Data-driven methods: Video & Texture
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Michel Gondry train video

http://www.youtube.com/watch?v=615FUp8a
UmU&feature=related




Weather Forecasting for Dummies™

Let’s predict weather:
» Given today’s weather only, we want to know tomorrow’s
» Suppose weather can only be {Sunny, Cloudy, Raining}

The “Weather Channel” algorithm:

* Over along period of time, record:
— How often S followed by R
— How often S followed by S
— Etc.

« Compute percentages for each state:

— P(R|S), P(S|S), etc.
* Predict the state with highest probability!
* It's a Markov Chain



Markov Chain
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What if we know today and yestarday’s weather?



Text Synthesis

[Shannon,’48] proposed a way to generate
English-looking text using N-grams:
 Assume a generalized Markov model

o Use a large text to compute prob. distributions of
each letter given N-1 previous letters

« Starting from a seed repeatedly sample this Markov
chain to generate new letters

e Also works for whole words

WE NEED TO EAT CAKE



Mark V. Shaney (Bell Labs)

Results (using al t . si ngl es corpus):

« “As I've commented before, really relating to
someone involves standing next to
Impossible.”

* “One morning | shot an elephant in my arms
and kissed him.”

* “I spent an interesting evening recently with
a grain of salt”



Video Textures
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Still photos




Video clips




Video textures




Problem statement

video clip video texture




Our approach

P

low do we find good transitions?




Finding good transitions

* Compute L, distance D; ; between all
frame§ > frame |

Similar frames make good transitions




Markov chain representation

Similar frames make good transitions




Transition costs

* Transition fromito j if successor of I Is similar
to |

* Cost function: C;_; =Dy,

J I




Transition probabilities

*Probabillity for transition P, _; inversely related

J
to cost:
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Preserving dynamics







Preserving dynamics

* Cost for transition | - |
N-1

° Ci_>j :k—ZN Wi I:)i+k+1,j+k




Preserving dynamics — effect

* Cost for transition i —j
N-1

° Ciaj:k_ZN Wy Divi1, jok




Dead ends

* No good transition at the end of sequence




Future cost

* Propagate future transition costs backward

* |teratively compute new cost
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Future cost

* Propagate future transition costs backward

* |teratively compute new cost
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Future cost

* Propagate future transition costs backward

* |teratively compute new cost
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Future cost

* Propagate future transition costs backward

* |teratively compute new cost
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Future cost

* Propagate future transition costs backward

* |teratively compute new cost

J
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* Q-learning




Future cost — effect




Finding good loops

e Alternative to random transitions

* Precompute set of loops up front




Video portrait

* Useful for web pages




Region -based analysis

° D|V|de V|deo up mto reglons

* Generate a video texture for each region




Automatic region analysis




User-controlled video textures

_
variable
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User selects target frame range



Video -based animation
* Like sprites
computer games

* EXxtract sprites
from real video

* |nteractively control
desired motion

©1985 Nintendo of America Inc.




Video sprite extraction

blue sereen matting
and velocity estimation

W & A




Video sprite control

* Augmented transition cost:

Animation

C., =aC,_ ;+pBangle<)

iy

hr-a '—rd velocity vector

Similarity term  Control term




Video sprite control

* Need future cost computation
Precompute future costs for a few angles.

Switch between precomputed angles
according to user input

[GIT-GVU-00-11]




Interactive fish
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Summary

* Video clips - video textures

* define Markov process

* preserve dynamics

* avoid dead-ends

* disguise visual discontinuities
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Discussion

* Some things are relatively easy




Discussion

* Some are hard




“Amateur” by Lasse Gjertsen

http://www.youtube.com/watch?v=JzgumbhfxRo




Texture

o Texture depicts spatially repeating patterns
 Many natural phenomena are textures




Texture Synthesis

e Goal of Texture Synthesis: create new samples of
a given texture

 Many applications: virtual environments, hole-
filling, texturing surfaces




The Challenge

e Need to model the whole
spectrum: from repeated to
stochastic texture




Efros & Leung Algorithm

Input image
Synthesizing a pixel

o Assuming Markov property, computed{(p))
— Building explicit probability tables infeasible

— Instead, wesearch the input image for all similar
neighborhoods — that’s our pdf for

— To sample from this pdf, just pick one match at
random




Some Detalls

o Growing Is In “onion skin” order

— Within each “layer”, pixels with most neighborgar
synthesized first

— If no close match can be found, the pixel is not
synthesized until the end

e UsingGaussian-weighted SSD Is very important

— to make sure the new pixel agrees with its closest
neighbors

— Approximates reduction to a smaller neighborhood
window If data Is too sparse
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Increasing window size




Synthesis Results

french canvas rafia weave
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More Results

white bread brick wall




Homage to Shannon
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Hole Filling







Summary

 The Efros & Leung algorithm
— Very simple
— Surprisingly good results
— Synthesis is easier than analysis!
— ...but very slow




Image Quilting [Efros & Freeman]

Input image
Synthesizing a block

* Observationneighbor pixels are highly correlated
Idea: unit of synthesis = block

e Exactly the same but now we want P(B|N(B))

e Much faster: synthesize all pixels in a block at once

e Not the same as multi-scale!




Input texture

B1 | B2 B1 | | B2

Random placement Neighboring blocks
of blocks constrained by overlap
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Minimal error
boundary cut




Minimal error boundary

overlapping blocks vertical boundary
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Our Philosophy

* The “Corrupt Professor’s Algorithin
— Plagiarize as much of the source image as you ca
— Then try to cover up the evidence

 Rationale:

— Texture blocks are by definition correct samples o
texture so problem only connecting them together
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Failures
(Chernobyl
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Wei & Levoy Our algorithm




Wei & Levoy Our algorithm







Political Texture Synthesis!

Bush campaign digitally altered TV ad

President Bush's campaign acknowledged Thursday that it had
digitally altared a phota that appeared in a national cable telavision
commaercial. In the pholo, a handful of soldiers were multiplied
rrany times.

Original photograph




Fill Order

* In what order should we fill the pixels?




Fill Order

* In what order should we fill the pixels?
— choose pixels that have more neighbors filled

Criminisi, Pe@z,(%\npf%ﬁa.pixe"s that are Pﬂnflﬂllaflﬂngg,t)c CVPR, 2003.




Exemplar-based Inpaintirdgmo




Application: Texture Transfer

* Try to explain one object with bits and
pieces of another object:




Texture Transfer

Constraint

Texture sample




Texture Transfer

* Take the texture from one
Image and “paint” it onto
another object

Same as texture synthesis, except an additionakreont:
1. Consistency of texture
2. Similarity to the image being “explained”










Image Analogies

Aaron Hertzmant?

Chuck Jacolss

Nuria Oliver

Brian Curless INew York University

: : ’Microsoft Research
David Salesih?
3University of Washington




Image Analogies







Blur Filter

Filtered target (B’




Edge Filter

]

Unfiltered source (A

I

targe B) Filtered target (B')

#

Unfiltered
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Colorization




Textureby-numbers
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