Introduction

15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 1

http://graphics.cs.cmu.edu/courses/15-463

Overview of today's lecture

- Teaching staff introductions
- What is computational photography?
- Course fast-forward and logistics

Teaching staff introductions

Instructor: Ioannis (Yannis) Gkioulekas

I won't hold it against you if you mispronounce my last name

Originally from Greece

National Technical University of Athens (2004-09)

Harvard University (2009-17)

Carnegie Mellon University (2017-now)

me at Harvard in 2011 (obviously need new photo)

My website: http://www.cs.cmu.edu/~igkioule

Building a scatterometer

camera for measuring parameters of scattering materials

image synthesized from measurements

Seeing light in flight

camera for capturing video at 10¹⁵ frames per second

Seeing inside objects

thick smoke camera

cloud

a slice through the cloud

what a regular camera sees

what our camera sees

Seeing around walls

TA: Tiancheng Zhi

- CSD PhD Student
- Advisors: Srinivasa Narasimhan and Martial Hebert
- Research Interests: Multispectral Imaging and Material Recognition
- Education:
 - Undergraduate student, EECS, Peking University, 2012-2016
 - PhD student, SCS, Carnegie Mellon University, 2016-

My website: http://www.cs.cmu.edu/~tzhi

Current Research Project: Material-aware Cross-modal Image Alignment

Real world is not always Lambertian (diffuse reflection)

RGB-NIR Stereo Pair

Predicted Depth

Not aware of material

Aware of light

Current Research Project: Powder Recognition via Short-wave Infrared Multispectral Imaging

What is computational photography?

[Slide credit: Kris Kitani]

Analog photography

optics to focus light on an image plane film to capture focused light (chemical process) dark room for limited postprocessing (chemical process)

Digital photography

optics to focus light on an image plane

digital sensor to capture focused light (electrical process) on-board processor for postprocessing (digital process)

Computational photography

optics to focus light on an image plane

digital sensor to capture focused light (electrical process)

arbitrary computation between sensor and image

Overcome limitations of digital photography

Image enhancement and photographic look

image after stylistic tonemapping

camera output

[Bae et al., SIGGRAPH 2006]

Overcome limitations of digital photography

High dynamic range (HDR) imaging

One of your homeworks!

[example from www.dpreview.com] [Debevec and Malik, SIGGRAPH 1997]

Enhance otherwise invisible information

Post-capture motion magnification

motion-magnified video

_original video

One of your homeworks!

[Wadhwa et al., SIGGRAPH 2013]

Create realistic new imagery

Image blending and harmonization

One of your homeworks!

[Sunkavalli et al., SIGGRAPH 2010]

Process image collections

Auto-stitching images into panoramas

One of your homeworks!

[Brown and Lowe, IJCV 2007]

Process (very) large image collections

Using the Internet as your camera

reconstructing cities from Internet photos

Mining Time-Lapse Videos from Internet Photos

Ricardo Martin-Brualla¹ David Gallup² Steve Seitz^{1,2} ¹University of Washington ²Google

time-lapse from Internet photos

[Agarwal et al., ICCV 2009] [Martin-Brualla et al., SIGGRAPH 2015]

Computational photography

optics to focus light on an image plane

digital sensor to capture focused light (electrical process)

arbitrary computation between sensor and image

Computational photography

generalized optics between scene and sensor

digital sensor to capture focused light (electrical process) arbitrary computation between sensor and image

*Sometimes people discriminate between *computational photography* and *computational imaging*. We use them interchangeably.

Capture more than 2D images

Lightfield cameras for plenoptic imaging

post-capture refocusing

One of your homeworks!

[Ng et al., SIGGRAPH 2005] [Lytro Inc.]

Capture more than 2D images

Lightfield cameras for plenoptic imaging

[Ng et al., SIGGRAPH 2005] [Lytro Inc.]

Measure 3D from a single 2D image

Coded aperture for single-image depth and refocusing

input image

inferred depth

[Levin et al., SIGGRAPH 2007]

Measure 3D from a single 2D image

Coded aperture for single-image depth and refocusing

Image and Depth from a Conventional Camera with a Coded Aperture

Novel view synthesis

Anat Levin, Rob Fergus, Fredo Durand, William Freeman

MIT CSAIL

Remove lenses altogether

FlatCam: replacing lenses with masks

prototype

[Asif et al. 2015]

Computational photography

generalized optics between scene and sensor

digital sensor to capture focused light (electrical process)

arbitrary computation between sensor and image

Computational photography

generalized optics between scene and sensor

unconventional light sensing and illumination

arbitrary computation between sensor and image

Measure depth

Time-of-flight sensors for real-time depth sensing

[Microsoft Inc.]

Measure light in flight

Streak camera for femtophotography

[Velten et al., SIGGRAPH 2013]

Measure light in flight

Streak camera for femtophotography

[Velten et al., SIGGRAPH 2013]

Measure photons selectively

Structured light for epipolar imaging

[O'Toole et al., SIGGRAPH 2015]

Measure photons selectively

Structured light for epipolar imaging

direct photons

indirect photons

[O'Toole et al., SIGGRAPH 2015]

Computational photography

generalized optics between scene and sensor

unconventional light sensing and illumination

arbitrary computation between sensor and image

Computational photography

generalized optics between scene and sensor

unconventional light sensing and illumination

arbitrary computation between sensor and image

joint design of optics, illumination, sensors, and computation

Putting it all together

Looking around corners

One of your homeworks!

Computational photography

generalized optics between scene and sensor

unconventional light sensing and illumination

arbitrary computation between sensor and image

joint design of optics, illumination, sensors, and computation

Course fast-forward and logistics

Course fast-forward

<u>Tentative</u> syllabus at:

http://graphics.cs.cmu.edu/courses/15-463

- schedule and exact topics will most likely change during semester
- keep an eye out on the website for updates

Digital photography:

- optics and lenses
- color
- exposure
- aperture
- focus and depth of field
- image processing pipeline

[Photo from Gordon Wetzstein]

Image manipulation and merging:

- image filtering
- image blending
- image carving
- image warping
- morphing
- 3D manipulation

[Banerjee et al., SIGGRAPH 2014]

Types of cameras:

- geometric camera models
- light-field cameras
- coded cameras
- lensless cameras
- compressive cameras
- hyperspectral cameras

Active illumination and sensing:

- time-of-flight sensors
- structured light
- computational light transport
- transient imaging
- non-line-of-sight imaging
- interferometry

[Sen et al., SIGGRAPH 2005]

Course logistics

• Course website:

http://graphics.cs.cmu.edu/courses/15-463

• Piazza for discussion and announcements (sign up!):

https://piazza.com/class/j6dobp76al46ao

• Canvas for homework submissions:

https://cmu.instructure.com/courses/1993

Prerequisites

No formal prerequisites, but:

- Basic calculus, linear algebra, and probability assumed.
- Programming experience very important.
- Background in computer vision, computer graphics, and image processing helpful.

Evaluation

- Seven homework assignments (70%):
 - o mostly programming but some will require taking your own photographs.
 - o all programming will be in Matlab.
 - o first assignment will serve as a gentle introduction to Matlab.
 - o five late days, no more than three per assignment.
- Final project (25%):
 - we will provide more information in the next couple of lectures.
 - o 15-663, 15-862 require more substantive project.
 - o if your ideas require imaging equipment, talk to us in advance.
- Class and Piazza participation (5%):
 - o be around for lectures.
 - participate in Piazza discussions.
 - o ask questions.

Do I need a camera?

- You will need to take your own photographs for assignments 4-7:
 - Assignment 4: HDR you need a camera with manual controls.
 - Assignment 5: lightfield you can use your phone camera.
 - Assignment 6: panoramas you need a camera with manual controls.
 - Assignment 7: corner cameras you need a high-sensitivity camera.
- We have 10 Nikon D3300 kits (camera + lens + tripod) for use by students:
 If you have your own camera, please use that!

Contact information and office hours

- Feel free to email us about administrative questions.
 o please use [15463] in email title!
- Technical questions should be asked on Piazza.
 - we won't answer technical questions through email.
 - you can post anonymously if you prefer.
- Office hours will be determined by poll.
 - o feel free to email Yannis about additional office hours.
 - o you can also just drop by Yannis' office (Smith Hall (EDSH) Rm 228).

Please take the course survey (posted on Piazza) before the next lecture!