Image Blending and Compositing
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Image Compositing




Compositing Procedure

1. Extract Sprites (e.g using Intelligent Scissors in Photoshop)

Composite by
David Dewey



Need blending







Affect of Window Size

right




Affect of Window Size




Good Window Size

“Optimal” Window: smooth but not ghosted



What is the Optimal Window?

To avoid seams

« window = size of largest prominent feature

To avoid ghosting

* window <= 2*size of smallest prominent feature

Natural to cast this in the Fourier domain

» largest frequency <= 2*size of smallest frequency
» image frequency content should occupy one “octave” (power of two)
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What If the Frequency Spread is Wide

ldea (Burt and Adelson)
¢ ComPUte |:Ieft = I:F-I-(Ileft)’ Fright = |:F-I-(Iright)
 Decompose Fourier image into octaves (bands)
— Fiett = Flet™ + Fer™ t -
» Feather corresponding octaves F ' with F; ./
— Can compute inverse FFT and feather in spatial domain

« Sum feathered octave images in frequency domain

Better implemented in spatial domain



Octaves Iin the Spatial Domain

Lowpass Images

Bandpass Images



level k-2

Pyramid Blending
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Pyramid Blending
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Laplacian Pyramid: Blending

General Approach:
1. Build Laplacian pyramids LA and LB from images A and B
2. Build a Gaussian pyramid GR from selected region R

3. Form a combined pyramid LS from LA and LB using nodes
of GR as weights:
o LS(i,j) = GR(l,},)*LA(l,)) + (1-GR(1,)))*LB(l,))

4. Collapse the LS pyramid to get the final blended image



Blending Regions
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Horror Photo

© david dmartin (Boston College)



Results from this class (fall 2005)

/

© Chris Caméron



Season Blending (St. Petersburg)
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Season Blending (St. Petersburg)
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Simplification: Two-band Blending
Brown & Lowe, 2003

e Only use two bands: high freq. and low freq.
» Blends low freq. smoothly
* Blend high freq. with no smoothing: use binary alpha




2-band Blending
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Don’t blend, CUT!

Moving objects become ghosts

So far we only tried to blend between two images.
What about finding an optimal seam?



Davis, 1998

Segment the mosaic

» Single source image per segment

* Avoid artifacts along boundries
— Dijkstra’s algorithm




Minimal error boundary

overlapping blocks vertical boundary
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Seam Carving

Seam Carving for Content-Aware Image Resizing

Shai Avidan Ariel Shamir
Mitsubishi Electric Research Labs The Interdisciplinary Center & MERL

http://www.youtube.com/watch?v=6NclIXTluqgc




Graphcuts

What if we want similar “cut-where-things-

agree” idea, but for closed regions?
 Dynamic programming can’t handle loops



Graph cuts — a more general solution

hard L : a cut
constraint
o ©

LN
.....

hard
s constraint
} S

Minimum cost cut can be computed in polynomial time

(max-flow/min-cut algorithms)



Kwatra et al, 2003

Actually, for this example, DP will work just as well...



Lazy Snapping

(c) Grandpa (4/2/11) id) Twins {4/4/12)

Interactive segmentation using graphcuts



Gradient Domain

In Pyramid Blending, we decomposed our
image into 2"d derivatives (Laplacian) and a
low-res image

Let us now look at 15t derivatives (gradients):

* No need for low-res image

— captures everything (up to a constant)
e ldea:

— Differentiate

— Blend / edit / whatever

— Reintegrate



Gradient Domain blending (1D)
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Gradient Domain Blending (2D)
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Trickier in 2D:

Take partial derivatives dx and dy (the gradient field)
Fidle around with them (smooth, blend, feather, etc)
Reintegrate

— But now integral(dx) might not equal integral(dy)
Find the most agreeable solution

— Equivalent to solving Poisson equation
— Can be done using least-squares



Perez et al., 2003

sources destinations cloning seamless cloning

seamless cloning

sources/destinations



Perez et al, 2003

editing

source/destination cloning seamless cloning

Limitations:
« Can’t do contrast reversal (gray on black -> gray on white)
* Colored backgrounds “bleed through”
* Images need to be very well aligned



Gradients vs. Pixels

Craik- 0 Brien Cornsweet Effact
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Thinking In Gradient Domain

Real-Time Gradient-Domain Painting

James McCann”® Nancy S. Pollard'
Carnegie Mellon University Carnegie Mellon University
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Our very own Jim McCann::

James McCann
Real-Time Gradient-Domain Painting,
SIGGRAPH 2009




Gradient Domain as Image Representation

See GradientShop paper as good example:

GradieniShop: A Gradient-Domain Optimization Framework
for Image and Video Filtering

. . . 7 . . ] .
Pravin Bhat'  C. Lawrence Zitnick? Michael Cohen'?  Brian Curless'
. . - . . b . -
LUniversity of Washington “Microsoft Research

http://www.gradientshop.com/



Motivation for
gradient-domain filtering?

e Can be used to exert
high-level control over images
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Motivation for
gradient-domain filtering?
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Motivation for
gradient-domain filtering?

e Can be used to exert
high-level control over images
 gradients - low level image-features
 gradients - give rise to high level image-features

e manipulate local gradients to
manipulate global image interpretation
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Motivation for
gradient-domain filtering?
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Motivation for
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Motivation for
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Motivation for
gradient-domain filtering?

e Can be used to exert
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e gradients — give rise to high level image-features
e manipulate local gradients to
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Motivation for
gradient-domain filtering?

e Can be used to exert
high-level control over images
gradients — give rise to high level image-features
Edges
object boundaries

depth discontinuities "~
shadows




Motivation for
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Motivation for
gradient-domain filtering?

e Can be used to exert
high-level control over images
gradients — give rise to high level image.~
Edges
Texture

visual richness
surface properties
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Motivation for
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e lighting
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sculpting the face
using shading (makeup)
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Motivation for
gradient-domain filtering?

e Can be used to exert
high-level control over images

» gradients — give rise to high level image-features
Edges s
Texture
Shading
 lighting
e shape

=

sculpting the face
using shading (makeup)
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Motivation for
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Motivation for
gradient-domain filtering?

e Can be used to exert
high-level control over images
 gradients - give rise to high level image-features
Edges
Texture
Shading
Artifacts

e noise
e seams

seams in
composite images




Motivation for
gradient-domain filtering?

e Can be used to exert
high-level control over images
gradients — give rise to high level image-features
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Motivation for
gradient-domain filtering?
e Can be used to exert

high-level control over images
 gradients - give rise to high level image-features
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Motivation for
gradient-domain filtering?

e Can be used to exert
high-level control over images




GradientShop

e Optimization framework

Pravin Bhat et al




GradientShop

e Optimization framework
Input unfiltered image - u




GradientShop

e Optimization framework
Input unfiltered image - u
Output filtered image - f




GradientShop

e Optimization framework
Input unfiltered image - u
Output filtered image - f
Specify desired pixel-differences - (g%, @)

Energy function

min  (f,-g)+ (-9
f




GradientShop

e Optimization framework
Input unfiltered image - u
Output filtered image - f
Specify desired pixel-differences - (g%, @)
Specify desired pixel-values — d

Energy function

min  (f,-99)2+ (f,-g)2+ (f-d)p
f




GradientShop

e Optimization framework
Input unfiltered image - u
Output filtered image - f
Specify desired pixel-differences - (g%, @)
Specify desired pixel-values — d
Specify constraints weights — (W%, WY, wd)

Energy function

min WX(f, - g*)* + W(f, - ¢¥)> + wi(f - d)>
f




GradientShop




GradientShop




GradientShop

Solution - f
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Pseudo image relighting

e change scene illumination
in post-production

example




Pseudo image relighting

e change scene illumination
in post-production

example
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Pseudo image relighting

e change scene illumination
in post-production

example




Pseudo image relighting




Pseudo image relighting

Energy function

min WX(f, - g¥)> +
b Wl )
wd(f - d)2




Pseudo image relighting

Energy function
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Pseudo image relighting

Energy function

min WX(f, - g¥)> +
b Wl )
wd(f - d)2

e Definition:
e d=u
* g(p) = u,(p) * (1 +a(p))
e a(p) = max(0, wvu(p).o(p))




Pseudo image relighting

Energy function

min WX(f, - g¥)> +
b Wl )
wd(f - d)2

e Definition:
e d=u
* g(p) = u,(p) * (1 +a(p))
e a(p) = max(0, wvu(p).o(p))




Sparse data interpolation

e Interpolate scattered data
over images/video




Sparse data interpolation

e Interpolate scattered data
over images/video

e Example app: Colorization*

output
*Levin et al. — SIGRAPH 2004



Sparse data interpolation




Sparse data interpolation

Energy function

min WX(f, - g¥) +
owi(f, - )2 +
wd(f — d)>




Sparse data interpolation

Energy function
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e d=user_data
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Sparse data interpolation

Energy function
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Sparse data interpolation

Energy function
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e Definition:
e d=user_data
 if user data(p) defined
wi(p) =1
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Sparse data interpolation

Energy function

min WX(f, — g¥)> +
owi(f, - )2 +
wd(f — d)>

e Definition:
e d=user_data
 if user data(p) defined
wi(p) =1
else
wWi(p)=0
* g(P) =0, ¢(P)=0
e W(p) = V(1 + c*|u,(p))
WY(p) = 1/(1 + c*[uy(p)])




Sparse data interpolation

Energy function

min WX(f, — g¥)> +
owi(f, - )2 +
wd(f — d)>

e Definition:
e d=user_data
 if user data(p) defined
wi(p) =1
else
wWi(p)=0
* g(P) =0, ¢(P)=0
* Wp) = L(1+c*|e(p)])
wWY(p) = L/(1 + c*|e(p)])




