Midterm Review

15-463: Computational Photography

Review Topics

- Sampling and Reconstruction
- Frequency Domain and Filtering
- Blending
- Warping
- Data-driven Methods
- Camera
- Homographies
- Modeling Light

Review Topics

- Sampling and Reconstruction
- Frequency Domain and Filtering
- Blending
- Warping
- Data-driven Methods
- Camera
- Homographies
- Modeling Light

Mathematically guess what happens in between

- Effects of Undersampling
 - Lost information
 - High frequency signals get indistinguishable from low frequency ones (aliasing)

- How to avoid aliasing?
 - Sample more often
 - Low pass filter the signal (anti-aliasing)
- Filters work by convolution

- Examples of filters
 - Moving average
 - Weighted moving average
 - Equal weights
 - Gaussian weights
 - Sobel

- Gaussian Filters
 - Smoothe out images
 - Convolution of two Gaussians each with standard deviation σ , gives Gaussian with standard deviation $\sigma/2$

- Matching
 - Use normalized-cross correlation or SSH over patches
- Subsampling
 - Filter with Gaussian then subsample
 - Double filter size with every half-sizing
 - Forms image pyramids

Review Topics

- Sampling and Reconstruction
- Frequency Domain and Filtering
- Blending
- Warping
- Data-driven Methods
- Camera
- Homographies
- Modeling Light

Frequency Domain

Decompose signal into different frequencies

Sum of sine waves of different frequencies

Fourier

Transform

 $F(\omega)$

In 2D

Block-based Discrete Cosine Transform (DCT)

The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

The gradient points in the direction of most rapid change in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

Review Topics

- Sampling and Reconstruction
- Frequency Domain and Filtering
- Blending
- Warping
- Data-driven Methods
- Camera
- Homographies
- Modeling Light

- Window size = size of largest feature (to avoid strong seams)
- Window size <= 2 * size of smallest feature (to avoid ghosting)

Pyramid Blending

Lowpass Images

Bandpass Images

Gradient Domain

- Result image: f
 Gradients: f_x, f_y
- Want f to 'look like' some prespecified d, and f_x , f_y to 'look like' some prespecified g^x , g^y

min
$$\mathbf{w}^{x}(f_{x}-g^{x})^{2}+\mathbf{w}^{y}(f_{y}-g^{y})^{2}+\mathbf{w}^{d}(f-d)^{2}$$

Weights specify **per-pixel** importance of how much you want f close to d, f_x close to g^x, f_y close to g^y

Gradient Domain

Review Topics

- Sampling and Reconstruction
- Frequency Domain and Filtering
- Blending
- Warping
- Data-driven Methods
- Camera
- Homographies
- Modeling Light

Point Processing

Change range of image

Example: g(x)=f(x)+.3

Histogram Equalization

Change domain of image

Example: g(x)=f(x/2)

- 2D Transformations
 - Translate
 - Rotate
 - Scale
 - Similarity
 - Affine
 - Projective

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$egin{bmatrix} I & t \end{bmatrix}_{2 imes 3}$	2	orientation $+\cdots$	
rigid (Euclidean)	$\left[egin{array}{c c} R & t\end{array} ight]_{2 imes 3}$	3	lengths + · · ·	\Diamond
similarity	$\begin{bmatrix} sR \mid t \end{bmatrix}_{2 \times 3}$	4	angles + · · ·	\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

Change of Basis

$$\mathbf{p^{ij}} = \begin{bmatrix} u_x & v_x \\ u_y & v_y \end{bmatrix} \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} u_x & v_x \\ u_y & v_y \end{bmatrix} \mathbf{p^{uv}}$$

Change of Basis: Inverse Transform

- Affine Warp
 - Need 3 correspondences

- Many ways to find affine matrix
 - Warp Source to [0,0], [1,0], [0,1], and then to Destination
 - Pose as system of equations in [a;b;c;d;e;f]

Forward warp

Inverse warp

Morphing

Review Topics

- Sampling and Reconstruction
- Frequency Domain and Filtering
- Blending
- Warping
- Data-driven Methods
- Camera
- Homographies
- Modeling Light

Subspaces Methods (ex: Faces)

Write an image as linear combination of basis images

$$X = \sum_{i=1}^{m} a_i X_i$$

Subspaces Methods (ex: Faces)

$$\mathbf{S}_{model} = \sum_{i=1}^{m} a_i \mathbf{S}_i \qquad \mathbf{T}_{model} = \sum_{i=1}^{m} b_i \mathbf{T}_i$$

$$s = \alpha_1 \cdot \mathbf{v} + \alpha_2 \cdot \mathbf{v} + \alpha_3 \cdot \mathbf{v} + \alpha_4 \cdot \mathbf{v} + \dots = \mathbf{S} \cdot \mathbf{a}$$

$$t = \beta_1 \cdot \mathbf{v} + \beta_2 \cdot \mathbf{v} + \beta_3 \cdot \mathbf{v} + \beta_4 \cdot \mathbf{v} + \dots = \mathbf{T} \cdot \mathbf{B}$$

Shape and Appearance Models

Subspaces Methods (ex: Faces)

- How to get basis?
 - How many basis images to use?
 - How to get images that capture important variations?
- Use PCA (principal component analysis)
 - Keep those principal components whose eigenvalues are above a threshold

Video Textures

- Compute SSD between frames
- At frame i, transit either to
 - frame i+1
 - frame j (if SSD(j, i+1) is small)
- Decide to go from i to j or i+1 by tossing a weighted coin.

$$P_{i\rightarrow j} \sim \exp\left(-C_{i\rightarrow j}/\sigma^2\right)$$

Texture Synthesis

- Search input image for similar neighborhoods
 - Use Gaussian weighted SSD for search to emphasize central pixel
 - Sample one neighborhood at random
- Grow texture

Blocked Texture Synthesis

- Search input image for similar neighborhoods around block
- Grow texture by synthesizing blocks
 - Find boundary with minimum error (seam carving)

Lots of Data

- Ex: Scene completion
 - Search millions of images on the Internet to find a patch that will complete your image

Scene Completion (GIST descriptor)

Lots of Data

- Issues with Data
 - Sampling Bias
 - Photographer Bias
- Reduce Bias
 - Use autonomous techniques to capture data
 - StreetView, satellite, webcam etc.

Review Topics

- Sampling and Reconstruction
- Frequency Domain and Filtering
- Blending
- Warping
- Data-driven Methods
- Camera
- Homographies
- Modeling Light

Pinhole Model

Perspective Projection

$$(x,y,z) \rightarrow (-d\frac{x}{z}, -d\frac{y}{z}, -d)$$

Pinhole Model

Perspective Projection (Matrix Representation)

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ -z/d \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$
Homogeneous
Coordinates

Pinhole Model

Orthographic Projection (Matrix Representation)

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \Rightarrow (x, y)$$

Pinhole Model

- Pinhole camera aperture
 - Large aperture --- blurry image
 - Small aperture --- not enough light, diffraction effects
- Lenses create sharp images with large aperture
 - Trade-off: only at a certain focus

Pinhole Model

- Depth of field
 - Distance over which objects are in focus
- Field of view
 - Angle of visible region

Review Topics

- Sampling and Reconstruction
- Frequency Domain and Filtering
- Blending
- Warping
- Data-driven Methods
- Camera
- Homographies
- Modeling Light

Homographies

- Panorama
 - Reproject images onto a common plane
 - Images should have same center of projection

Mosaic: Synthetic wide-angle camera

Projective Warp (Homography)

Homographies

$$\begin{bmatrix} x'' \\ y'' \\ w'' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}, x' = \frac{x''}{w''}, y' = \frac{y''}{w''}$$

Homographies

$$\begin{bmatrix} x'' \\ y'' \\ w'' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}, x' = \frac{x''}{w''}, y' = \frac{y''}{w''}$$

Expand equations and rewrite as

$$\mathbf{Ph} = \mathbf{q}$$

$$\mathbf{h} = \begin{bmatrix} a & b & c & d & e & f & g & h \end{bmatrix}^T$$

Solve using least-squares (h = P\q)

Other Projection Models

Cylindrical Projection

$$(\hat{x}, \hat{y}, \hat{z}) = \frac{1}{\sqrt{X^2 + Z^2}} (X, Y, Z)$$

Convert to cylindrical coordinates

$$(sin\theta, h, cos\theta) = (\hat{x}, \hat{y}, \hat{z})$$

Convert to cylindrical image coordinates

$$(\tilde{x}, \tilde{y}) = (f\theta, fh) + (\tilde{x}_c, \tilde{y}_c)$$

Other Projection Models

Spherical Projection

unwrapped sphere

Map 3D point (X,Y,Z) onto sphere

$$(\hat{x}, \hat{y}, \hat{z}) = \frac{1}{\sqrt{X^2 + Y^2 + Z^2}} (X, Y, Z)$$

- Convert to spherical coordinates $(\sin\theta\cos\phi,\sin\phi,\cos\theta\cos\phi) = (\hat{x},\hat{y},\hat{z})$
- Convert to spherical image coordinates

$$(\tilde{x}, \tilde{y}) = (f\theta, fh) + (\tilde{x}_c, \tilde{y}_c)$$

Review Topics

- Sampling and Reconstruction
- Frequency Domain and Filtering
- Blending
- Warping
- Data-driven Methods
- Camera
- Homographies
- Modeling Light

(The Omnipotent) Plenoptic Function

- Intensity of Light:
 - From all directions: θ , ϕ
 - At all wavelengths: λ
 - At all times: t
 - Seen from any viewpoint: V_x, V_y, V_z
- $P(\theta, \phi, \lambda, t, V_x, V_y, V_z)$

Lumigraph (Lightfield)

- Intensity along all lines
 - For all views (i.e. s,t), gives intensity at all points (i.e. u,v)
 - Captures to some extent $P(\theta, \phi, V_x, V_y, V_z)$

For all (s,t,u,v)

Lumigraph (Lightfield)

Acquiring Lightfield

- Move camera in known steps over (s,t) using gantry
- Move camera anywhere over (s,t) and recover optimal field
- Use microlens array after main lens

Good Luck!!