Midterm Review

15-463: Computational Photography

Review Topics

- Sampling and Reconstruction
- Frequency Domain and Filtering
- Blending
- Warping
- Data-driven Methods
- Camera
- Homographies
- Modeling Light

Review Topics

- Sampling and Reconstruction
- Frequency Domain and Filtering
- Blending
- Warping
- Data-driven Methods
- Camera
- Homographies
- Modeling Light

Sampling and Reconstruction

\qquad

Sampling and Reconstruction

Mathematically guess what happens in between

Sampling and Reconstruction

- Effects of Undersampling
- Lost information
- High frequency signals get indistinguishable from low frequency ones (aliasing)

Sampling and Reconstruction

- How to avoid aliasing?
- Sample more often
- Low pass filter the signal (anti-aliasing)
- Filters work by convolution

Sampling and Reconstruction

- Examples of filters
- Moving average
- Weighted moving average
- Equal weights
- Gaussian weights
- Sobel

Sampling and Reconstruction

- Gaussian Filters
- Smoothe out images
- Convolution of two Gaussians each with standard deviation σ, gives Gaussian with standard deviation $\sigma / 2$

Sampling and Reconstruction

- Matching
- Use normalized-cross correlation or SSH over patches
- Subsampling
- Filter with Gaussian then subsample
- Double filter size with every half-sizing
- Forms image pyramids

Sampling and Reconstruction

Sampling and Reconstruction

Review Topics

- Sampling and Reconstruction
- Frequency Domain and Filtering
- Blending
- Warping
- Data-driven Methods
- Camera
- Homographies
- Modeling Light

Frequency Domain

Decompose signal into different frequencies

Frequency Domain and Filtering

Sum of sine waves of different frequencies

Frequency Domain and Filtering

Block-based Discrete Cosine Transform (DCT)

Frequency Domain and Filtering

The gradient of an image:

$$
\nabla f=\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]
$$

The gradient points in the direction of most rapid change in intensity

Frequency Domain and Filtering

Review Topics

- Sampling and Reconstruction
- Frequency Domain and Filtering
- Blending
- Warping
- Data-driven Methods
- Camera
- Homographies
- Modeling Light

Blending

- Window size $=$ size of largest feature (to avoid strong seams)
- Window size <= 2 * size of smallest feature (to avoid ghosting)

Blending

Pyramid Blending

Blending

Gradient Domain

- Result image: f Gradients: f_{x}, f_{y}
- Want fto 'look like’ some prespecified d, and f_{x}, f_{y} to 'look like' some prespecified g^{x}, g^{y}

```
min wx
```

- Weights specify per-pixel importance of how much you want f close to $\mathrm{d}, \mathrm{f}_{\mathrm{x}}$ close to $\mathrm{g}^{\mathrm{x}}, \mathrm{f}_{\mathrm{y}}$ close to g^{y}

Blending

Gradient Domain

Review Topics

- Sampling and Reconstruction
- Frequency Domain and Filtering
- Blending
- Warping
- Data-driven Methods
- Camera
- Homographies
- Modeling Light

Point Processing

Change range of image

$$
g(x)=h(f(x))
$$

Example: $g(x)=f(x)+.3$

Histogram Equalization

Warping

Change domain of image

Example: $g(x)=f(x / 2)$

Warping

- 2D Transformations
- Translate
- Rotate
- Scale
- Similarity

Name	Matrix	\# D.O.F.	Preserves:	Icon
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{2 \times 3}$	2	orientation $+\cdots$	\square
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	3	lengths $+\cdots$	\square
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	4	angles $+\cdots$	\checkmark
affine	$[\boldsymbol{A}]_{2 \times 3}$	6	parallelism $+\cdots$	\square
projective	$[\tilde{H}]_{3 \times 3}$	8	straight lines	\square

- Affine
- Projective

Warping

Change of Basis

$$
\mathbf{p}^{\mathbf{i j}}=\left[\begin{array}{ll}
u_{x} & v_{x} \\
u_{y} & v_{y}
\end{array}\right]\left[\begin{array}{l}
4 \\
3
\end{array}\right]=\left[\begin{array}{ll}
u_{x} & v_{x} \\
u_{y} & v_{y}
\end{array}\right] \mathbf{p}^{\mathbf{u v}}
$$

Warping

Change of Basis: Inverse Transform

Warping

- Affine Warp
- Need 3 correspondences

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Warping

- Many ways to find affine matrix
- Warp Source to $[0,0],[1,0],[0, I]$, and then to Destination
- Pose as system of equations in [a;b;c;d;e;f]

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Warping

- Forward warp

- Inverse warp

Morphing

Review Topics

- Sampling and Reconstruction
- Frequency Domain and Filtering
- Blending
- Warping
- Data-driven Methods
- Camera
- Homographies
- Modeling Light

Data-Driven Methods

Write an image as linear combination of basis images

$$
X=\sum_{i=1}^{m} a_{i} X_{i}
$$

Data-Driven Methods

Subspaces Methods (ex: Faces)

$$
\begin{aligned}
& \mathbf{S}_{\text {model }}=\sum_{i=1}^{m} a_{i} \mathbf{S}_{i} \quad \mathbf{T}_{\text {model }}=\sum_{i=1}^{m} b_{i} \mathbf{T}_{i} \\
& s=\alpha_{1} \cdot \frac{6}{6}+\alpha_{2} \cdot \frac{6}{6}+\alpha_{3} \cdot \frac{1}{2}+\alpha_{4} \cdot \frac{1}{2}+\ldots=\mathrm{S} \cdot \mathrm{a}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Shape and Appearance Models }
\end{aligned}
$$

Data-Driven Methods

Subspaces Methods (ex: Faces)

- How to get basis?
- How many basis images to use?
- How to get images that capture important variations?
- Use PCA (principal component analysis)
- Keep those principal components whose eigenvalues are above a threshold

Data-Driven Methods

Video Textures

- Compute SSD between frames
- At frame i, transit either to
- frame i+l
- frame j (if SSD $(\mathrm{j}, \mathrm{i}+\mathrm{l})$ is small)
- Decide to go from i to j or $\mathrm{i}+\mathrm{I}$ by tossing a weighted coin.

$$
P_{i \rightarrow j} \sim \exp \left(-C_{i \rightarrow j} / \sigma^{2}\right)
$$

Data-Driven Methods

Texture Synthesis

- Search input image for similar neighborhoods
- Use Gaussian weighted SSD for search to emphasize central pixel
- Sample one neighborhood at random
- Grow texture

Data-Driven Methods

Blocked Texture Synthesis

- Search input image for similar neighborhoods around block
- Grow texture by synthesizing blocks
- Find boundary with minimum error (seam carving)

Data-Driven Methods

Lots of Data

- Ex:Scene completion
- Search millions of images on the Internet to find a patch that will complete your image

Data-Driven Methods

Scene Completion (GIST descriptor)

$$
\chi^{2}\left(h_{i}, h_{j}\right)=\frac{1}{2} \sum_{m=1}^{K} \frac{\left[h_{i}(m)-h_{j}(m)\right]^{2}}{h_{i}(m)+h_{j}(m)}
$$

Histogram matching distance

Data-Driven Methods

Filter bank

,	,	$=$,
1	\%	$=$	*
4	7	*	4

霜

붕웅

Input image

Data-Driven Methods

Lots of Data

- Issues with Data
- Sampling Bias
- Photographer Bias
- Reduce Bias
- Use autonomous techniques to capture data
- StreetView, satellite, webcam etc.

Review Topics

- Sampling and Reconstruction
- Frequency Domain and Filtering
- Blending
- Warping
- Data-driven Methods
- Camera
- Homographies
- Modeling Light

Camera

Pinhole Model

Perspective Projection

$(x, y, z) \rightarrow\left(-d \frac{x}{z},-d \frac{y}{z},-\not\right)$

Camera

Pinhole Model

Perspective Projection (Matrix Representation)

$$
\begin{gathered}
{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
-z / d
\end{array}\right] \Rightarrow\left(-d \frac{x}{z}, \quad-d \frac{y}{z}\right)} \\
\uparrow \\
\uparrow \\
\text { Homogeneous } \\
\text { Coordinates }
\end{gathered}
$$

Camera

Pinhole Model

Orthographic Projection (Matrix Representation)

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \Rightarrow(x, y)
$$

Camera

Pinhole Model

- Pinhole camera aperture
- Large aperture --- blurry image
- Small aperture --- not enough light, diffraction effects
- Lenses create sharp images with large aperture
- Trade-off: only at a certain focus

Camera

Pinhole Model

- Depth of field
- Distance over which objects are in focus
- Field of view
- Angle of visible region

Review Topics

- Sampling and Reconstruction
- Frequency Domain and Filtering
- Blending
- Warping
- Data-driven Methods
- Camera
- Homographies
- Modeling Light

Homographies

- Panorama
- Reproject images onto a common plane
- Images should have same center of projection

Mosaic:

Synthetic wide-angle camera

Projective Warp
(Homography)

Homographies

$$
\left[\begin{array}{c}
x^{\prime \prime} \\
y^{\prime \prime} \\
w^{\prime \prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right], x^{\prime}=\frac{x^{\prime \prime}}{w^{\prime \prime}}, y^{\prime}=\frac{y^{\prime \prime}}{w^{\prime \prime}}
$$

Homographies

$$
\left[\begin{array}{l}
x^{\prime \prime} \\
y^{\prime \prime} \\
w^{\prime \prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right], x^{\prime}=\frac{x^{\prime \prime}}{w^{\prime \prime}}, y^{\prime}=\frac{y^{\prime \prime}}{w^{\prime \prime}}
$$

- Expand equations and rewrite as

$$
\mathbf{P h}=\mathbf{q}
$$

$$
\mathbf{h}=\left[\begin{array}{llllllll}
a & b & c & d & e & f & g & h
\end{array}\right]^{T}
$$

- Solve using least-squares ($\mathbf{h}=\mathbf{P} \backslash \mathbf{q}$)

Other Projection Models

Cylindrical Projection

Other Projection Models

Spherical Projection

- Map 3D point (X, Y, Z) onto sphere

$$
(\hat{x}, \hat{y}, \hat{z})=\frac{1}{\sqrt{X^{2}+Y^{2}+Z^{2}}}(X, Y, Z)
$$

- Convert to spherical coordinates $(\sin \theta \cos \phi, \sin \phi, \cos \theta \cos \phi)=(\hat{x}, \hat{y}, \hat{z})$
- Convert to spherical image coordinates

$$
(\tilde{x}, \tilde{y})=(f \theta, f h)+\left(\tilde{x}_{c}, \tilde{y}_{c}\right)
$$

Review Topics

- Sampling and Reconstruction
- Frequency Domain and Filtering
- Blending
- Warping
- Data-driven Methods
- Camera
- Homographies
- Modeling Light

Modeling Light

(The Omnipotent) Plenoptic Function

- Intensity of Light:
- From all directions: θ, φ
- At all wavelengths: λ
- At all times: t
- Seen from any viewpoint: $\mathrm{V}_{\mathrm{x}}, \mathrm{V}_{\mathrm{y}}, \mathrm{V}_{\mathrm{z}}$
- $\mathrm{P}\left(\theta, \varphi, \lambda, \mathrm{t}, \mathrm{V}_{\mathrm{x}}, \mathrm{V}_{\mathrm{y}}, \mathrm{V}_{\mathrm{z}}\right)$

Modeling Light

Lumigraph (Lightfield)

- Intensity along all lines
- For all views (i.e. s,t), gives intensity at all points (i.e. u,v)
- Captures to some extent $\mathrm{P}\left(\theta, \varphi, \mathrm{V}_{\mathrm{x}}, \mathrm{V}_{\mathrm{y}}, \mathrm{V}_{\mathrm{z}}\right)$

Modeling Light

Lumigraph (Lightfield)

Modeling Light

Acquiring Lightfield

- Move camera in known steps over (s, t) using gantry
- Move camera anywhere over (s, t) and recover optimal field
- Use microlens array after main lens

Good Luck!!

