Homework Assignment 2
15-463/663/862, Computational Photography, Fall 2017
Carnegie Mellon University

Due Thursday, Sep. 28, at 11:59pm

The purpose of this assignment is to explore Eulerian video magnification [2] as a tool for revealing temporal
image variations that are difficult to visualize, or even see at all. While the assignment describes most of
the steps you need to perform, it is highly recommended that you watch this video and read the associated
paper describing the technique. There is a “Hints and Information” section at the end of this document that
is likely to help.

1. Implement Eulerian Video Magnification (100 points)

Throughout this problem, you will use the videos face.mp4 and baby2.mp4 included in the ./data directory
of the homework ZIP archive. You will use these videos as test sequences for your implementation of Eulerian
video magnification.

How can you amplify image variations that are hard to see with the naked eye? The insight is that some of
these hard-to-see changes occur at particular temporal frequencies that you can augment using simple filters
in the frequency domain. For example, to magnify pulse, you can look at pixel variations with frequencies
between 0.4 and 4Hz, which correspond to 24 to 240 beats per minute. Given the above insight, Eulerian
video magnification is done as a sequence of the following steps:

1. If your video has color, transform it to an appropriate color space.
2. Create a Laplacian pyramid for each video frame.

3. Band-pass filter the time series for each pixel, on all levels of the pyramid.
4. Magnify bands of interest by some scale.
5. Reverse the Laplacian pyramid and undo the color transform to obtain the final output.

After running this pipeline, you get results that, for the face.mp4 video, should look something like what is
shown in Figure 1, or the results videos shown in the project website.

The exact result can vary greatly, depending on the choices you make in your implementation of the
algorithm. In fact, the hardest part of the process is exactly finding the right parameters to get the desired
magnification effect. For example, one can change the size of the Laplacian pyramid, multiply the time series
corresponding to the value of a pixel by different scale factors at different levels of the pyramid, or attenuate
the magnification when adding the augmented band-passed signals to the original ones. The choice of the
band-pass filter (e.g., the range of frequencies it passes/rejects, its order, etc.) can also influence the obtained
results. We recommend that you implement your pipeline in such a way that you can easily re-run it with
different sets of parameters, multiple times. This parameter exploration is part of the project and is very
time consuming, especially since you are processing video sequences and not just still images. So make sure
you start the assignment early!

Initials and color transformation (5 points). Load the video file into Matlab, extract its frames, and
convert them to double-precision in the range [0, 1]. (See help for VideoReader and GetFrames about reading
video files in Matlab.)

Then, convert each of the frames to the YIQ color space. The YIQ color space is particularly suggested
for Eulerian magnification because it allows to easily amplify intensity and chromaticity independently of
each other. All subsequent steps in this problem will be performed on each color channel independently.
(See help for rgb2ntsc and ntsc2rgb about converting between RGB and YIQ.)

Laplacian pyramid construction (20 points). The next step towards motion magnification is to con-
struct a Laplacian pyramid for every frame in the video sequence. This can be done in many, approximately


http://people.csail.mit.edu/mrub/vidmag/
http://www.youtube.com/embed/ONZcjs1Pjmk
http://people.csail.mit.edu/mrub/vidmag/
http://en.wikipedia.org/wiki/YIQ

(a) Input

(b) Magnified

Figure 1: One set of possible results for the face.mp4 video.

equivalent ways. One was discussed in class: Iterate steps of Gaussian blurring, differencing, and downsam-
pling, then store the image differences and the lowest resolution image. An alternative is to directly use
Laplacian-of-Gaussian filtering. You can find more details in the slides for lectures 3 (linear filtering) and
lectures 5 (pyramids), the Szeliski chapters referenced as reading at the end of those slides, and the original
Laplacian pyramid paper by Burt and Adelson [1].

Whichever method you use, make sure to describe in detail your implementation in your PDF report.

Temporal filtering (40 points). At each spatial level of the Laplacian pyramid, look at the values of
each pixel across all video frames. This time series of values is a temporal signal that you can filter like
any other signal, as we discussed in class. You will need to apply a band-pass filter to this time series. The
choice of the band-pass filter is crucial, and we recommend designing and visualizing the filter using Matlab
filter design tools. In order to filter the time series of all pixels fast, you should perform this operation in
the frequency domain, since multiplication is faster than convolution. (See Hints and Information.)

You can check the Eulerian video magnification paper for details on the parameters they used on the
face.mp4 and baby2.mp4 videos. In your PDF report, you should discuss and justify the choices you made
for the band-pass filters.

Pixel change magnification (10 points). After extracting the frequency band of interest, you need to
amplify it and add the result back to the original signal. You should experiment with different magnification
scales.

Image reconstruction (25 points). After amplifying the signals, it is now time to collapse the Laplacian
pyramids into a single image per frame. As discussed in class, this will require (among other steps) upsam-
pling images from one level of the pyramid to the next lower one. You can use bilinear interpolation to do
this, or any other way you come up with. In your PDF report, make sure to describe how you implement
the pyramid inversion.

Once you have inverted the Laplacian pyramid, all that is left to do is convert your processed frames
from YIQ back to RGB.

Note that, in addition to implementation of the above, the number of points for this question also includes
evaluating your final results and the parameter exploration you performed.

2. Bonus: Capture and motion-magnify your own video(s) (up to 30 points)

Use your own camera (or one that you borrowed) to capture your own video sequences. A phone camera is
fine for this. Try to find scenes where there are interesting motion effects to visualize.



Then, apply Eulerian video magnification to the videos you captured. You will need to search for a whole
new set of parameters to use when doing motion magnification on your own videos, in order for the final
results to look good.

The total number of points you will get from this bonus question will depend on how visually compelling
the motion effect you capture and magnify is.

Deliverables

As described on the course website, solutions are submitted through Canvas. Your solution should be an
archive (e.g., a ZIP file) that includes the following:

e A PDF report explaining what you did for each problem, including answers to all questions asked
throughout Problem 1, as well as any of the bonus problems you choose to do. The report should
include any figures and intermediate results that you think may help. Make sure to include explanations
of any issues that you may have run into that prevented you from fully solving the assignment, as this
will help us determine partial credit. The report should also explain any additional .MP4 files you
include in your solution (see below).

e All of your Matlab code, including code for the bonus problems, as well as a README file explaining
how to use the code.

e At least two .MP4 files, showing the final motion-magnified videos you created in Problem 1 for
face.mp4 and baby2.mp4. You can also include additional .MP4 files corresponding to parameter
settings (e.g., band-pass filter or Laplacian pyramid settings) other than your final ones, if you think
they show something important.

e If you do Bonus Problem 2: The original video files you used, as well as the corresponding .MP4 files
after processing them.

Please organize your solution submission using the following file structure:

.zip
TPAE L The PDF report.
src/ oot Contains all Matlab M-files and the README file explaining how to use the code.
Aata/ o e e Contains all image, video, and other data files.

Hints and Information

e To design and visualize the band-pass filter you use in your pipeline, you can use the functions fdatool
and fvtool. You should take a look at this tutorial from Mathworks on how to use these funtions.

To make the filter design process easier, in the ./src directory of the homework ZIP archive, we
provide you with a butterworthBandpassFilter function. This function generates a Butterworth
band-pass filter of a particular order. It was generated with fdatool, and also uses the function
fdesign.bandpass, which you can read more about in the Matlab documentation. Use of this filter is
optional.

e To convert a one-dimensiona discrete signal (e.g., a temporal signal) to the Fourier domain, you can
use the Fast Fourier Transform, which in Matlab is provided by the function £ft. However, you need
to be careful about fft’s output format! As explained in this tutorial, the DC component of fftx
= fft(x), for x a 1D signal, is the first element £ftx(1) of the array. If x has an even number of
samples, then the magnitude of the FFT will be symmetric, such that the first (1+nfft/2) points are
unique, and the rest are symmetrically redundant. In this case, the element fftx(1+nfft/2) is the
Nyquist frequency component. However, if the number of samples of x is odd, the Nyquist frequency
component is not evaluated, and the number of unique points is (nfft+1)/2.

If you choose to use the provided butterworthBandpassFilter function, you will need to get the
frequency components of the filter. This can be done by using function freqz, by passing the filter
and the length of the output that you want, for example,


https://www.mathworks.com/help/signal/examples/introduction-to-filter-designer.html
http://www.mathworks.com/support/tech-notes/1700/1702.html

fftHd = freqz(Hd,NumSamples));

As above, be careful about the order in which freqz outputs the frequency components.

Credits

Most of the write-up for this assignment came from previous offerings of this class. Video data came from
the original Eulerian magnification paper.

References

[1] P. Burt and E. Adelson. The laplacian pyramid as a compact image code. IFEE Transactions on
communications, 31(4):532-540, 1983.

[2] H.-Y. Wu, M. Rubinstein, E. Shih, J. Guttag, F. Durand, and W. T. Freeman. Eulerian video magnifi-
cation for revealing subtle changes in the world. ACM Trans. Graph. (Proceedings SIGGRAPH 2012),
31(4), 2012.



