Point Processing

15-463: Computational Photography Alexei Efros, CMU, Fall 2011

Image Processing

image filtering: change range of image

$$g(x) = h(f(x))$$

image warping: change domain of image

Image Processing

image filtering: change range of image

image warping: change domain of image

Point Processing

The simplest kind of range transformations are these independent of position x,y:

$$g = t(f)$$

This is called point processing.

What can they do?

What's the form of *t*?

Important: every pixel for himself – spatial information completely lost!

Basic Point Processing

FIGURE 3.3 Some basic gray-level transformation functions used for image enhancement.

Negative

a b

rigure 3.4 (a) Original digital mammogram. (b) Negative image obtained using the negative transformation in Eq. (3.2-1). (Courtesy of G.E. Medical Systems.)

Log

a b

FIGURE 3.5
(a) Fourier spectrum.
(b) Result of applying the log transformation given in Eq. (3.2-2) with c = 1.

Power-law transformations

FIGURE 3.6 Plots of the equation $s = cr^{\gamma}$ for various values of γ (c = 1 in all cases).

Image Enhancement

a b c d

FIGURE 3.9

(a) Aerial image. (b)–(d) Results of applying the transformation in Eq. (3.2-3) with c = 1 and $\gamma = 3.0, 4.0$, and 5.0, respectively. (Original image for this example courtesy of NASA.)

Example: Gamma Correction

a b c d

FIGURE 3.7

(a) Linear-wedge gray-scale image.(b) Response of

monitor to linear wedge. (c) Gamma-

corrected wedge. (d) Output of monitor.

_	
3.0	4 0
-2 / 1	1 . 8
	4 6
7) 01	
2.8	1.6
<i>L</i> . U	
A	4
2.6	1.4
	4
Z . U	
7	4 0
2.4	1.2
6 . T	
2.2	1.0
\sim	0.8
2.0	
4 0	Δ
X	

$$s = r^{\gamma}$$

e.g. $0.25 = 0.5^{2.0}$

http://www.cs.cmu.edu/~efros/java/gamma/gamma.html

Contrast Stretching

a b c d

FIGURE 3.10 Contrast stretching. (a) Form of transformation function. (b) A low-contrast image. (c) Result of contrast stretching. (d) Result of thresholding. (Original image courtesy of Dr. Roger Heady, Research School of Biological Sciences, Australian National University, Canberra,

Australia.)

Image Histograms

$$s = T(r)$$

a b

FIGURE 3.15 Four basic image types: dark, light, low contrast, high contrast, and their corresponding histograms. (Original image courtesy of Dr. Roger Heady, Research School of Biological Sciences, Australian National University, Canberra, Australia.)

Histogram Equalization

 $\label{eq:Figure 3.17} \textbf{Fig. B.17.} \ (a) \ Images \ from \ Fig. \ 3.15. \ (b) \ Results \ of \ histogram \ equalization. \ (c) \ Corresponding \ histograms.$

Color Transfer [Reinhard, et al, 2001]

Erik Reinhard, Michael Ashikhmin, Bruce Gooch, Peter Shirley, Color Transfer between Images. *IEEE Computer Graphics and Applications*, 21(5), pp. 34–41. September 2001.

Limitations of Point Processing

Q: What happens if I reshuffle all pixels within the image?

A: It's histogram won't change. No point processing will be affected...