
Homework Assignment 1
15-463/663/862, Computational Photography, Fall 2017

Carnegie Mellon University

Due Thursday, Sep. 14, at 11:59pm

The purpose of this assignment is to introduce you to Matlab as a tool for manipulating images. For this, you
will build your own version of a very basic image processing pipeline (without denoising and color transform
steps), to convert a RAW image into an image that can be displayed on a computer monitor or printed on
paper. There is a “Hints and Information” section at the end of this document that is likely to help.

1. Implement a basic image processing pipeline (90 points)

Throughout this problem, you will use the file banana slug.tiff included in the ./data directory of the
homework ZIP archive. This is a RAW image that was captured with a Canon EOS T3 Rebel camera. We
did some very slight pre-processing to the original RAW file, in order to convert it to .tiff format. At the
end of this problem, the image should look something like what is shown in Figure 1. The exact result can
vary greatly, depending on the choices you make in your implementation of the image processing pipeline.

Figure 1: One possible rendering of the RAW image provided with the assignment.

Initials (5 points). Load the image into Matlab. Originally, it will be in the form of a 2D-array of unsigned
integers. Check and report how many bits per integer the image has, and what its width and height is. Then,
convert the image into a double-precision array. (See help for functions imread, size, class and double.)

Linearization (5 points). The 2D-array is not yet a linear image. As we discussed in class, it is possible
that it has an offset due to dark noise, and saturated pixels due to overexposure. Additionally, even though
the original data-type of the image was 16 bits, only 14 of those have meaningful information, meaning that
the maximum possible value for pixels is 16383 (that’s 214− 1). For the provided image file, you can assume
the following: All pixels with a value lower than 2047 correspond to pixels that would be black, were it not
for dark noise. All pixels with a value above 15000 are over-exposed pixels. (The values 2047 for the black
level and 15000 for saturation are taken from the manufacturer).

Convert the image into a linear array within the range [0, 1]. Do this by applying a linear transform
(shift and scale) to the image, so that the value 2047 is mapped to 0, and the vallue 15000 is mapped to 1.

1

Then, clip negative values to 0, and values greater than 1 to 1. (See help for functions min and max.)

Identifying the correct Bayer pattern (20 points). As we discussed in class, most cameras use the
Bayer pattern in order to capture color. The same is true for the camera used to capture our RAW image.

We do npt know, however, the exact shift of the Bayer pattern relative to our image: If you look at the
top-left 2x2 square of the image file, it can correspond to any of four possible red-green-blue patterns, as
shown in Figure 2.

Figure 2: From left to right: ’grbg’, ’rggb’, ’bggr’, ’gbrg’.

Think of a way for identifying which version of the Bayer patterns applies to our image file, and report
which version you identified. (See Hints and Information.)

White balancing (20 points). After identifying the correct Bayer pattern, we want to do white balancing.
Implement both the white world and gray world automatic white balancing algorithms, as discussed in class.
At the end of the assignment, check what the image looks like under both white balancing algorithms, and
decide which one you like best. (See help for function mean.)

Demosaicing (25 points). After white balancing, you want to demosaic the image. Use bilinear interpo-
lation for demosaicking, as discussed in class. Do not implement bilinear interpolation manually! Instead,
read the documentation to learn how to use Matlab’s interp2 function for this purpose.

Brightness adjustment and gamma correction (20 points). You now have a 16-bit, full-resolution,
linear RGB image. Because of the scaling you did at the start of the assignment, the image pixel values
may not be in a range appropriate for display. Additionally, as we discussed in class, the image is not yet
gamma-corrected. As a result, when displaying the image, it will appear very dark.

Brighten the image by linearly scaling it by some number. Select the scale as a percentage of the pre-
brightening maximum grayscale value. (See help for rgb2gray for converting the image to grayscale). The
correct percentage is highly subjective, so you should experiment with many different percentages and report
and use what percentage looks best to you.

Before having an image that can be properly displayed, the last step you need to do is tone reproduction
(gamma correction). For this, implement the following non-linear transform, then apply it to the image:

Cnon-linear =

{
12.92 · Clinear, Clinear ≤ 0.0031308

(1 + 0.055) · C
1

2.4

linear − 0.055, Clinear ≥ 0.0031308
(1)

where C = {R,G,B} is each of the red, green, and blue channels. This function may look completely
arbitrary, but it comes from the sRGB standard. It is a good default choice if the camera’s true gamma
correction curve is not known. We will discuss sRGB in more detail in class during the color lecture, but
you are welcome to read up on it on Wikipedia.

Compression (5 points). Finally, it is time to store the image, either with or without compression. Use
the imwrite command to store the image in .PNG format (no compression), and also in .JPEG format with
quality setting 95. This setting determines the amount of compression. Can you tell the difference between
the two files? The compression ratio is the ratio between the size of the uncompressed file (in bytes) and the
size of the compressed file (in bytes). What is the compression ratio?

By changing the JPEG quality settings, determine the lowest setting for which the compressed image is
indistinguishable from the original. What is the compression ratio?

2

2. Bonus: Perform manual white balancing (10 points)

As we discussed in class, one way to do manual white balancing is by: 1) selecting some patch in the scene
that you expect to be white; and 2) normalizing all three channels using weights that make the red, green,
and blue channel values of this patch be equal.

Implement this manual white balancing algorithm, and experiment with different patches in the scene.
Show results for using different patches, and discuss which patches work best. (See help for functions ginput
and impixelinfo.)

3. Bonus: Capture and process your own images (10 points)

Use your own camera (or one that you borrowed) and take a RAW photograph. If you only have a phone
camera, you can store RAW images using the Lightroom application (select the option to save as .DNG).

Depending on what camera you use, the RAW file will have that is camera-dependent. According to
Wikipedia, this extension can be any of the following: .IIQ (Phase One), .3FR (Hasselblad), .DCR, .K25,
.KDC (Kodak), .CR2 (Canon), .ERF (Epson), .MEF (Mamiya), .MOS (Leaf), .NEF (Nikon), .ORF (Olympus),
.PEF (Pentax), .RW2 (Panasonic), .ARW, .SRF, .SR2 (Sony), or .DNG (if you use Lightroom).

You cannot directly load these images into Matlab. Instead, you will need to convert them into .tiff

files using a command-line tool called dcraw1. You can do the conversion by calling dcraw as follows.

dcraw -4 -D -T <RAW_filename>

4. Bonus: Learn to use dcraw (5 points)

Beyond converting RAW files to .tiff, dcraw provides options to emulate all steps in the image processing
pipeline, including steps that are camera-dependent.

Inside the ./data directory of the homework ZIP archive, you will find the file banana slug.CR2. This
is the original RAW file captured by the camera, before we converted it to .tiff for the main part of the
assignment. Read through dcraw’s documentation, and figure out what the correct flags are in order for
dcraw to perform on the .CR2 file all the image processing pipeline steps you implemented in Matlab.

Deliverables

As described on the course website, solutions are submitted through Canvas. Your solution should be an
archive (e.g., a ZIP file) that includes the following:

• A PDF report explaining what you did for each problem, including answers to all questions asked
throughout Problem 1, as well as any of the bonus problems you choose to do. The report should
include any figures and intermediate results that you think may help. Make sure to include explanations
of any issues that you may have run into that prevented you from fully solving the assignment, as this
will help us determine partial credit. The report should also explain any .PNG files you include in your
solution (see below).

• All of your Matlab code, including code for the bonus problems, as well as a README file explaining
how to use the code.

• At least two .PNG files, showing the final images you created in Problem 1 with the two different types
of automatic white balancing. You can also include .PNG files for various experimental settings if you
want (e.g., different brightness values).

• If you do Bonus Problem 2: .PNG files, showing the result of your manual white balancing for different
patch selections.

• If you do Bonus Problem 3: The original RAW files you used, as well as corresponding .PNG files after
processing them.

1https://www.cybercom.net/~dcoffin/dcraw/

3

https://www.cybercom.net/~dcoffin/dcraw/

• If you do Bonus Problem 4: The .PNG file produced by dcraw. If you do Bonus Problem 4, make sure
to mention in the PDF report the exact dcraw flags you used.

Please organize your solution submission using the following file structure:
.zip

.pdf ..The PDF report.
src/...............Contains all Matlab M-files and the README file explaining how to use the code.
data/..Contains all image and other data files.

Hints and Information

• To get help on a particular function in Matlab, type help <function>. To get a list of functions
related to a particular keyword, use the lookfor function. We will be making extensive use of the
Image Processing Toolbox, and a list of the functions in that toolbox is generated by typing help

images. Print your results (to a printer or to a file) using the print command, and when making
hardcopies please save space by using subplot whenever possible. As an example, the following
Matlab script loads three images, displays them in a figure and prints the figure to a PNG file.

% read three images from current directory

im1 = imread(‘image1.tiff’);

im2 = imread(‘image2.tiff’);

im3 = imread(‘image3.tiff’);

% display images in a figure, side-by-side

figure; % create a new figure

imshow(im1); % display an image

title(‘Image 1’); % add a title

% print the displayed figure a PNG file. You can also print from the figure menubar.

print -dpng output.png

• The colon operator : allows to form arrays out of subsets of other arrays. In the following example,
given an original image im, it creates three other images, each with only one-fourth the pixels of the
originals. The pixels of each of the corresponding sub-images are shown in Figure . You can also use
the function cat to combine these three images into a single 3-channel RGB image.

% create three sub-images of im as shown in figure below

im1 = im(1:2:end, 1:2:end)

im2 = im(1:2:end, 2:2:end);

im3 = im(2:2:end, 1:2:end);

% combine the above images into an RGB image, such that im1 is the red,

% im2 is the green, and im3 is the blue channel

im_rgb = cat(3, im1, im2, im3);

• You will find it very helpful to display intermediate results while you are implementing the image
processing pipeline. However, before you apply the brightening and gamma correction, you will find
that displayed images will look completely black. To be able to see something more meaningful, you
can use the following command to display an intermediate image im intermediate.

figure; imshow(min(1, im_intermediate * 5));

For example, Figure 3 shows what you should see using this command after correctly performing the
linearization step.

4

Figure 3: Left: The linear RAW image (brightness increased by 5). Right: Crop for showing the Bayer
pattern.

Credit

The RAW image used in this assignment, and some inspiration for the questions, came from Robert Sumner’s
popular guide for reading and processing RAW files.

5

