
Homework Assignment 3
15-463/663/862, Computational Photography, Fall 2017

Carnegie Mellon University

Due Thursday, Oct. 12, at 11:59pm

The purpose of this assignment is to explore gradient-domain processing, and in particular Poisson blend-
ing [2]. As we discussed in class, this is a technique that allows seamlessly blending an object or texture
from a source image into a target image. While the assignment and the class slides describe most of the
steps you need to perform, it is highly recommended that you read the associated paper. There is a “Hints
and Information” section at the end of this document that is likely to help.

1. Implement Poisson Blending (100 points)

As we discussed in class, the main insight behind Poisson blending is that people often care much more
about the gradient of an image than the overall intensity. So, we can try to do blending by finding values
for the area to be blended that maximally preserve the gradient of the source region without changing any
of the background pixels of the target image. Note that we are making a deliberate decision here to ignore
the overall intensity! So a green hat could turn red, but it will still look like a hat.

For an example of this, consider the picture of the bear and swimmers being pasted into a pool of
water, shown in Figure 1. Let’s ignore the bear for a moment (it’s a non-threatening bear) and consider
the swimmers. We will denote by s the source image, that is, the original image the swimmers were cut out
of. That image isn’t even shown, because we are only interested in the cut-out of the swimmers, which we
denote as the region S. S includes the swimmers and a bit of light blue background. You can clearly see
the region S in the left image, as the cutout blends very poorly into the pool of water. The pool of water,
before things were rudely pasted into it, is the target image t.

How do we blend in the swimmers? We construct a new image v whose gradients inside the region S
are similar to the gradients of the cutout we’re trying to paste in (swimmers and a little bit of background).
Outside S, v will match the pool. We won’t even bother computing the gradients of the pool outside S; we’ll
just copy those pixels directly.

We can formulate the above as a least squares problem, as follows:

v = argmin
v

∑
i∈S, j∈Ni∩S

((vi − vj)− (si − sj))
2

+
∑

i∈S, j∈Ni∩¬S

((vi − tj)− (si − sj))
2
. (1)

In the first summation of Equation (1), we set the gradients of v inside S. We loop over all the pixels inside
the region S, and require that the new image v have the same gradients as the swimmers. The summation
is over every pixel i in S; j is the 4 neighbors of i (left, right, up, and down), giving us both horizontal and
vertical gradients. The second summation takes care of the boundary around S. In this case, i is inside S,
but j is outside. In this case we are not solving for a pixel intensity vj , since j is not inside S. So we just
insert the intensity value tj from the target image, which we know since we are not modifying that part of
the image. The gradients will not end up matching exactly: the least squares solver will take any hard edges
of the cutout at the boundary and smooth them by spreading the error over the gradients inside S.

Toy Problem (20 points). The implementation for gradient domain processing is not complicated, but
it is easy to make mistakes, so you will start with a toy example using the image toy problem.png in the
./data directory of the homework ZIP archive. In this example, you will compute the x and y gradients of
an image s, then use these the gradients, plus one pixel intensity, to reconstruct an image v. If all is done
correctly, the reconstructed image should match the original one.

In particular, denote the intensity of the source image at (x, y) as s (x, y), and the values of the image to
solve for as v (x, y). For each pixel, then, we have two objectives:

1. Minimize the difference between the x-gradients of v and the x-gradients of s, that is,

((v (x + 1, y)− v (x, y))− (s (x + 1, y)− s (x, y)))
2
. (2)

1

Figure 1: Pool example for Poisson blending.

2. Minimize the difference between the y-gradients of v and the y-gradients of s, that is,

((v (x, y + 1)− v (x, y))− (s (x, y + 1)− s (x, y)))
2
. (3)

Note that the above objectives could be solved while adding any constant value to v, so you will need to add
one more objective:

3. Minimize the difference between the colors of the top left corners of the two images,

(v (1, 1)− s (1, 1))
2
. (4)

Combine all of the above objectives into a single least-squares problem, expressed in matrix form:

(Av − b)
2
, (5)

where A is a sparse matrix, v are the variables to be solved, and b is a known vector. Then, solve this
problem using one of Matlab’s solvers and compare the result to the original image. (See help for the \
operator)

Poisson blending (50 points.) It is now time to implement Poisson blending. For this, you will use
the images hiking.png, penguin.png, and penguin-chick.png included in the ./data directory of the
homework ZIP archive. You will insert each of the two penguin images on top of the snow in the hiking
image. You can select where exactly the insertion region will be. Given that the images are RGB, you should
process each color channel separately. The file starter.m, provided in the ./src directory of the homework
ZIP archive, contains some starter code for this part. Its use is optional.

We can split implementation into three steps.

1. Select the boundaries of a region in the source image and specify a location in the target image where
it should be blended. Then, transform (e.g., translate) the source image so that indices of pixels in
the source and target regions match. For help with this, you can use the functions getMask.m and
alignSource.m provided in the ./src directory of the homework ZIP archive. You may want to
augment the code to allow rotation or resizing into the target region. You can be a bit sloppy about
selecting the source region: The penguin selection can be done very crudely, with lots of room around
them—just make sure that you are kind to the penguins and you do not chop off parts of them.

2. Formulate and solve the blending constraints expressed in Equation (1).

3. Copy the solved values vi into your target image.

Blending with mixed gradients (10 points.) Follow the same steps as Poisson blending, but use the
gradient in source or target with the larger magnitude as the guide, rather than the source gradient. That

2

is, solve the least squares problem:

v = argmin
v

∑
i∈S, j∈Ni∩S

((vi − vj)− dij)
2

+
∑

i∈S, j∈Ni∩¬S

((vi − tj)− dij)
2
, (6)

where dij is whichever of the source or the target gradients has the largest magnitude,

dij =

{
si − sj if |si − sj | > |ti − tj | ,
ti − tj , otherwise.

(7)

Your own examples (20 points.) Apply Poisson blending and the mixed-gradients variant to your
own examples. Show at least three results for each. Explain any failure cases (e.g., weird colors, blurred
boundaries, etc.). We discussed some failure cases in class, so you can try to reproduce those. For mixed
gradients, one possible example is blending a picture of writing on a plain background onto another image.

The total number of points you will get from this question will depend on how visually compelling your
blending results are.

2. Bonus: Implement a different gradient-domain processing algorithm (up to
50 points)

Gradient-domain processing is a general image processing paradigm that can be used for a broad set of
applications, including blending as above, but also tone-mapping, colorization, converting to grayscale,
edge enhancement, image abstraction and non-photorealistic rendering (we saw a toy example of this when
discussing median filtering), and so on.

GradientShop [1] is a paper and associated app that provide a unifying framework for expressing all
these tasks as gradient-domain processing algorithms. Read this paper, and implement whichever of the
applications described within appeal to you the most (the instructor’s personal favorite is non-photorealistic
rendering, but it won’t reflect badly on your grade if you go for something else).

Your implementation does not need to follow the paper exactly. For instance, instead of implementing
the “long-edge detector” described in the paper, you can come up with your own detector of continuous
edges.

In your submitted report, you should make sure to describe in detail exactly what you did. This includes
what task you chose to implement, where you followed and where you deviated from GradientShop, and in
the latter case what you did differently. You should also show at least three examples showcasing the effects
of your gradient-domain processing pipeline.

Deliverables

As described on the course website, solutions are submitted through Canvas. Your solution should be an
archive (e.g., a ZIP file) that includes the following:

• A PDF report explaining what you did for each problem, including answers to all questions asked
throughout Problem 1, as well as any of the bonus problems you choose to do. The report should
include any figures and intermediate results that you think may help. Make sure to include explanations
of any issues that you may have run into that prevented you from fully solving the assignment, as this
will help us determine partial credit. The report should also explain any additional image files you
include in your solution (see below).

• All of your Matlab code, including code for the bonus problems, as well as a README file explaining
how to use the code.

• Image files showing the results of inserting the penguin images into the hiking image, using Poisson
blending and mixed gradients, as well as the results of applying these techniques to your own chosen
examples. In the latter case, make sure to include the original source and target images as well. You
can also include additional image files for various experiments (e.g., using different crops and insertion
regions) other than your final ones, if you think they show something important.

3

http://grail.cs.washington.edu/projects/gradientshop/

• If you do Bonus Problem 2: The original and corresponding processed image files you used.

Please organize your solution submission using the following file structure:
.zip

.pdf ..The PDF report.
src/...............Contains all Matlab M-files and the README file explaining how to use the code.
data/...Contains all image, video, and other data files.

Hints and Information

• To solve the toy problem, it is helpful to keep a matrix ”im2var” that maps each pixel to a variable
number, for example,

[imh, imw, nb] = size(im);

im2var = zeros(imh, imw);

im2var(1:imh*imw) = 1:imh*imw;

If you find this Matlab trickery confusing, consider that you could have performed the mapping between
pixel and variable number manually each time. For example, the pixel at s(r, c), uses the variable
number (c− 1) ∗ imh+ r. While creating im2var may seem unnecessary for the toy problem, this trick
will come in handy for the Poisson blending problem, where the mapping is from an arbitrarily-shaped
block of pixels and will not be such a simple function. Therefore, it helps to understand the mappint
trick now.

Given this, you can create the rows of matrix A corresponding to the objective of Equation (2) as,

e=e+1;

A(e, im2var(y,x+1))=1;

A(e, im2var(y,x))=-1;

b(e) = s(y,x+1)-s(y,x);

Here, e is used as an equation (matrix row) counter. Note that, confusingly, the y-coordinate is the
first index in Matlab convention. The objectives of Equations (3) and (4) can be written similarly.

• As always when working with Matlab, it is important to initialize (“preallocate”) large variables. In
this case, you can use the following to initialize a sparse matrix with M equations (rows), N variables
(columns), and at most nzmax non-zero entries:

A = sparse([], [], [], M, N, nzmax);

Credits

Most of the write-up for this assignment came from previous offerings of this class.

References

[1] P. Bhat, C. L. Zitnick, M. Cohen, and B. Curless. Gradientshop: A gradient-domain optimization
framework for image and video filtering. ACM Transactions on Graphics (TOG), 29(2):10, 2010.

[2] P. Pérez, M. Gangnet, and A. Blake. Poisson image editing. In ACM Transactions on graphics (TOG),
volume 22, pages 313–318. ACM, 2003.

4

