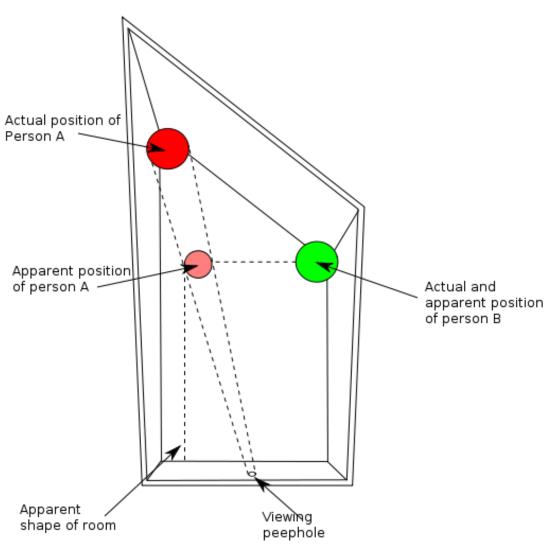
Perspective

Forced perspective

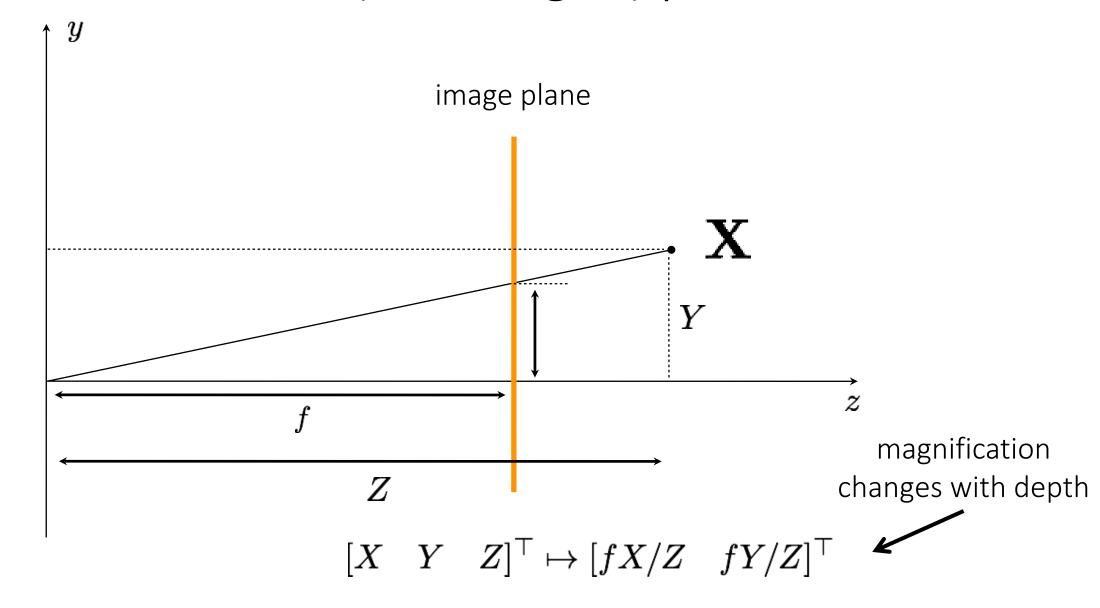
The Ames room illusion

The Ames room illusion



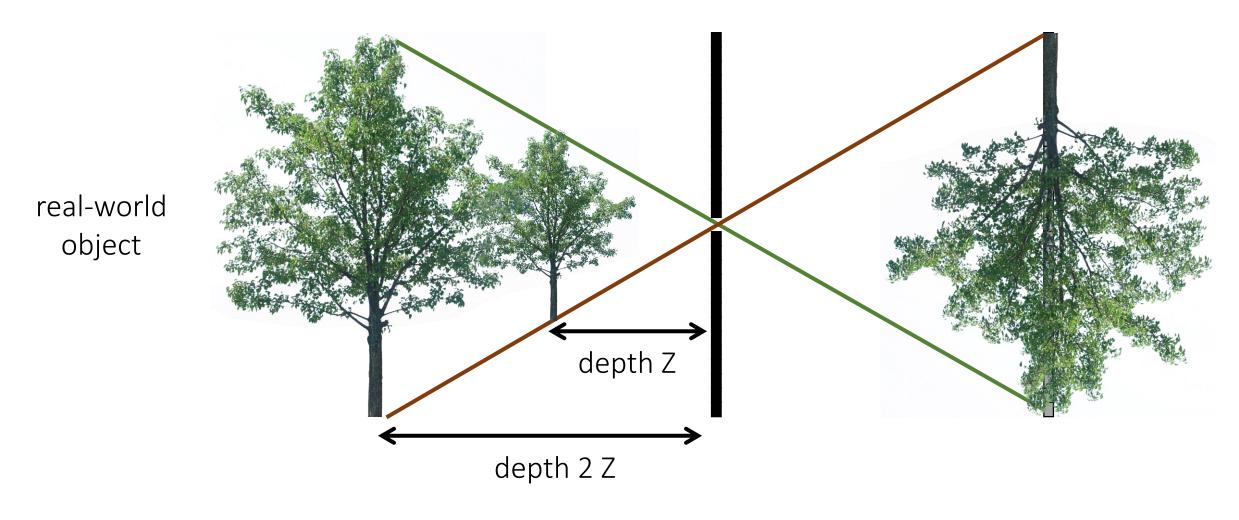


The 2D view of the (rearranged) pinhole camera

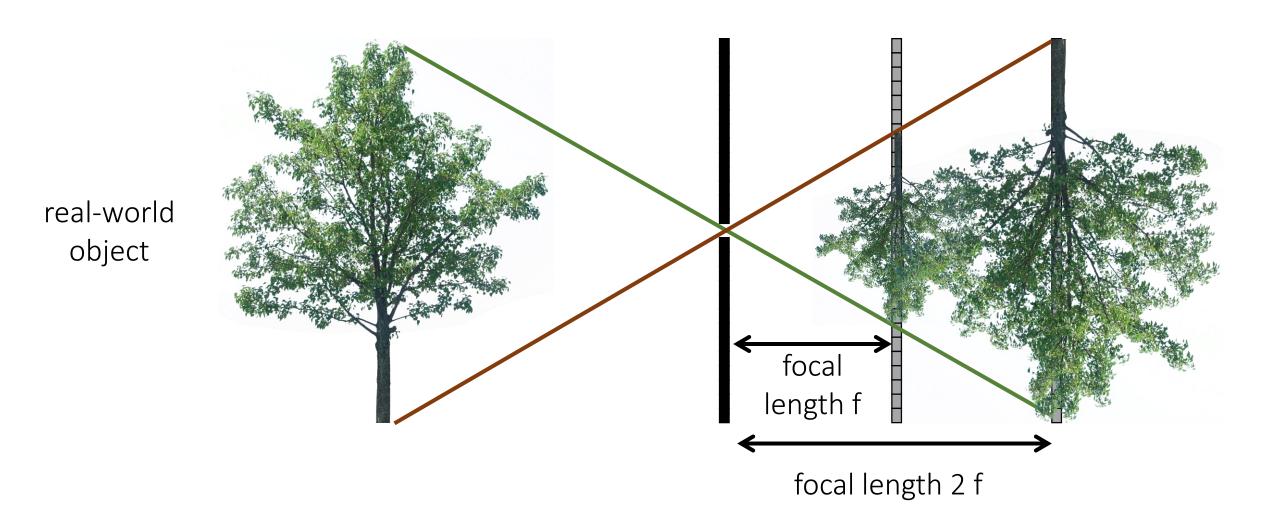


Magnification depends on depth

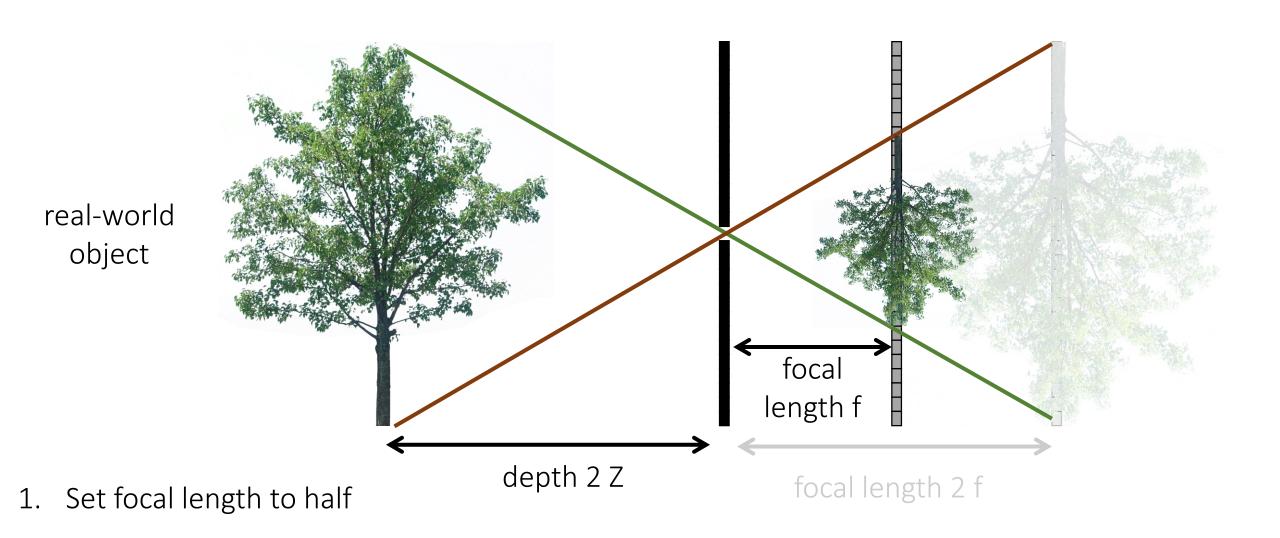
What happens as we change the focal length?



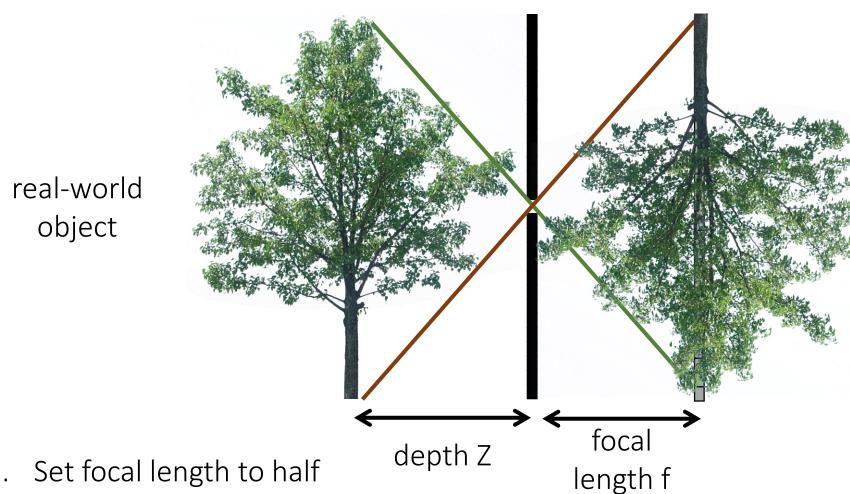
Magnification depends on focal length



What if...



What if...



Is this the same image as the one I had at focal length 2f and distance 2Z?

- Set depth to half

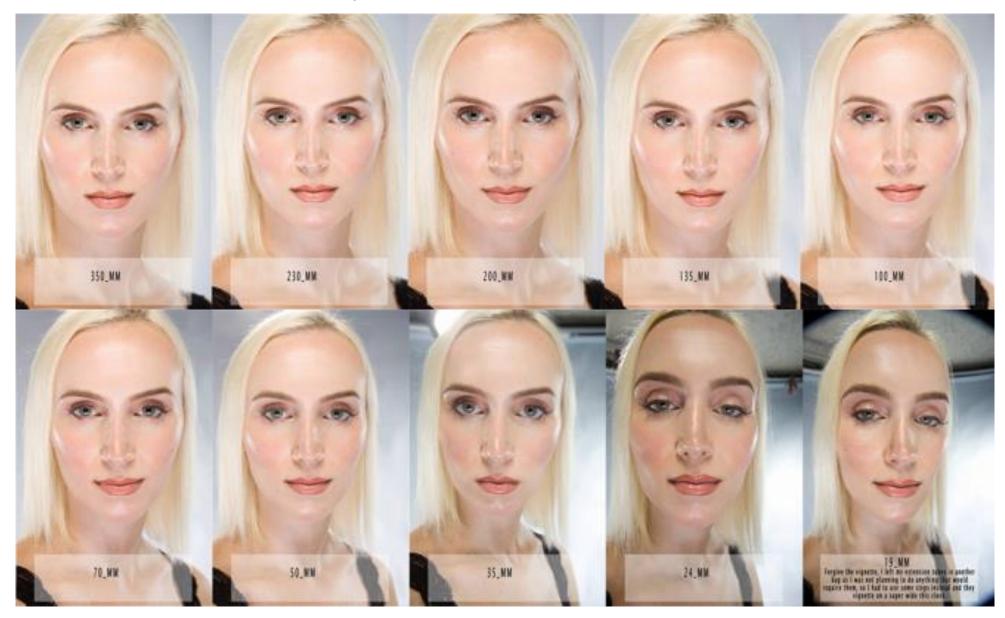
Perspective distortion

long focal length

mid focal length

short focal length

Perspective distortion



What is the best focal length for portraits?

That's like asking which is better, vi or emacs...

long focal length

mid focal length

short focal length

Vertigo effect

Named after Alfred Hitchcock's movie

also known as "dolly zoom"

Vertigo effect

How would you create this effect?

Orthographic camera

What if...

focal depth Z length f

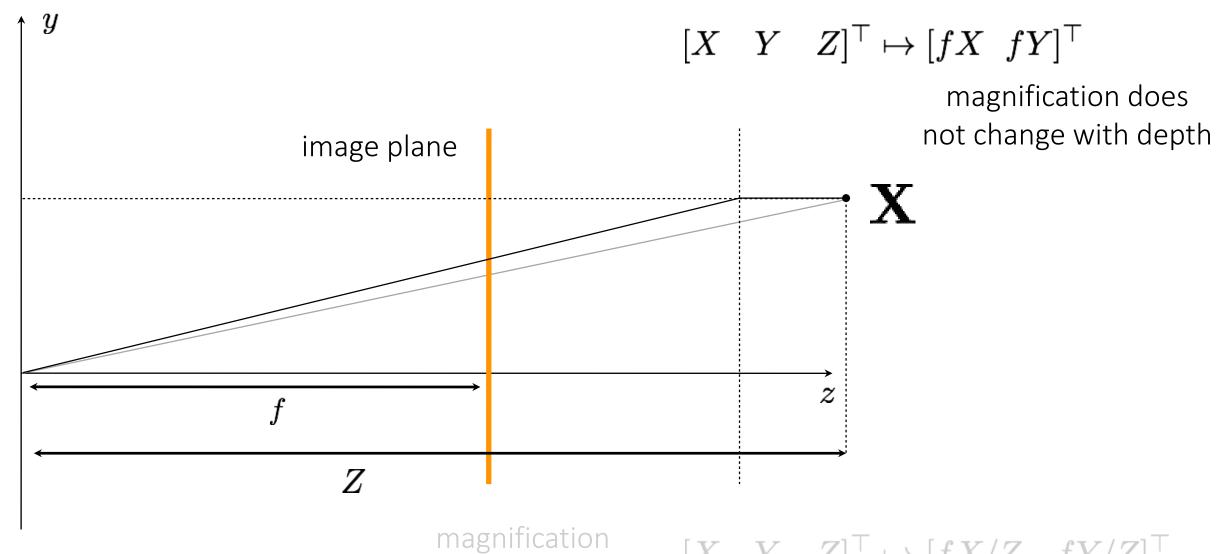
real-world

object

Continue increasing Z and f while maintaining same magnification?

$$f \to \infty$$
 and $\frac{f}{Z} = \text{constant}$

Orthographic vs pinhole camera



changes with depth

$$[X \quad Y \quad Z]^{\top} \mapsto [fX/Z \quad fY/Z]^{\top}$$

Orthographic vs pinhole camera

General pinhole camera:

We also call these cameras:

$$P = KR[I| - C]$$

Projective camera

General orthographic camera:

$$\mathbf{P} = \mathbf{K}\mathbf{R}[\mathbf{I}| - \mathbf{C}]$$

Affine camera

Bottom row is always [0 0 0 1]

What is the rationale behind these names?

References

Basic reading:

Szeliski textbook, Section 2.1.5.

Additional reading:

- Hartley and Zisserman, "Multiple View Geometry in Computer Vision," Cambridge University Press 2004.
 chapter 6 of this book is a very thorough treatment of camera models.
- Goodman, "Introduction to Fourier Optics," W.H. Freeman 2004. the standard reference on Fourier optics, chapter 4 covers aperture diffraction.
- Torralba and Freeman, "Accidental Pinhole and Pinspeck Cameras," CVPR 2012. the eponymous paper discussed in the slides.