Midterm Review

| 5-463: Computational Photography



Review lopics

Sampling and Reconstruction
Frequency Domain and Filtering
Blending

Warping

Data-driven Methods

Camera

Homographies

Modeling Light



Review lopics

Sampling and Reconstruction

Frequency Domain and Filtering
Blending

Warping

Data-driven Methods

Camera

Homographies

Modeling Light



Sampling and Reconstruction
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Sampling and Reconstruction
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l Sampling l Reconsiruction

Mathematically guess what happens in between



Sampling and Reconstruction

® Effects of Undersampling
® | ost information

® High frequency signals get indistinguishable from
low frequency ones (aliasing)

Disintegrating textures



Sampling and Reconstruction

® How to avoid aliasing?
® Sample more often
® Low pass filter the signal (anti-aliasing)

® Filters work by convolution



Sampling and Reconstruction

® Examples of filters
® Moving average
® VWeighted moving average
® Equal weights
® (aussian weights

® Sobel



Sampling and Reconstruction

® (Gaussian Filters
® Smoothe out images

® Convolution of two Gaussians each with
standard deviation 0, gives Gaussian with
standard deviation O/2



Sampling and Reconstruction

® Matching

® Use normalized-cross correlation or SSH over patches
® Subsampling

® Filter with Gaussian then subsample

® Double filter size with every half-sizing

® Forms image pyramids



Sampling and Reconstruction
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Frequency Domain

Decompose signal into different frequencies



Frequency Domain and Filtering

Sum of sine waves of different frequencies

—

0. 0. 0

f(x) — Fourier v Flw
( ) Transform ( )




Frequency Domain and Filtering




Frequency Domain and Filtering
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Frequency Domain and Filtering

Laplacian of Gaussian



Frequency Domain and Filtering
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Block-based Discrete Cosine Transform (DCT)



Frequency Domain and Filtering

The gradient of an image:
— [9f of
V= [8':6’ 33/]

The gradient points in the direction of most rapid change in intensity

l_w = [#.9]

af 9
V= af 85




Frequency Domain and Filtering
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Iptena = Qg + (1-00) L0

® Window size = size of largest feature (to avoid strong seams)

® Window size <= 2 * size of smallest feature (to avoid ghosting)



Blending

Pyramid Blending

Lowpass Images

1 L
level k(= 1 pixel o L X level k(=1 pixel
o
level k-1 X level k-1
0o+ N
\ L
level k-2 )K X level k-2 )?
V4 041 V/
Left pyramid blend Right pyramid

Bandpass Images




Blending

Gradient Domain

® Result image:f
Gradients: fx, fy

® Want f to ‘look like’ some prespecified d, and
fx, fy to ‘look like’ some prespecified g*, g

min w*(f, - g%)* + w(f, - )% + w(f - d)?

f
® Weights specify per=-pixel importance of how much you want f

close to d, fx close to gX, fy close to g’



Blending

Gradient Domain

flx,y) =tz —1,y) = sz, f(z,y) — t(z,y — 1) = 5,
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Point Processing

Change range of image

g(x) = h(f(x))

L '&g b _?‘l ql“&m

] "

Histogram Equalization



Warping

Change domain of image
- 9X) = 10(X) e

—»h—»

Example: g(x)=f(x/2)



Warping

® 72D Transformations

Translate
Rotate
Scale
Similarity
Affine

Projective

| Name Matnx # D.OF. | Preserves: [con |
translation EaL -. 2 orientation -

ngid (Euchdean) | | R |t : 3 lengths

simlarnity <Rt Jae | angles -+

athne [ A | 6 parallehsm + - - F,
projective H | e 8 straight hines | : l




Warping

Change of Basis

Vv =(VX’Vy) j =(O,1)




Warping

Change of Basis: Inverse Transform

j=(0,1) V =(VyVy)

7 =(1,0)

pl=(54) =pu+pyV pYY = (py,py) = 7
-1 ) 1
u. Vv, u. Vv,
puv = = pij
Z/ly Vy -4- l/ly Vy




Warping

® Affine Warp

® Need 3 correspondences

Destination
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Warping

® Many ways to find affine matrix
® Warp Source to [0,0],[1,0], [O,1], and then to Destination

® Pose as system of equations in [a;b;c;d;e;f]

S N O

\<‘
I
o & o

it L':‘ T(x,y) C’

I
ek
L

Source Destination



Warping
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® Inverse warp




ing

Morph




Review lopics

Sampling and Reconstruction
Frequency Domain and Filtering
Blending

Warping

Data-driven Methods

Camera

Homographies

Modeling Light



Data-Driven Methods

Subspaces Methods (ex: Faces)

Write an image as linear combination of
basis images

X = Zm:aiXi
=1



Data-Driven Methods

Subspaces Methods (ex: Faces)

Shape and Appearance Models



Data-Driven Methods

Subspaces Methods (ex: Faces)

® How to get basis?

® How many basis images to use!

® How to get images that capture important variations!?
® Use PCA (principal component analysis)

® Keep those principal components whose eigenvalues are
above a threshold

x4 18t principal

A
X1
component

2"d principal
component

e




Data-Driven Methods

Video Textures

® Compute SSD between frames
® At frame i, transit either to
® frame i+|

® frame j (if SSD(j, i+ 1) is small)

® Decide to go fromito j or i+l by tossing a weighted coin.

P._.~exp(—C._,;/ o)

==/ J



Data-Driven Methods

Texture Synthesis

Input image

Synthesizing a pixel

® Search input image for similar neighborhoods

® Use Gaussian weighted SSD for search to emphasize
central pixel

® Sample one neighborhood at random

® Grow texture



Data-Driven Methods

Blocked Texture Synthesis

® Search input image for similar neighborhoods around block
® Grow texture by synthesizing blocks

® Find boundary with minimum error (seam carving)



Data-Driven Methods

Lots of Data

® Ex:Scene completion

® Search millions of images on the Internet to
find a patch that will complete your image




Data-Driven Methods

Scene Completion (GIST descriptor)
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Data-Driven Methods

Filter bank




Data-Driven Methods

Lots of Data

® |ssues with Data
® Sampling Bias
® Photographer Bias
® Reduce Bias
® Use autonomous techniques to capture data

® StreetView, satellite, webcam etc.
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Camera
Pinhole Model
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Camera

Pinhole Model

Perspective Projection (Matrix Representation)

= (—dg, — dg)
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Camera

Pinhole Model

Orthographic Projection (Matrix Representation)

1o0o00]7]" T
0100 zZy:>(az,y)
000 1]|] 1




Camera

Pinhole Model

® Pinhole camera aperture
® Large aperture --- blurry image

® Small aperture --- not enough light,
diffraction effects

® |enses create sharp images with large
aperture

® Trade-off: only at a certain focus



Camera

Pinhole Model

® Depth of field

® Distance over which objects are in focus

® Field of view

S DEPTH OF FIELD
2 DEPTH OF FIELD
=3 DEPTH OF FIELD

® Angle of visible region
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Homographies

® Panorama

® Reproject images onto a common plane

® |Images should have same center of projection

Mosaic:
Synthetic wide-angle camera

% """ Projective Warp
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Homographies
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Homographies
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® Expand equations and rewrite as
Ph=q
h:[a b ¢ d e [ g h}T

® Solve using least-squares (h = P\q)



Other Projection Models

Cylindrical Projection

(X,Y,Z)
/ « Map 3D point (X,Y,Z) onto cylinder

(/(:z,g,fz)/)\ .
~_ S - (8,9.%) = (XY, 2)

7z X « Convert to cylindrical coordinates
\ / (sinb, h,cosb) = (2,9, 2)

unit cylinder « Convert to cylindrical image coordinates

(537 g) — (f97 fh’) + (ic, gc)
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x  cylindrical image



Other Projection Models

Spherical Projection

(X.Y,2)

« Map 3D point (X,Y,Z) onto sphere
1
VX2 +Y?+ 2

(X,7,2)= (X.,Y,Z2)

« Convert to spherical coordinates
(siné@ cos@,sin@,cosfcosP)=(x,y,2)
« Convert to spherical image coordinates

(537 g) — (f(97 fh) + (5307 'yc)
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Modeling Light

(The Omnipotent) Plenoptic Function

® [ntensity of Light:
® From all directions: 6,
® At all wavelengths: A
e Atall times:t
® Seen from any viewpoint:Vy,Vy,V;

¢ P(e’ (P’ >\’ t’VX’VY9VZ)



Modeling Light
Lumigraph (Lightfield)

® |ntensity along all lines
® For all views (i.e. s,t), gives intensity at all points (i.e. u,v)

® Captures to some extent P(0, ¢,Vx,V,,V,)

™\

(u,v) For all (s,t,u,v)

NN

59




Modeling Light

Lumigraph (Lightfield)

(a)

(b)



Modeling Light

Acquiring Lightfield

® Move camera in known steps over (s,t) using gantry
® Move camera anywhere over (s,t) and recover optimal field

® Use microlens array after main lens



Good Luck!!



