Image Warping and Morphing

© Alexey Tikhonov
15-463: Computational Photography Alexei Efros, CMU, Fall 2011

Women in Art video

Women In Art

http://youtube.com/watch?v=nUDIoN- Hxs

Image Warping in Biology

D'Arcy Thompson

http://www-groups.dcs.st-and.ac.uk/~history/Miscellaneous/darcy.html http://en.wikipedia.org/wiki/D'Arcy Thompson
Importance of shape and structure in evolution

Fig. 517. Argyropelecus Olfersi.

Fig. 518. Sternoptyx diaphana.

Skulls of a human, a chimparzee and a baboon and transformations between them

Slide by Durand and Freeman

Recovering Transformations

What if we know f and g and want to recover the transform T?

- e.g. better align images from Project 1
- willing to let user provide correspondences
- How many do we need?

Translation: \# correspondences?

How many correspondences needed for translation?
How many Degrees of Freedom?
What is the transformation matrix?

$$
\mathbf{M}=\left[\begin{array}{ccc}
1 & 0 & p_{x}^{\prime}-p_{x} \\
0 & 1 & p_{y}^{\prime}-p_{y} \\
0 & 0 & 1
\end{array}\right]
$$

Euclidian: \# correspondences?

How many correspondences needed for translation+rotation? How many DOF?

Affine: \# correspondences?

How many correspondences needed for affine? How many DOF?

Projective: \# correspondences?

How many correspondences needed for projective? How many DOF?

Example: warping triangles

Given two triangles: ABC and $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ in 2D (12 numbers) Need to find transform T to transfer all pixels from one to the other.

What kind of transformation is T?
How can we compute the transformation matrix:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right] \quad \begin{aligned}
& \text { Two ways: } \\
& \text { Algebraic and } \\
& \text { geometric }
\end{aligned}
$$

warping triangles (Barycentric Coordinaes)

Don't forget to move the origin too!

Very useful for Project 3... (hint,hint,nudge,nudge)

Image warping

Given a coordinate transform $\left(x^{\prime}, y^{\prime}\right)=T(x, y)$ and a source image $f(x, y)$, how do we compute a transformed image $g\left(x^{\prime}, y^{\prime}\right)=f(T(x, y))$?

Forward warping

Send each pixel $f(x, y)$ to its corresponding location $\left(x^{\prime}, y^{\prime}\right)=T(x, y)$ in the second image

Q: what if pixel lands "between" two pixels?

Forward warping

Send each pixel $f(x, y)$ to its corresponding location $\left(x^{\prime}, y^{\prime}\right)=T(x, y)$ in the second image

Q: what if pixel lands "between" two pixels?
A: distribute color among neighboring pixels (x^{\prime}, y^{\prime})

- Known as "splatting"
- Check out griddata in Matlab

Inverse warping

Get each pixel $g\left(x^{\prime}, y^{\prime}\right)$ from its corresponding location $(x, y)=T^{-1}\left(x^{\prime}, y^{\prime}\right)$ in the first image

Q: what if pixel comes from "between" two pixels?

Inverse warping

Get each pixel $g\left(x^{\prime}, y^{\prime}\right)$ from its corresponding location $(x, y)=T^{-1}\left(x^{\prime}, y^{\prime}\right)$ in the first image

Q: what if pixel comes from "between" two pixels?
A: Interpolate color value from neighbors

- nearest neighbor, bilinear, Gaussian, bicubic
- Check out interp2 in Matlab

Forward vs. inverse warping

Q: which is better?

A: usually inverse-eliminates holes

- however, it requires an invertible warp function—not always possible...

Morphing = Object Averaging

The aim is to find "an average" between two objects

- Not an average of two images of objects...
- ...but an image of the average object!
- How can we make a smooth transition in time?
- Do a "weighted average" over time t

How do we know what the average object looks like?

- We haven't a clue!
- But we can often fake something reasonable
- Usually required user/artist input

Averaging Points

What's the average of P and Q ?

Linear Interpolation (Affine Combination):
New point $a P+b Q$, defined only when $a+b=1$
So $a P+b Q=a P+(1-a) Q$

P and Q can be anything:

- points on a plane (2D) or in space (3D)
- Colors in RGB or HSV (3D)
- Whole images (m-by-n D)... etc.

Idea \#1: Cross-Dissolve

Interpolate whole images:
Image $_{\text {halfway }}=(1-\mathrm{t})^{\star}$ Image $_{1}+$ t*image $_{2}$
This is called cross-dissolve in film industry

But what is the images are not aligned?

Idea \#2: Align, then cross-disolve

Align first, then cross-dissolve

- Alignment using global warp - picture still valid

Dog Averaging

What to do?

- Cross-dissolve doesn't work
- Global alignment doesn't work
- Cannot be done with a global transformation (e.g. affine)
- Any ideas?

Feature matching!

- Nose to nose, tail to tail, etc.
- This is a local (non-parametric) warp

Idea \#3: Local warp, then cross-dissolve

Morphing procedure:
for every t,

1. Find the average shape (the "mean dog"(:))

- local warping

2. Find the average color

- Cross-dissolve the warped images

Local (non-parametric) Image Warping

Need to specify a more detailed warp function

- Global warps were functions of a few $(2,4,8)$ parameters
- Non-parametric warps $u(x, y)$ and $v(x, y)$ can be defined independently for every single location x, y !
- Once we know vector field u,v we can easily warp each pixel (use backward warping with interpolation)

Image Warping - non-parametric

Move control points to specify a spline warp Spline produces a smooth vector field

Warp specification - dense

How can we specify the warp?
Specify corresponding spline control points

- interpolate to a complete warping function

But we want to specify only a few points, not a grid

Warp specification - sparse

How can we specify the warp?
Specify corresponding points

- interpolate to a complete warping function
- How do we do it?

How do we go from feature points to pixels?

Triangular Mesh

1. Input correspondences at key feature points
2. Define a triangular mesh over the points

- Same mesh in both images!
- Now we have triangle-to-triangle correspondences

3. Warp each triangle separately from source to destination

- How do we warp a triangle?
- 3 points = affine warp!
- Just like texture mapping

Triangulations

A triangulation of set of points in the plane is a partition of the convex hull to triangles whose vertices are the points, and do not contain other points.
There are an exponential number of triangulations of a point set.

An O(n^{3}) Triangulation Algorithm

Repeat until impossible:

- Select two sites.
- If the edge connecting them does not intersect previous edges, keep it.

"Quality" Triangulations

Let $\alpha(T)=\left(\alpha_{1}, \alpha_{2}, . ., \alpha_{3 t}\right)$ be the vector of angles in the triangulation T in increasing order.
A triangulation T_{1} will be "better" than T_{2} if $\alpha\left(T_{1}\right)>\alpha\left(T_{2}\right)$ lexicographically.
The Delaunay triangulation is the "best"

- Maximizes smallest angles

bad

Improving a Triangulation

In any convex quadrangle, an edge flip is possible. If this flip improves the triangulation locally, it also improves the global triangulation.

If an edge flip improves the triangulation, the first edge is called illegal.

Illegal Edges

Lemma: An edge pq is illegal iff one of its opposite vertices is inside the circle defined by the other three vertices.
Proof: By Thales' theorem.

Theorem: A Delaunay triangulation does not contain illegal edges.
Corollary: A triangle is Delaunay iff the circle through its vertices is empty of other sites.
Corollary: The Delaunay triangulation is not unique if more than three sites are co-circular.

Naïve Delaunay Algorithm

Start with an arbitrary triangulation. Flip any illegal edge until no more exist.
Could take a long time to terminate.

Delaunay Triangulation by Duality

General position assumption: There are
no four co-circular points.
Draw the dual to the Voronoi diagram by connecting each two neighboring sites in the Voronoi diagram.

Corollary: The DT may be constructed in $\mathrm{O}(n \log n)$ time.

This is what Matlab's delaunay function uses.

Image Morphing

We know how to warp one image into the other, but how do we create a morphing sequence?

1. Create an intermediate shape (by interpolation)
2. Warp both images towards it
3. Cross-dissolve the colors in the newly warped images

Warp interpolation

How do we create an intermediate warp at time t?

- Assume $t=[0,1]$
- Simple linear interpolation of each feature pair
- (1-t)* $\mathrm{p} 1+\mathrm{t}^{*} \mathrm{p} 0$ for corresponding features p0 and p1

Morphing \& matting

Extract foreground first to avoid artifacts in the background

(c) $\alpha=0.0$

(f) $\alpha=0.6$

Slide by Durand and Freeman

(d) $\alpha=0.2$

(g) $\alpha=0.8$

(e) $\alpha=0.4$

(h) $\alpha=1.0$

Other Issues

Beware of folding

- You are probably trying to do something 3D-ish

Morphing can be generalized into 3D

- If you have 3D data, that is!

Extrapolation can sometimes produce interesting effects

- Caricatures

Dynamic Scene

Project \#3

- Given two photos, produce a 60-frame morph animation
- Use triangulation-based morphing (lots of helpful Matlab tools)
- Need to write triangle-to-triangle warp (can't use Matlab tools)
- We put all animations together into a movie!

See last year's movie!

