Image Blending and Compositing

© NASA

15-463: Computational Photography
Alexei Efros, CMU, Fall 2011
Image Compositing
Compositing Procedure

1. Extract Sprites (e.g using *Intelligent Scissors* in Photoshop)

2. Blend them into the composite (in the right order)
Need blending
Alpha Blending / Feathering

\[I_{\text{blend}} = \alpha I_{\text{left}} + (1-\alpha)I_{\text{right}} \]
Affect of Window Size
Affect of Window Size
Good Window Size

“Optimal” Window: smooth but not ghosted
What is the Optimal Window?

To avoid seams
- $\text{window} = \text{size of largest prominent feature}$

To avoid ghosting
- $\text{window} \leq 2 \times \text{size of smallest prominent feature}$

Natural to cast this in the *Fourier domain*
- largest frequency $\leq 2 \times \text{size of smallest frequency}$
- image frequency content should occupy one “octave” (power of two)
What if the Frequency Spread is Wide

Idea (Burt and Adelson)

- Compute $F_{\text{left}} = \text{FFT}(I_{\text{left}})$, $F_{\text{right}} = \text{FFT}(I_{\text{right}})$
- Decompose Fourier image into octaves (bands)
 - $F_{\text{left}} = F_{\text{left}}^1 + F_{\text{left}}^2 + \ldots$
- Feather corresponding octaves F_{left}^i with F_{right}^i
 - Can compute inverse FFT and feather in spatial domain
- Sum feathered octave images in frequency domain

Better implemented in \textit{spatial domain}
Octaves in the Spatial Domain

Lowpass Images

Bandpass Images
Pyramid Blending

Left pyramid

blend

Right pyramid
Pyramid Blending
Laplacian Pyramid: Blending

General Approach:

1. Build Laplacian pyramids LA and LB from images A and B
2. Build a Gaussian pyramid GR from selected region R
3. Form a combined pyramid LS from LA and LB using nodes of GR as weights:
 - $LS(i,j) = GR(i,j)*LA(i,j) + (1-GR(i,j))*LB(i,j)$
4. Collapse the LS pyramid to get the final blended image
Blending Regions
Horror Photo

© david dmartin (Boston College)
Results from this class (fall 2005)
Season Blending (St. Petersburg)
Season Blending (St. Petersburg)
Simplification: Two-band Blending

Brown & Lowe, 2003

- Only use two bands: high freq. and low freq.
- Blends low freq. smoothly
- Blend high freq. with no smoothing: use binary alpha
2-band Blending

Low frequency ($\lambda > 2$ pixels)

High frequency ($\lambda < 2$ pixels)
Linear Blending
2-band Blending
Don’t blend, CUT!

Moving objects become ghosts

So far we only tried to blend between two images. What about finding an optimal seam?
Segment the mosaic

- Single source image per segment
- Avoid artifacts along boundaries
 - Dijkstra’s algorithm
Minimal error boundary

overlapping blocks = vertical boundary

overlap error = min. error boundary
Seam Carving

Seam Carving for Content-Aware Image Resizing

Shai Avidan
Mitsubishi Electric Research Labs

Ariel Shamir
The Interdisciplinary Center & MERL

http://www.youtube.com/watch?v=6NclJXTlugc
Graphcuts

What if we want similar “cut-where-things-agree” idea, but for closed regions?

- Dynamic programming can’t handle loops
Graph cuts – a more general solution

Minimum cost cut can be computed in polynomial time
(max-flow/min-cut algorithms)
Actually, for this example, DP will work just as well…
Lazy Snapping

Interactive segmentation using graphcuts
Gradient Domain

In Pyramid Blending, we decomposed our image into 2nd derivatives (Laplacian) and a low-res image.

Let us now look at 1st derivatives (gradients):

- No need for low-res image
 - captures everything (up to a constant)
- Idea:
 - Differentiate
 - Blend / edit / whatever
 - Reintegrate
Gradient Domain blending (1D)

Two signals

Regular blending

Blending derivatives
Gradient Domain Blending (2D)

Trickier in 2D:

- Take partial derivatives dx and dy (the gradient field)
- Fiddle around with them (smooth, blend, feather, etc)
- Reintegrate
 - But now integral(dx) might not equal integral(dy)
- Find the most agreeable solution
 - Equivalent to solving Poisson equation
 - Can be done using least-squares
Perez et al., 2003
Perez et al, 2003

Limitations:

- Can’t do contrast reversal (gray on black -> gray on white)
- Colored backgrounds “bleed through”
- Images need to be very well aligned
Gradients vs. Pixels

Can we use this for range compression?
White?
White?
Thinking in Gradient Domain

Real-Time Gradient-Domain Painting

James McCann*
Carnegie Mellon University

Nancy S. Pollard†
Carnegie Mellon University

Our very own Jim McCann::

James McCann
Real-Time Gradient-Domain Painting,
SIGGRAPH 2009
Gradient Domain as Image Representation

See GradientShop paper as good example:

GradientShop: A Gradient-Domain Optimization Framework for Image and Video Filtering

Pravin Bhat1 C. Lawrence Zitnick2 Michael Cohen1,2 Brian Curless1

1University of Washington 2Microsoft Research

http://www.gradientshop.com/
Motivation for gradient-domain filtering?

- Can be used to exert high-level control over images
Motivation for gradient-domain filtering?

- Can be used to exert high-level control over images
 - gradients – low level image-features
Motivation for gradient-domain filtering?

- Can be used to exert high-level control over images
 - gradients – low level image-features
Motivation for gradient-domain filtering?

- Can be used to exert high-level control over images
 - gradients – low level image-features
 - gradients – give rise to high level image-features
Motivation for gradient-domain filtering?

- Can be used to exert high-level control over images
 - gradients – low level image-features
 - gradients – give rise to high level image-features
Motivation for gradient-domain filtering?

- Can be used to exert high-level control over images
 - gradients – low level image-features
 - gradients – give rise to high level image-features
Motivation for gradient-domain filtering?

- Can be used to exert high-level control over images
 - gradients – low level image-features
 - gradients – give rise to high level image-features
 - manipulate local gradients to manipulate global image interpretation
Motivation for gradient-domain filtering?

- Can be used to exert high-level control over images
 - gradients – low level image-features
 - gradients – give rise to high level image-features
 - manipulate local gradients to manipulate global image interpretation
Motivation for gradient-domain filtering?

- Can be used to exert high-level control over images
 - gradients – low level image-features
 - gradients – give rise to high level image-features
 - manipulate local gradients to manipulate global image interpretation
Motivation for gradient-domain filtering?

- Can be used to exert high-level control over images
 - gradients – low level image-features
 - gradients – give rise to high level image-features
 - manipulate local gradients to manipulate global image interpretation
Motivation for gradient-domain filtering?

- Can be used to exert high-level control over images
- gradients – low level image-features
- gradients – give rise to high level image-features
- manipulate local gradients to manipulate global image interpretation
Motivation for gradient-domain filtering?

- Can be used to exert high-level control over images
 - gradients – give rise to high level image-features
Motivation for gradient-domain filtering?

- Can be used to exert high-level control over images
 - gradients – give rise to high level image-features
 - Edges
Motivation for gradient-domain filtering?

- Can be used to exert high-level control over images
 - gradients – give rise to high level image-features
 - Edges
 - object boundaries
 - depth discontinuities
 - shadows
 - ...

Motivation for gradient-domain filtering?

- Can be used to exert high-level control over images
 - gradients – give rise to high level image-features
 - Edges
 - Texture
Motivation for gradient-domain filtering?

- Can be used to exert high-level control over images
 - gradients – give rise to high level image features
 - Edges
 - Texture
 - visual richness
 - surface properties
Motivation for gradient-domain filtering?

- Can be used to exert high-level control over images
 - gradients – give rise to high level image-features
 - Edges
 - Texture
 - Shading
Motivation for gradient-domain filtering?

- Can be used to exert high-level control over images
 - gradients – give rise to high level image-features
 - Edges
 - Texture
 - Shading
 - lighting
Motivation for gradient-domain filtering?

- Can be used to exert high-level control over images
- Gradients – give rise to high level image-features
 - Edges
 - Texture
 - Shading
 - lighting
 - shape

sculpting the face using shading (makeup)
Motivation for gradient-domain filtering?

- Can be used to exert high-level control over images
 - gradients – give rise to high level image-features
 - Edges
 - Texture
 - Shading
 - lighting
 - shape

sculpting the face using shading (makeup)
Motivation for gradient-domain filtering?

- Can be used to exert high-level control over images
 - gradients – give rise to high level image-features
 - Edges
 - Texture
 - Shading
 - lighting
 - shape

sculpting the face using shading (makeup)
Motivation for gradient-domain filtering?

- Can be used to exert high-level control over images
 - gradients – give rise to high level image-features
 - Edges
 - Texture
 - Shading
 - lighting
 - shape

sculpting the face using shading (makeup)
Motivation for gradient-domain filtering?

- Can be used to exert high-level control over images
 - gradients – give rise to high level image-features
 - Edges
 - Texture
 - Shading
Motivation for gradient-domain filtering?

- Can be used to exert high-level control over images
 - gradients – give rise to high level image-features
 - Edges
 - Texture
 - Shading
 - Artifacts
Motivation for gradient-domain filtering?

- Can be used to exert high-level control over images
 - gradients – give rise to high level image-features
 - Edges
 - Texture
 - Shading
 - Artifacts
 - noise

![Image of a building with a dome, labeled "sensor noise" in the bottom right corner.](image)
Motivation for gradient-domain filtering?

- Can be used to exert high-level control over images
 - gradients – give rise to high level image-features
 - Edges
 - Texture
 - Shading
 - Artifacts
 - noise
 - seams

seams in composite images
Motivation for gradient-domain filtering?

- Can be used to exert high-level control over images
 - gradients – give rise to high level image-features
 - Edges
 - Texture
 - Shading
 - Artifacts
 - noise
 - seams
 - compression artifacts

blocking in compressed images
Motivation for gradient-domain filtering?

- Can be used to exert high-level control over images
 - gradients – give rise to high level image-features
 - Edges
 - Texture
 - Shading
 - Artifacts
 - noise
 - seams
 - compression artifacts

ringing in compressed images
Motivation for gradient-domain filtering?

- Can be used to exert high-level control over images
GradientShop

- Optimization framework
GradientShop

- Optimization framework
 - Input unfiltered image – u
• Optimization framework
 • Input unfiltered image – u
 • Output filtered image – f
Optimization framework

- Input unfiltered image – \(u \)
- Output filtered image – \(f \)
- Specify desired pixel-differences – \((g^x, g^y)\)

Energy function

\[
\min_\mathbf{f} \quad (f_x - g^x)^2 + (f_y - g^y)^2
\]
Optimization framework
- Input unfiltered image – u
- Output filtered image – f
- Specify desired pixel-differences – (g^x, g^y)
- Specify desired pixel-values – d

Energy function
\[
\min_f \quad (f_x - g^x)^2 + (f_y - g^y)^2 + (f - d)^2
\]
Optimization framework

- Input unfiltered image – \(u \)
- Output filtered image – \(f \)
- Specify desired pixel-differences – \((g^x, g^y)\)
- Specify desired pixel-values – \(d\)
- Specify constraints weights – \((w^x, w^y, w^d)\)

Energy function

\[
\min_{f} w^x (f_x - g^x)^2 + w^y (f_y - g^y)^2 + w^d (f - d)^2
\]
GradientShop

Inputs

\[u \quad u_x \quad u_y \]
GradientShop

Inputs

\[u \quad u_x \quad u_y \]

Application specific filtering

Constraints

\[d \quad g^x \quad g^y \]
GradientShop

Inputs

\[u \quad u_x \quad u_y \]

Application specific filtering

Constraints

\[d \quad g^x \quad g^y \]

Least squares solver

Solution - \(f \)
Pseudo image relighting

- change scene illumination in post-production
- example
Pseudo image relighting

- change scene illumination in post-production
- example
Pseudo image relighting

- change scene illumination in post-production
- example
Pseudo image relighting

- change scene illumination in post-production
- example

GradientShop relight
Pseudo image relighting

- change scene illumination in post-production
- example

GradientShop relight
Pseudo image relighting

- change scene illumination in post-production
- example

GradientShop relight
Pseudo image relighting

- change scene illumination in post-production
- example

GradientShop relight
Pseudo image relighting
Pseudo image relighting

Energy function

$$\min_{f} \quad w^x(f_x - g_x)^2 + w^y(f_y - g_y)^2 + w^d(f - d)^2$$
Pseudo image relighting

Energy function

\[
\min_{f} \quad w^{x}(f_x - g_x)^2 + \frac{1}{2} w^{y}(f_y - g_y)^2 + \frac{1}{2} w^{d}(f - d)^2
\]

• Definition:
 • \(d = u\)
Pseudo image relighting

Energy function

\[\min_f w^x (f^x - g^x)^2 + \]
\[w^y (f^y - g^y)^2 + \]
\[w^d (f - d)^2 \]

- Definition:
 - \(d = u \)
 - \(g^x(p) = u_x(p) * (1 + a(p)) \)
 - \(a(p) = \max(0, \nabla u(p) \cdot o(p)) \)
Pseudo image relighting

Energy function

\[\min_{f} \quad w^x(f_x - g^x)^2 + w^y(f_y - g^y)^2 + w^d(f - d)^2 \]

- Definition:
 - \(d = u \)
 - \(g^x(p) = u_x(p) \ast (1 + a(p)) \)
 - \(a(p) = \max(0, -\nabla u(p) \cdot o(p)) \)
Sparse data interpolation

- Interpolate scattered data over images/video
Sparse data interpolation

- Interpolate scattered data over images/video
- Example app: Colorization*

*Levin et al. – SIGGRAPH 2004
Sparse data interpolation

\[u \]

user data

\[f \]
Sparse data interpolation

Energy function

$$\min_{\mathbf{f}} w^x (f_x - g^x)^2 + w^y (f_y - g^y)^2 + w^d (f - d)^2$$
Sparse data interpolation

Energy function

$$\min \begin{bmatrix} w^x(f^x - g^x)^2 + \frac{f^x}{f} w^y(f^y - g^y)^2 + \frac{f^y}{f} & w^d(f - d)^2 \end{bmatrix}$$

- Definition:
 - $d = \text{user_data}$
Sparse data interpolation

Energy function

\[
\min_{f} w_x(f_x - g_x)^2 + \frac{w_y(f_y - g_y)^2}{f} + \frac{w_d(f - d)^2}{f}
\]

- **Definition:**
 - \(d = \text{user_data}\)
 - \(\text{if user_data}(p) \text{ defined}\)
 - \(w_d(p) = 1\)
 - \(\text{else}\)
 - \(w_d(p) = 0\)
Sparse data interpolation

Energy function

\[
\min_f \ w^x (f_x - g^x)^2 + w^y (f_y - g^y)^2 + w^d (f - d)^2
\]

- **Definition:**
 - \(d = \text{user_data}\)
 - if \(\text{user_data}(p)\) defined
 \(w^d(p) = 1\)
 - else
 \(w^d(p) = 0\)
 - \(g^x(p) = 0; g^y(p) = 0\)
Sparse data interpolation

Energy function

\[
\min_{f} \quad w^x(f - g^x)^2 + w^y(f - g^y)^2 + w^d(f - d)^2
\]

- Definition:
 - \(d = \text{user_data} \)
 - if user_data\((p)\) defined
 \(w^d(p) = 1 \)
 - else
 \(w^d(p) = 0 \)
 - \(g^x(p) = 0; \ g^y(p) = 0 \)
 - \(w^x(p) = 1/(1 + c*|u_x(p)|) \)
 - \(w^y(p) = 1/(1 + c*|u_y(p)|) \)
Sparse data interpolation

Energy function

\[
\min_w \; \left(w^x (f_x - g_x)^2 + w^y (f_y - g_y)^2 + w^d (f - d)^2 \right)
\]

- Definition:
 - \(d = \text{user_data} \)
 - if \(\text{user_data}(p) \) defined
 \(w^d(p) = 1 \)
 else
 \(w^d(p) = 0 \)
 - \(g^x(p) = 0; \; g^y(p) = 0 \)
 - \(w^x(p) = 1/(1 + c \cdot |u_x(p)|) \)
 - \(w^y(p) = 1/(1 + c \cdot |u_y(p)|) \)
Sparse data interpolation

Energy function

\[\min \quad w_x(f_x - g_x)^2 + \frac{1}{f} w_y(f_y - g_y)^2 + \]
\[w_d(f - d)^2 \]

- Definition:
 - \(d = \text{user_data} \)
 - if user_data\((p)\) defined
 \[w_d(p) = 1 \]
 - else
 \[w_d(p) = 0 \]
 - \(g^x(p) = 0; \quad g^y(p) = 0 \)
 - \(w^x(p) = \frac{1}{1 + c^*|e^l(p)|} \)
 - \(w^y(p) = \frac{1}{1 + c^*|e^l(p)|} \)