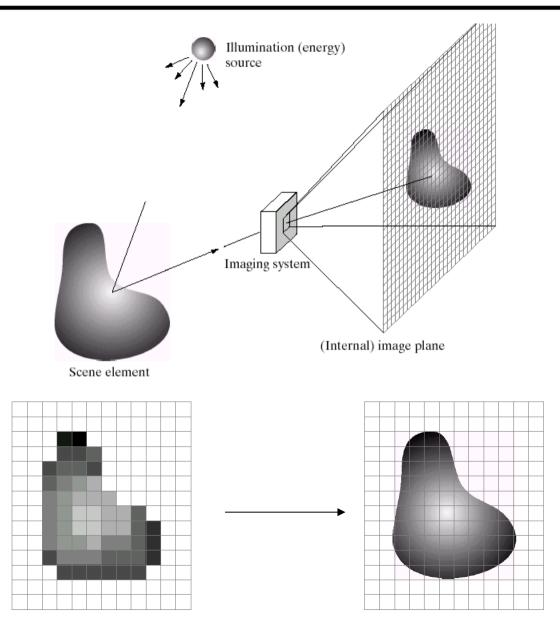
Sampling and Reconstruction

15-463: Computational Photography Alexei Efros, CMU, Fall 2011

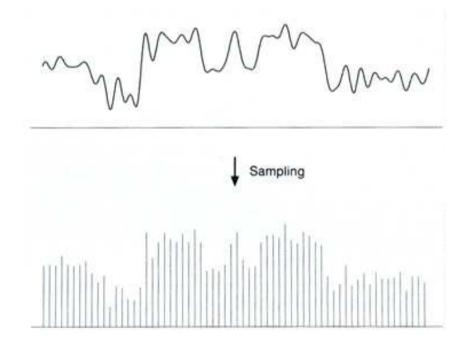
Many slides from Steve Marschner

Sampling and Reconstruction



Sampled representations

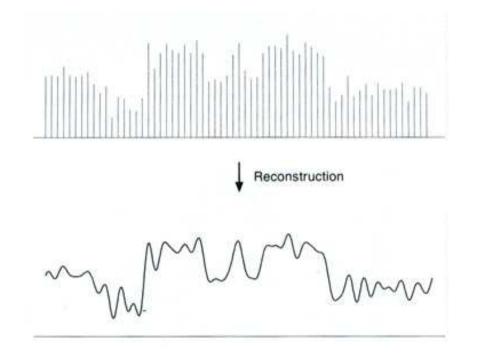
- How to store and compute with continuous functions?
- Common scheme for representation: samples
 - write down the function's values at many points



© 2006 Steve Marschner • 4

Reconstruction

- Making samples back into a continuous function
 - for output (need realizable method)
 - for analysis or processing (need mathematical method)
 - amounts to "guessing" what the function did in between

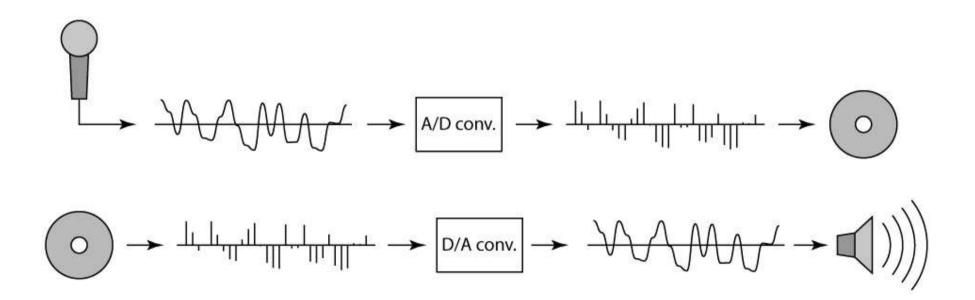


1D Example: Audio



Sampling in digital audio

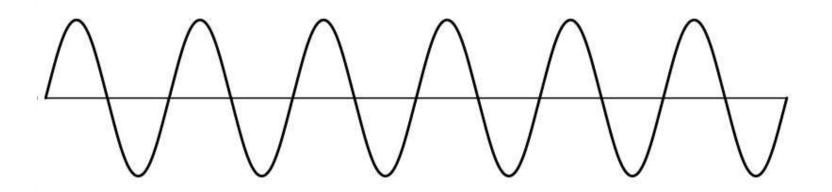
- Recording: sound to analog to samples to disc
- Playback: disc to samples to analog to sound again
 - how can we be sure we are filling in the gaps correctly?



© 2006 Steve Marschner • 6

Sampling and Reconstruction

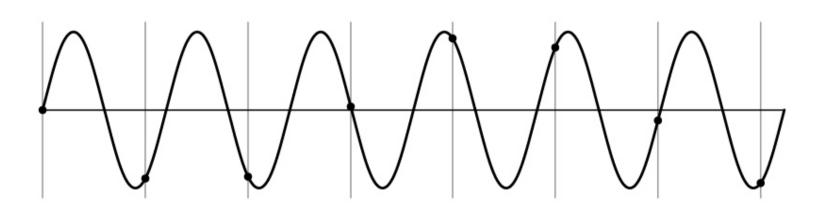
• Simple example: a sign wave



© 2006 Steve Marschner • 7

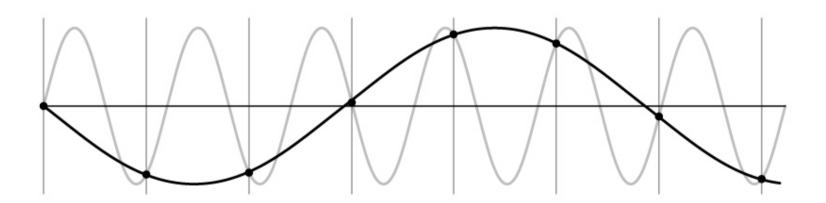
Undersampling

- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave
 - unsurprising result: information is lost



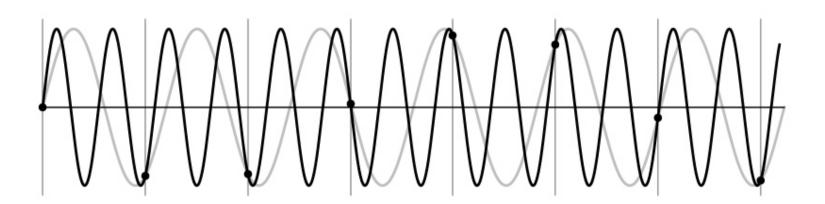
Undersampling

- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave
 - unsurprising result: information is lost
 - surprising result: indistinguishable from lower frequency



Undersampling

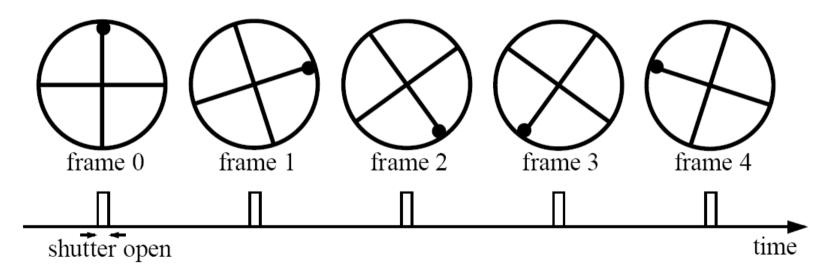
- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave
 - unsurprising result: information is lost
 - surprising result: indistinguishable from lower frequency
 - also was always indistinguishable from higher frequencies
 - *aliasing*: signals "traveling in disguise" as other frequencies



Aliasing in video

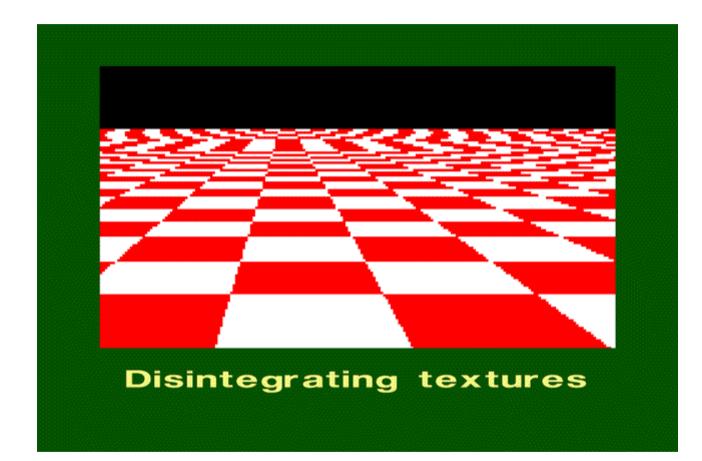
Imagine a spoked wheel moving to the right (rotating clockwise). Mark wheel with dot so we can see what's happening.

If camera shutter is only open for a fraction of a frame time (frame time = 1/30 sec. for video, 1/24 sec. for film):

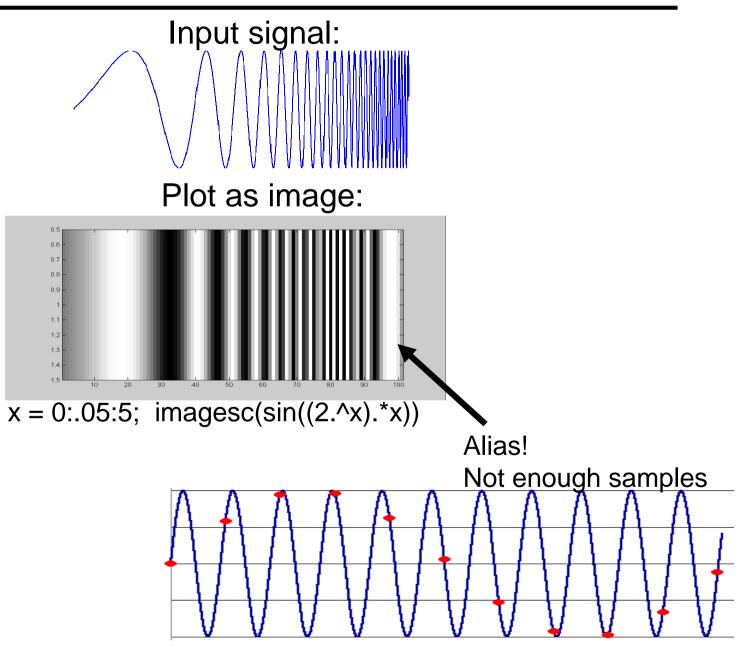


Without dot, wheel appears to be rotating slowly backwards! (counterclockwise)

Aliasing in images



What's happening?



Antialiasing

What can we do about aliasing?

Sample more often

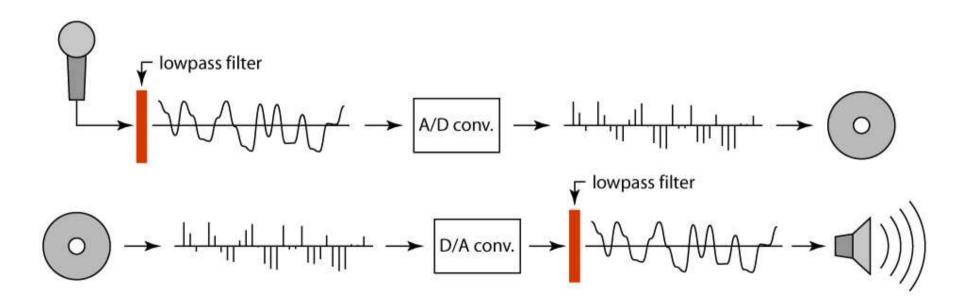
- Join the Mega-Pixel craze of the photo industry
- But this can't go on forever

Make the signal less "wiggly"

- Get rid of some high frequencies
- Will loose information
- But it's better than aliasing

Preventing aliasing

- Introduce lowpass filters:
 - remove high frequencies leaving only safe, low frequencies
 - choose lowest frequency in reconstruction (disambiguate)

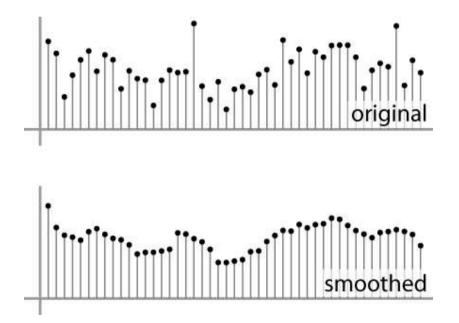


Linear filtering: a key idea

- Transformations on signals; e.g.:
 - bass/treble controls on stereo
 - blurring/sharpening operations in image editing
 - smoothing/noise reduction in tracking
- Key properties
 - linearity: filter(f + g) = filter(f) + filter(g)
 - shift invariance: behavior invariant to shifting the input
 - delaying an audio signal
 - sliding an image around
- Can be modeled mathematically by *convolution*

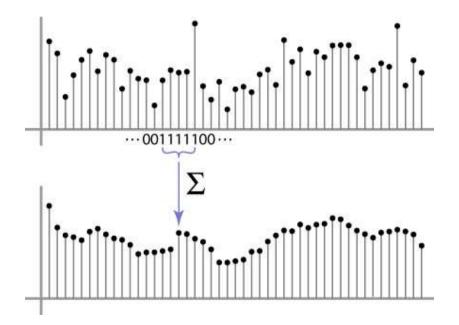
Moving Average

- basic idea: define a new function by averaging over a sliding window
- a simple example to start off: smoothing



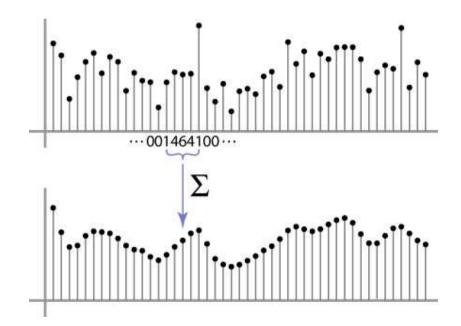
Weighted Moving Average

- Can add weights to our moving average
- Weights [..., 0, 1, 1, 1, 1, 1, 0, ...] / 5



Weighted Moving Average

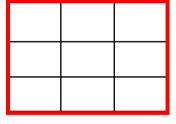
• bell curve (gaussian-like) weights [..., 1, 4, 6, 4, 1, ...]



Moving Average In 2D

What are the weights H?

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0



H[u, v]

F[x, y]

Cross-correlation filtering

Let's write this down as an equation. Assume the averaging window is (2k+1)x(2k+1):

$$G[i,j] = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i+u,j+v]$$

• We can generalize this idea by allowing different weights for different neighboring pixels:

$$G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v]$$

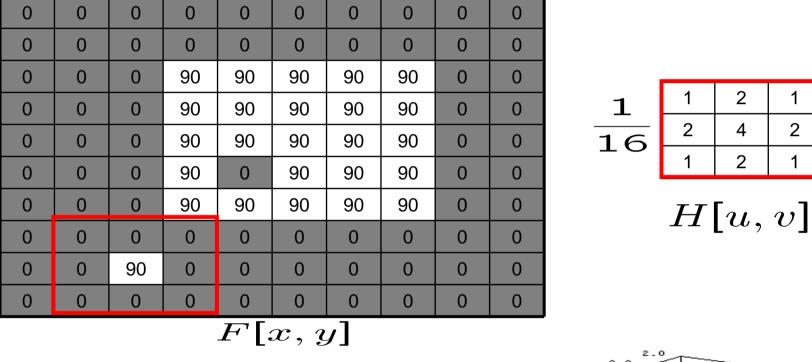
• This is called a **cross-correlation** operation and written:

$$G = H \otimes F$$

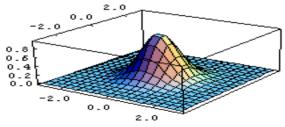
• H is called the "filter," "kernel," or "mask."

Gaussian filtering

A Gaussian kernel gives less weight to pixels further from the center of the window



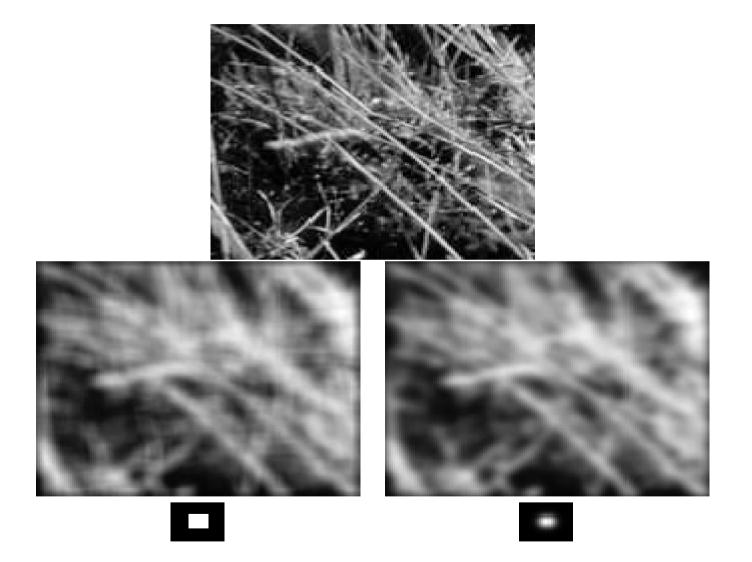
$$h(u, v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2 + v^2}{\sigma^2}}$$



Slide by Steve Seitz

1 1

Mean vs. Gaussian filtering



Convolution

cross-correlation:
$$G = H \otimes F$$

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

A **convolution** operation is a cross-correlation where the filter is flipped both horizontally and vertically before being applied to the image:

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

It is written:

$$G = H \star F$$

Suppose H is a Gaussian or mean kernel. How does convolution differ from cross-correlation?

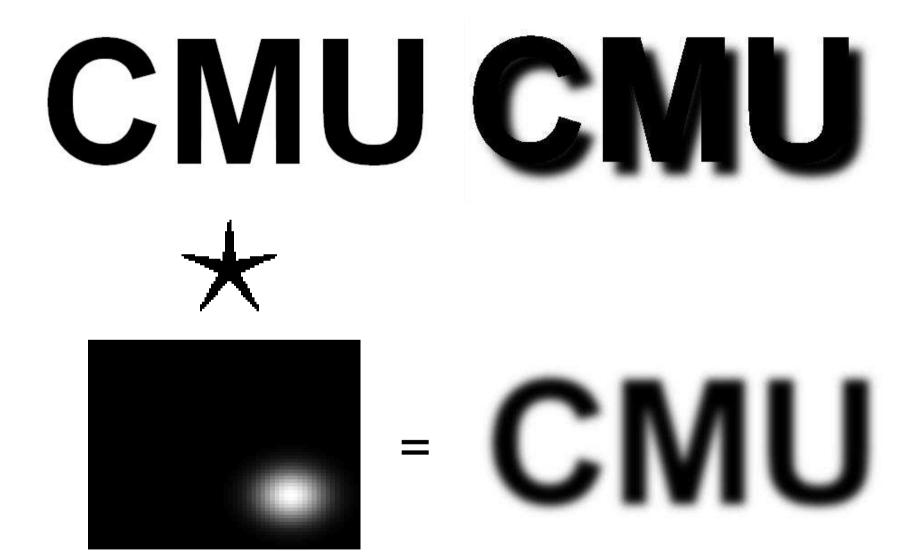
Convolution is nice!

- Notation: $b = c \star a$
- Convolution is a multiplication-like operation
 - commutative $a \star b = b \star a$
 - associative $a \star (b \star c) = (a \star b) \star c$
 - distributes over addition $a \star (b + c) = a \star b + a \star c$
 - scalars factor out $\alpha a \star b = a \star \alpha b = \alpha (a \star b)$
 - identity: unit impulse e = [..., 0, 0, 1, 0, 0, ...]

 $a \star e = a$

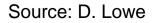
- Conceptually no distinction between filter and signal
- Usefulness of associativity
 - often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$
 - this is equivalent to applying one filter: a * $(b_1 * b_2 * b_3)$

Tricks with convolutions



Original

0	0	0
0	1	0
0	0	0



?



Original

0	0	0
0	1	0
0	0	0

Filtered (no change)

Original

0	0	0
0	0	1
0	0	0

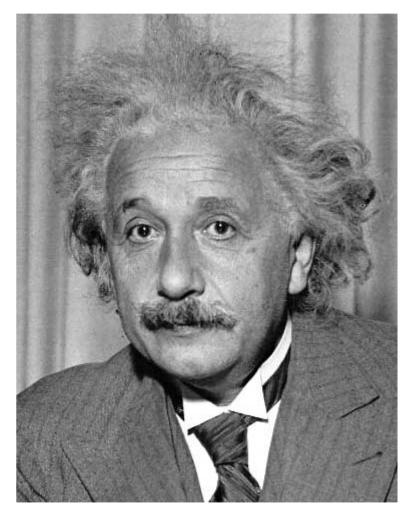
?

Original

0	0	0
0	0	1
0	0	0

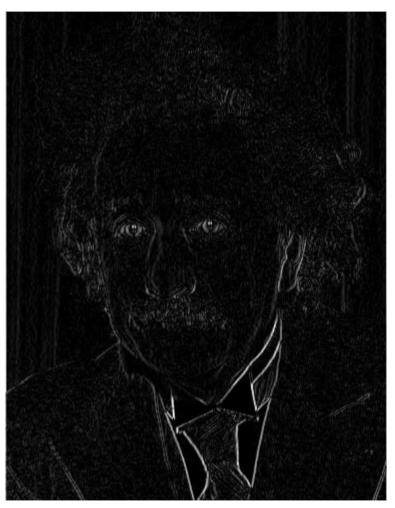
Shifted left By 1 pixel

Other filters



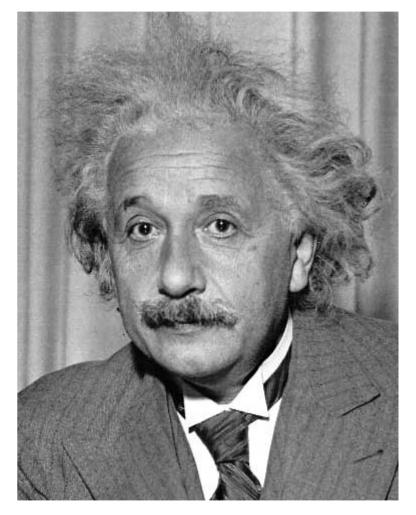
1	0	-1
2	0	-2
1	0	-1

Sobel



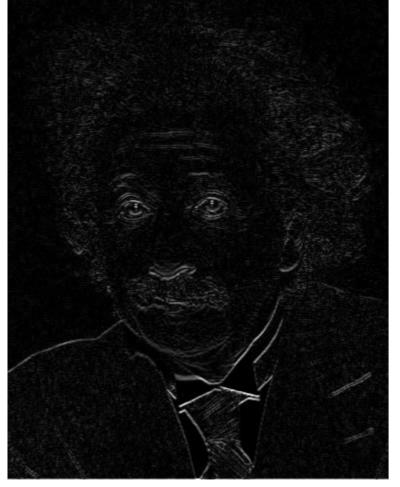
Vertical Edge (absolute value)

Other filters



1	2	1
0	0	0
-1	-2	-1

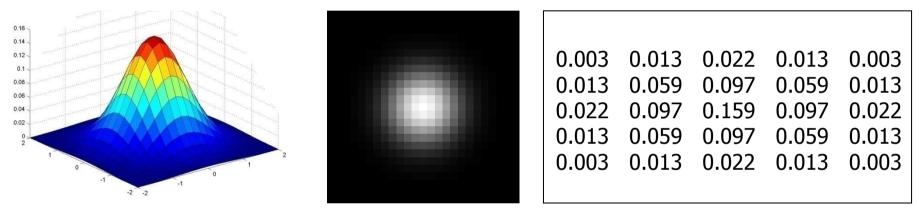
Sobel



Horizontal Edge (absolute value)

Important filter: Gaussian

Weight contributions of neighboring pixels by nearness



 $5 \times 5, \sigma = 1$

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

Gaussian filters

Remove "high-frequency" components from the image (low-pass filter)

• Images become more smooth

Convolution with self is another Gaussian

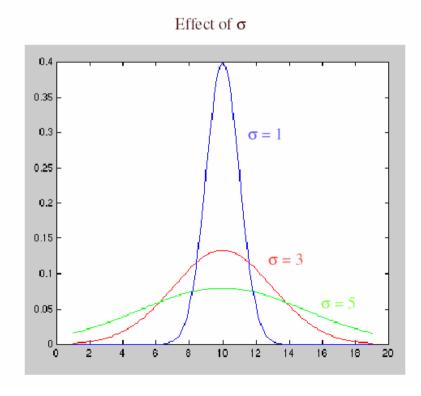
- So can smooth with small-width kernel, repeat, and get same result as larger-width kernel would have
- Convolving two times with Gaussian kernel of width σ is same as convolving once with kernel of width $\sigma\sqrt{2}$

Practical matters

How big should the filter be?

Values at edges should be near zero

Rule of thumb for Gaussian: set filter half-width to about 3 σ



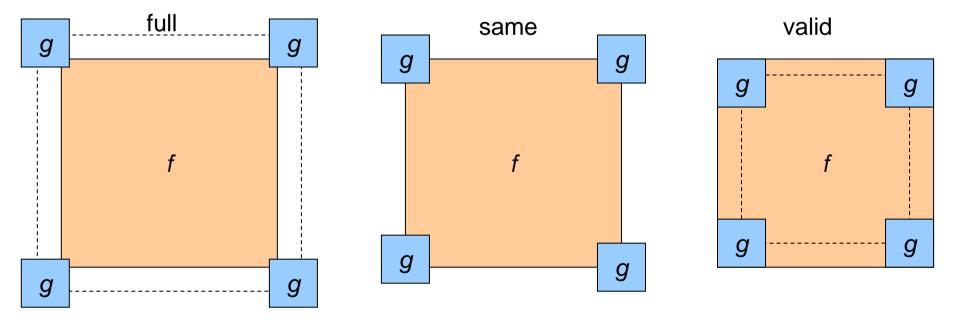
Side by Derek Hoiem

Practical matters

What is the size of the output?

MATLAB: filter2(g, f, shape) or conv2(g,f,shape)

- *shape* = 'full': output size is sum of sizes of f and g
- *shape* = 'same': output size is same as f
- *shape* = 'valid': output size is difference of sizes of f and g



Practical matters

What about near the edge?

- the filter window falls off the edge of the image
- need to extrapolate
- methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

Source: S. Marschner

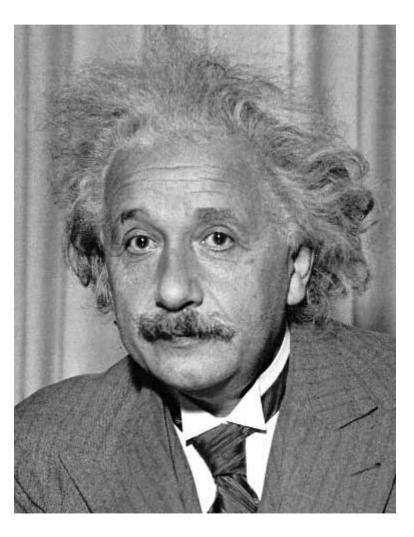
- methods (MATLAB):
 - clip filter (black): imfilter(f, g, 0)
 - wrap around: imfilter(f, g, 'circular')
 - copy edge: imfilter(f, g, 'replicate')
 - reflect across edge: imfilter(f, g, 'symmetric')

Template matching

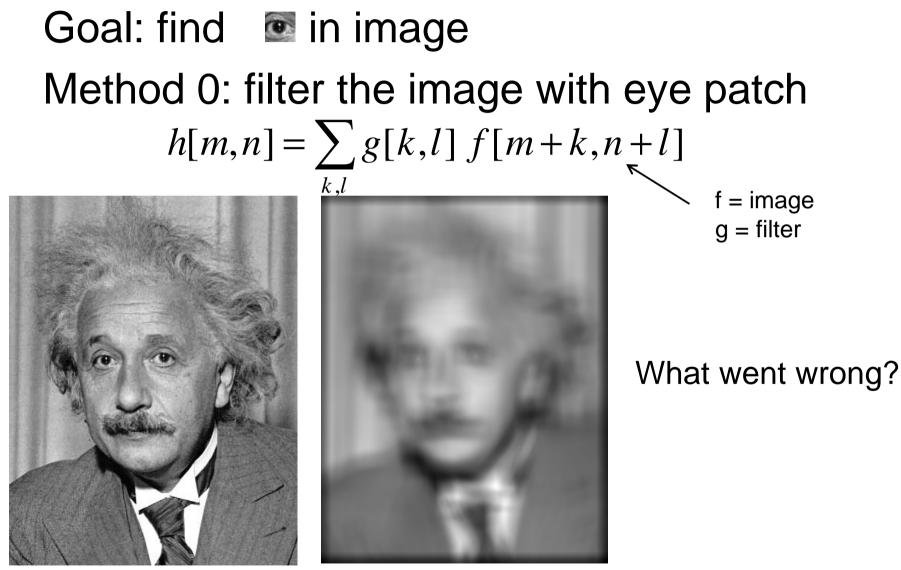
Goal: find **Set in image**

Main challenge: What is a good similarity or distance measure between two patches?

- Correlation
- Zero-mean correlation
- Sum Square Difference
- Normalized Cross Correlation



Side by Derek Hoiem

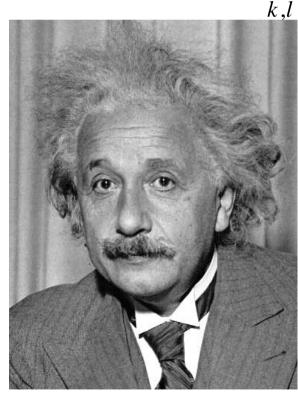


Input

Filtered Image

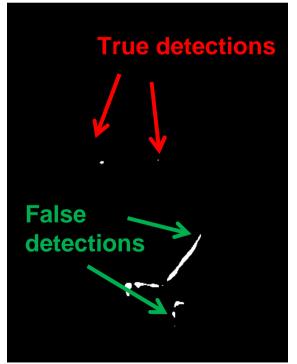
Side by Derek Hoiem

Goal: find in image Method 1: filter the image with zero-mean eye $h[m,n] = \sum_{k,l} (f[k,l] - \bar{f}) \underbrace{(g[m+k,n+l])}_{\text{mean of f}}$



Input

Filtered Image (scaled)



Thresholded Image

Goal: find Imit in image Method 2: SSD $h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^2$

Input

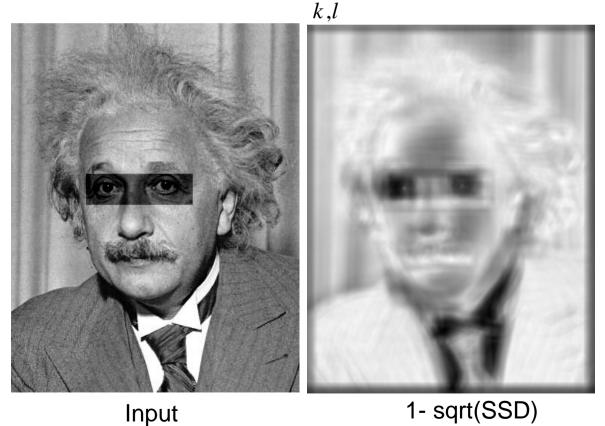
1- sqrt(SSD)

Thresholded Image

k.l

Can SSD be implemented with linear filters? $h[m,n] = \sum (g[k,l] - f[m+k,n+l])^2$

What's the potential Goal: find **I** in image downside of SSD? Method 2: SSD $h[m,n] = \sum (g[k,l] - f[m+k,n+l])^2$



Side by Derek Hoiem

Goal: find Sin image Method 3: Normalized cross-correlation

$$h[m,n] = \frac{\sum_{k,l} (g[k,l] - \overline{g})(f[m+k,n+l] - \overline{f}_{m,n})}{\left(\sum_{k,l} (g[k,l] - \overline{g})^2 \sum_{k,l} (f[m+k,n+l] - \overline{f}_{m,n})^2\right)^{0.5}}$$

Side by Derek Hoiem

Goal: find Sin image Method 3: Normalized cross-correlation

Normalized X-Correlation

Thresholded Image

Goal: find Sin image Method 3: Normalized cross-correlation

Input

Normalized X-Correlation

Thresholded Image

Q: What is the best method to use?

- A: Depends
- Zero-mean filter: fastest but not a great matcher
- SSD: next fastest, sensitive to overall intensity
- Normalized cross-correlation: slowest, invariant to local average intensity and contrast

Image half-sizing

This image is too big to fit on the screen. How can we reduce it?

How to generate a halfsized version?

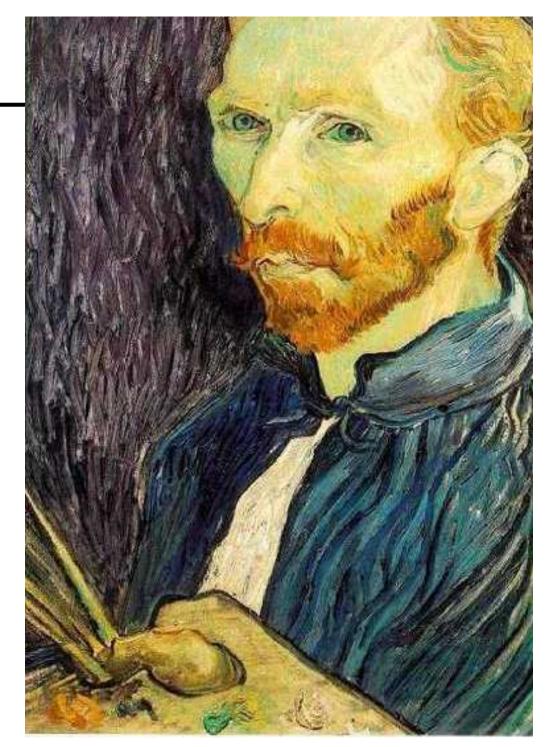


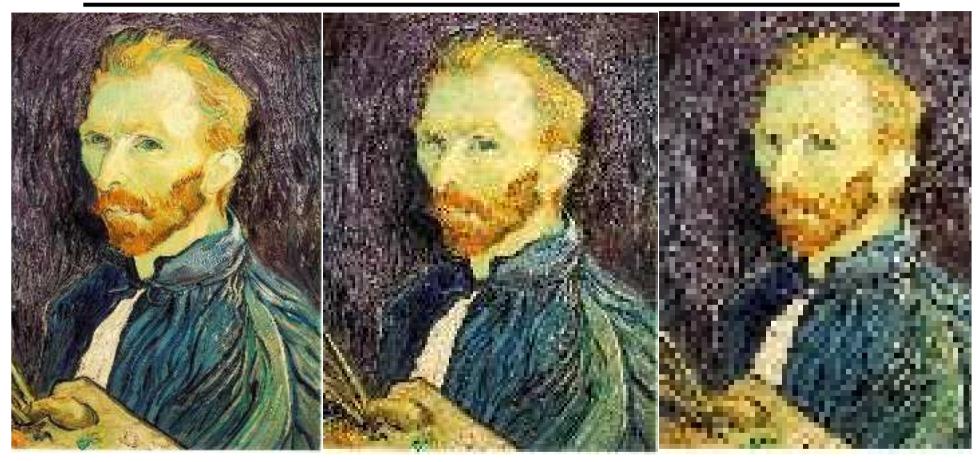
Image sub-sampling



1/4

Throw away every other row and column to create a 1/2 size image - called *image sub-sampling*

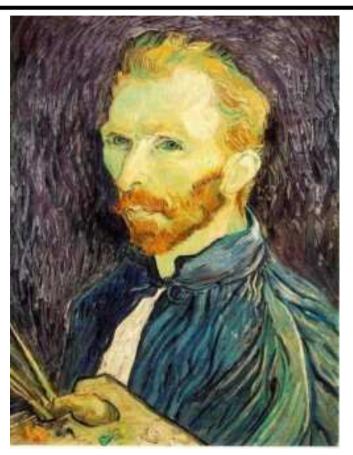
Image sub-sampling



1/2 1/4 (2x zoom) 1/8 (4x zoom)

Aliasing! What do we do?

Gaussian (lowpass) pre-filtering



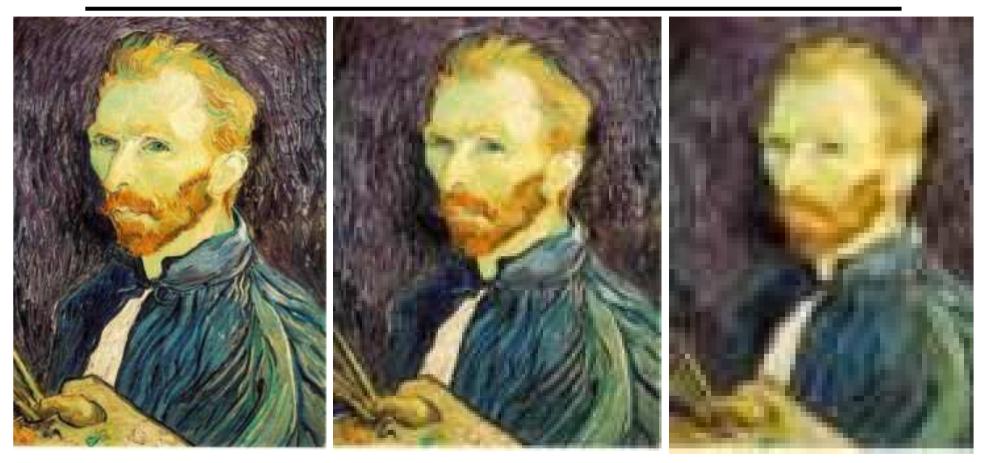
G 1/4

Gaussian 1/2

Solution: filter the image, *then* subsample

• Filter size should double for each 1/2 size reduction. Why?

Subsampling with Gaussian pre-filtering



Gaussian 1/2

G 1/4

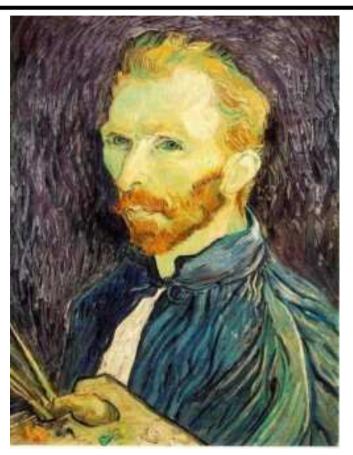
G 1/8

Compare with...

1/4 (2x zoom)

1/8 (4x zoom)

Gaussian (lowpass) pre-filtering



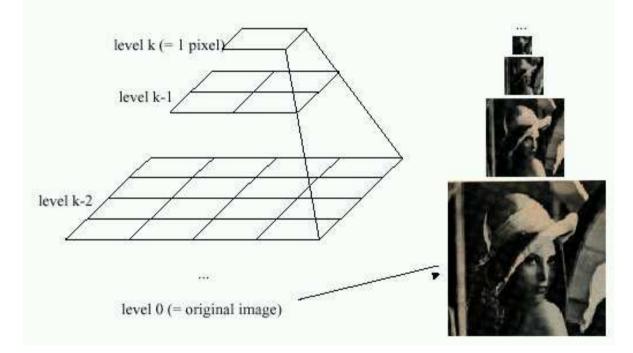
G 1/4

Gaussian 1/2

Solution: filter the image, then subsample

- Filter size should double for each 1/2 size reduction. Why?
- How can we speed this up?

Image Pyramids



Known as a Gaussian Pyramid [Burt and Adelson, 1983]

- In computer graphics, a *mip map* [Williams, 1983]
- A precursor to wavelet transform

512 256 128 64 32 16 8 Ab

A bar in the big images is a hair on the zebra's nose; in smaller images, a stripe; in the smallest, the animal's nose

What are they good for?

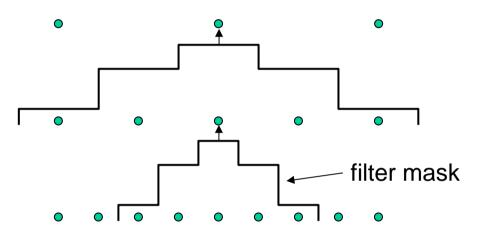
Improve Search

- Search over translations
 - Like project 1
 - Classic coarse-to-fine strategy
- Search over scale
 - Template matching
 - E.g. find a face at different scales

Pre-computation

- Need to access image at different blur levels
- Useful for texture mapping at different resolutions (called mip-mapping)

Gaussian pyramid construction



Repeat

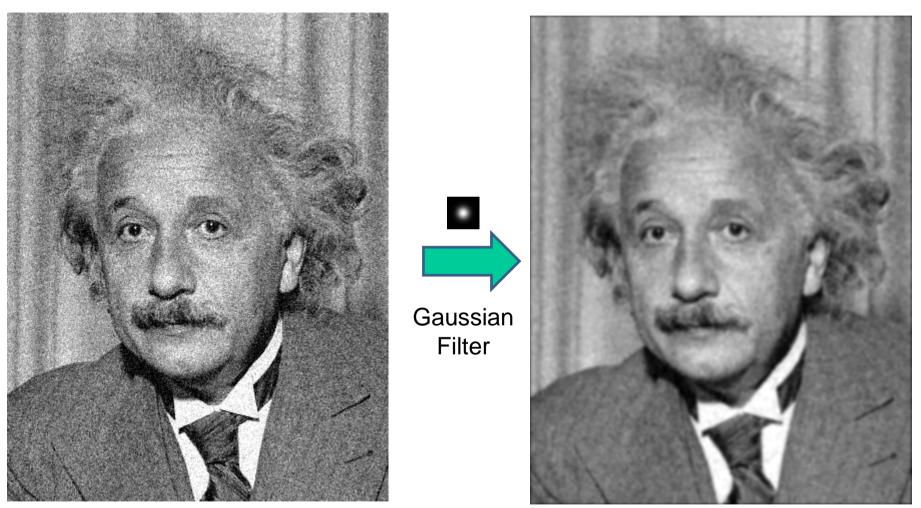
- Filter
- Subsample

Until minimum resolution reached

• can specify desired number of levels (e.g., 3-level pyramid)

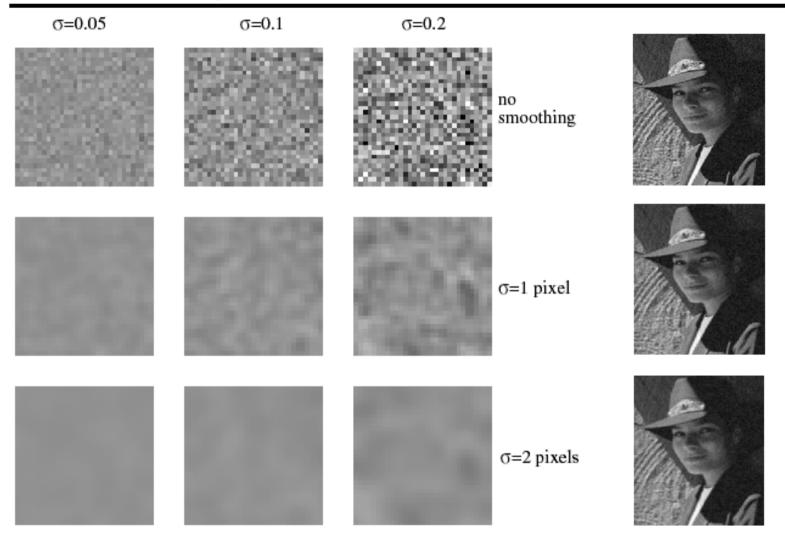
The whole pyramid is only 4/3 the size of the original image!

Denoising



Additive Gaussian Noise

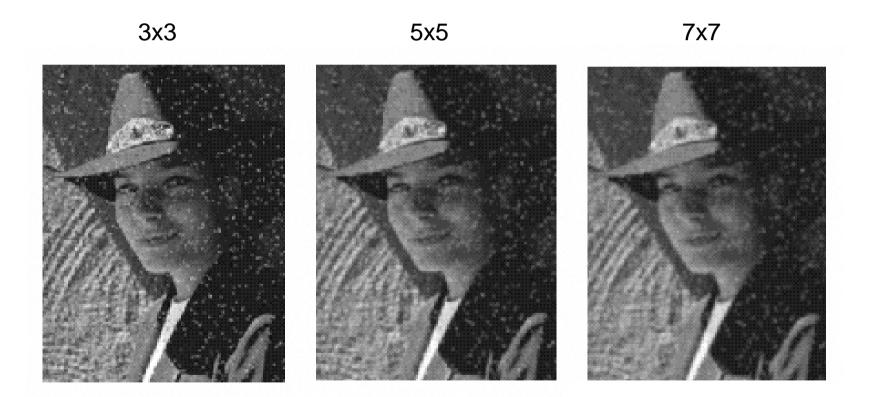
Reducing Gaussian noise



Smoothing with larger standard deviations suppresses noise, but also blurs the image

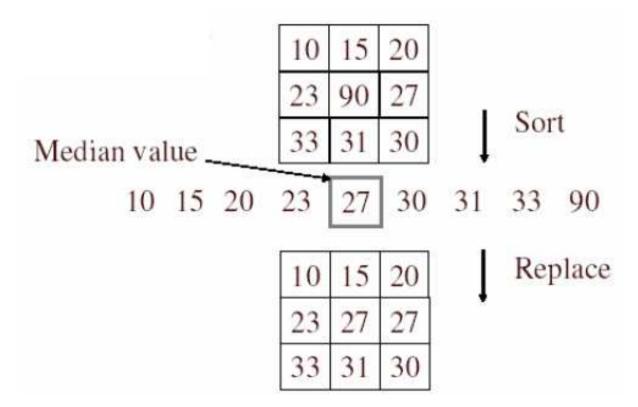
Source: S. Lazebnik

Reducing salt-and-pepper noise by Gaussian smoothing



Alternative idea: Median filtering

A **median filter** operates over a window by selecting the median intensity in the window

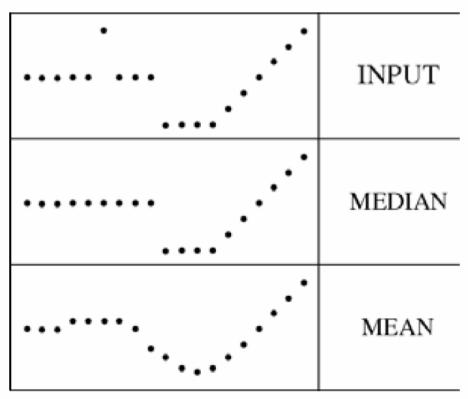


• Is median filtering linear?

Median filter

What advantage does median filtering have over Gaussian filtering?

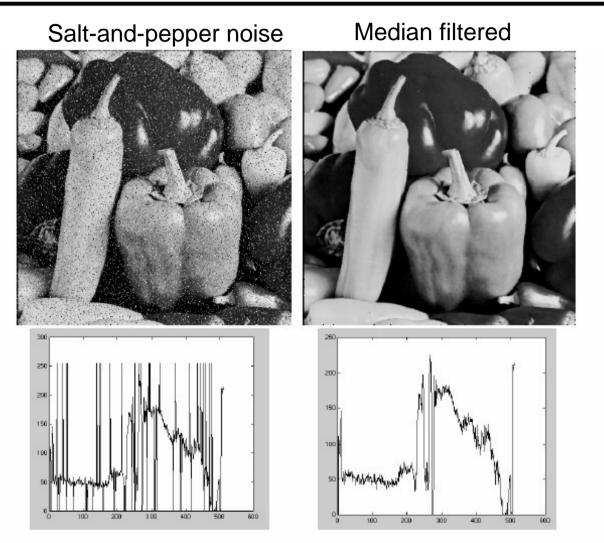
• Robustness to outliers



filters have width 5 :

Source: K. Grauman

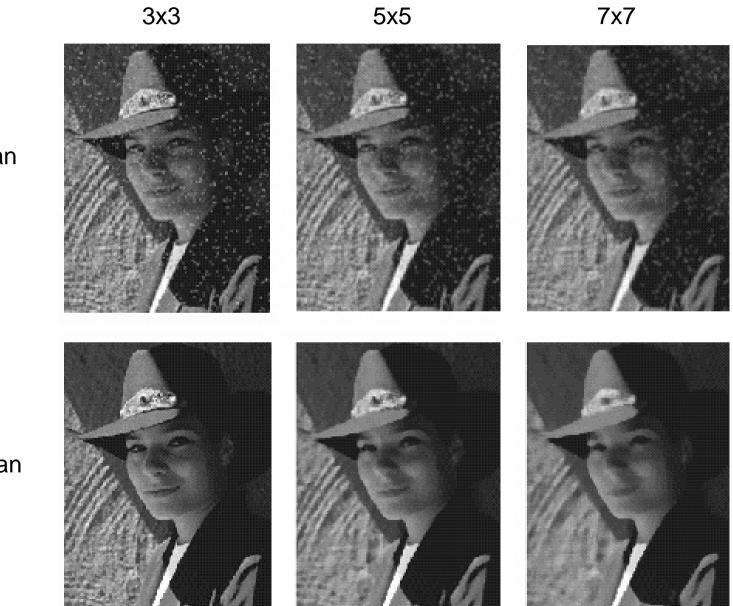
Median filter



MATLAB: medfilt2(image, [h w])

Source: M. Hebert

Median vs. Gaussian filtering



Gaussian

Median