Visual Data on the Internet

http://www.boingboing.net/2009/07/30/bbvideo-send-me-a-l.html (starts at 2:40 min)

With slides from James Hays, Antonio Torralba, and Frederic 15-463: Computational Photography Alexei Efros, CMU, Fall 2011

Big issues

- What is out there on the Internet? How do we get it? What can we do with it?
- How do we compute distances between images?

Subject-specific Data

Photos of Coliseum

Portraits of Bill Clinton

Much of Captured World is "generic"

Generic Data

street scenes

Food plates

pedestrians

faces

The Internet as a Data Source

- Social Networking Sites (e.g. Facebook, MySpace)
- Image Search Engines (e.g. Google, Bing)
- Photo Sharing Sites (e.g Flickr, Picasa, Panoramio, photo.net, dpchallenge.com)
- Computer Vision Databases (e.g. CalTech 256, PASCAL VOC, LabelMe, Tiny Images, imagenet.org, ESP game, Squigl, Matchin)

How Big is Flickr?

- As of June 19th, 2009
- Total content:
 - 3.6 billion photographs
 - 100+ million geotagged images
- *Public* content:
 - 1.3 billion photographs
 - 74 million geotagged images

How Annotated is Flickr? (tag search)

- Party 7,355,998
- Paris 4,139,927
- Chair 232,885
- Violin 55,015
- Trashcan 9,818

Trashcan Results

From Norma Tub

From PoPPaP

From howlinhill

From Jennay Jazz

From ianjacobs

From ella novak

From bertboerland

From m1l4dy

From wallyq

From dakota.morri...

From PavelsDog

From Daquella ...

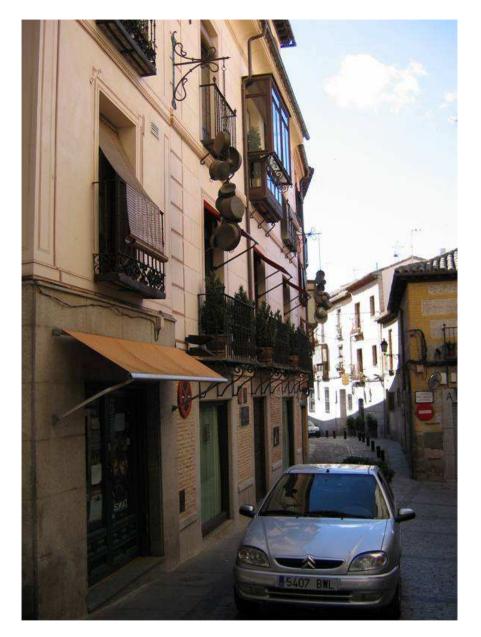
From ilovecoffeey....

From Patrik Moen

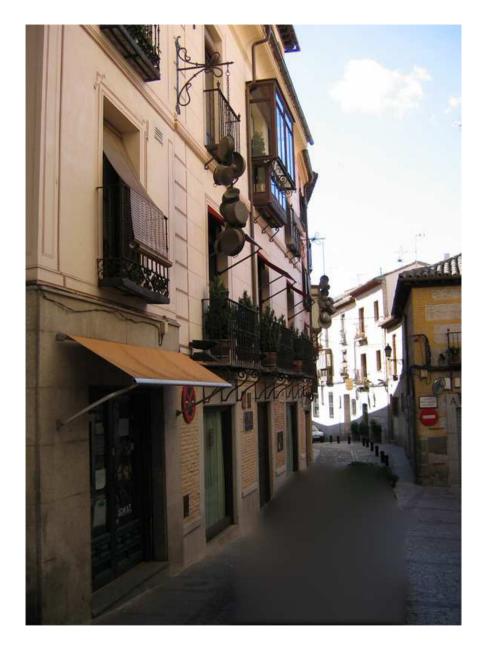
http://www.flickr.com/search/?q=trashcan+NOT+party&m=t lacksquareags&z=t&page=5

Is Generic Data useful?

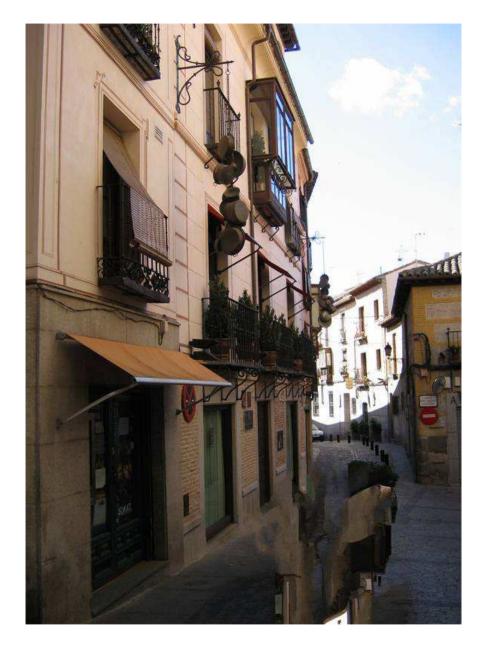
A motivating example...



[Hays and Efros. Scene Completion Using Millions of Photographs. SIGGRAPH 2007 and CACM October 2008.]

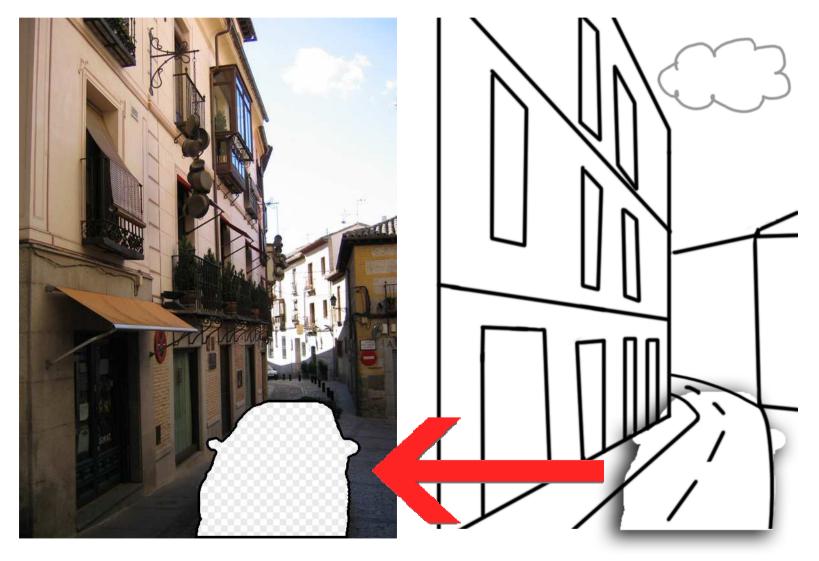


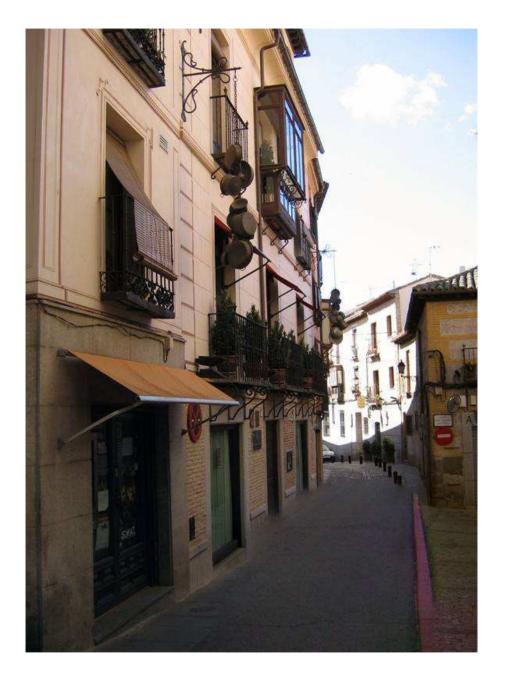
Diffusion Result



Efros and Leung result

Scene Matching for Image Completion

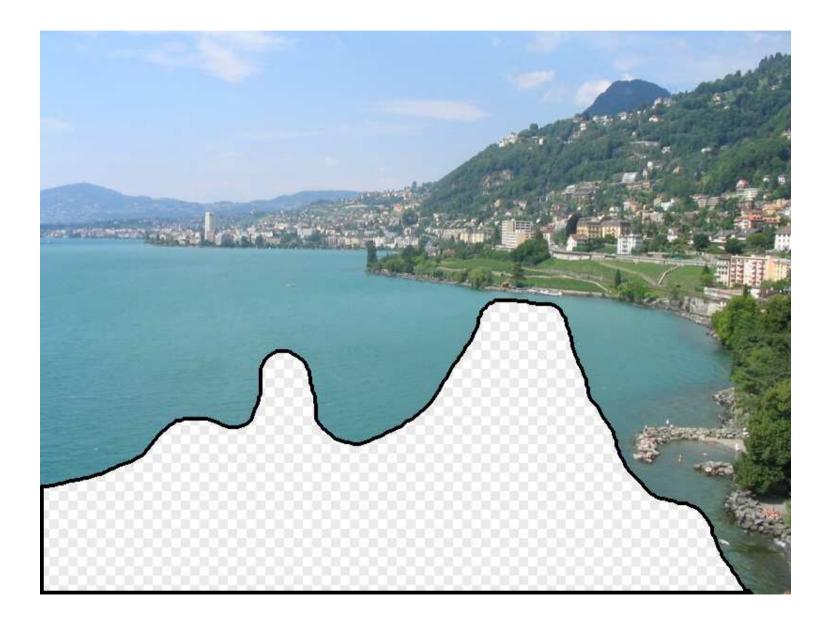




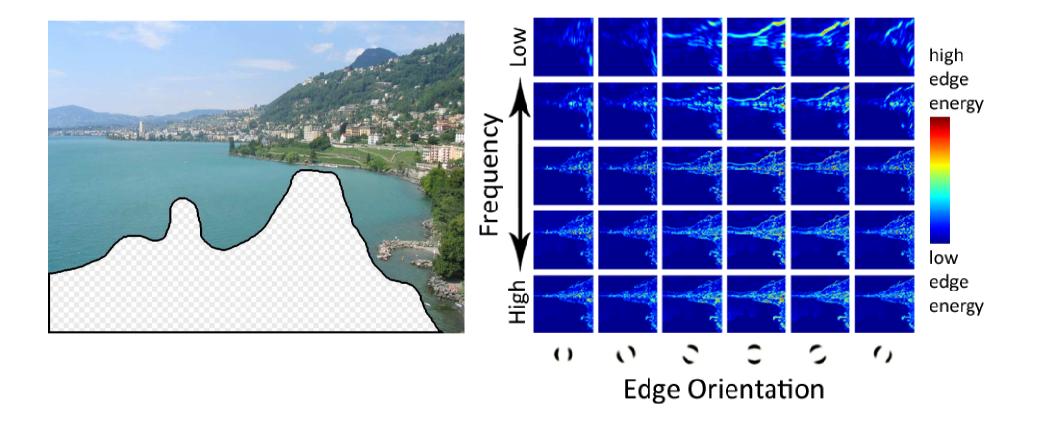
Scene Completion Result

The Algorithm

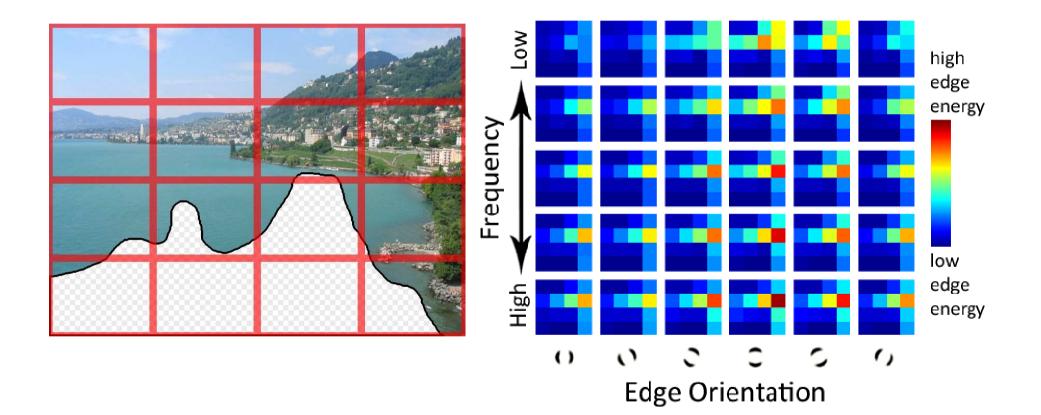
Scene Matching



Scene Descriptor

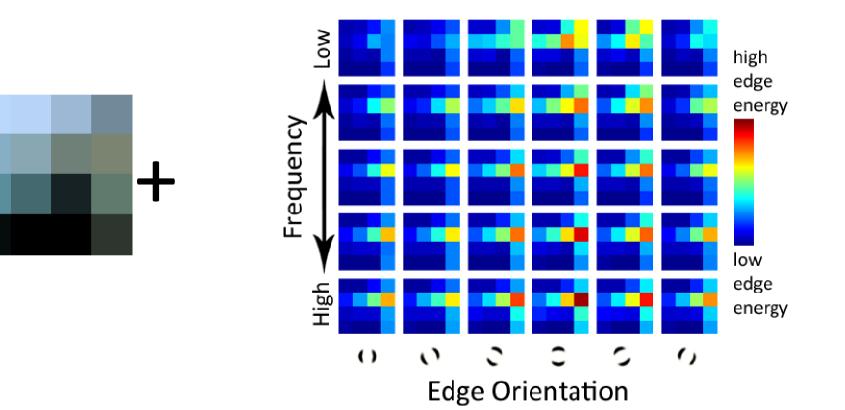


Scene Descriptor



Scene Gist Descriptor (Oliva and Torralba 2001)

Scene Descriptor

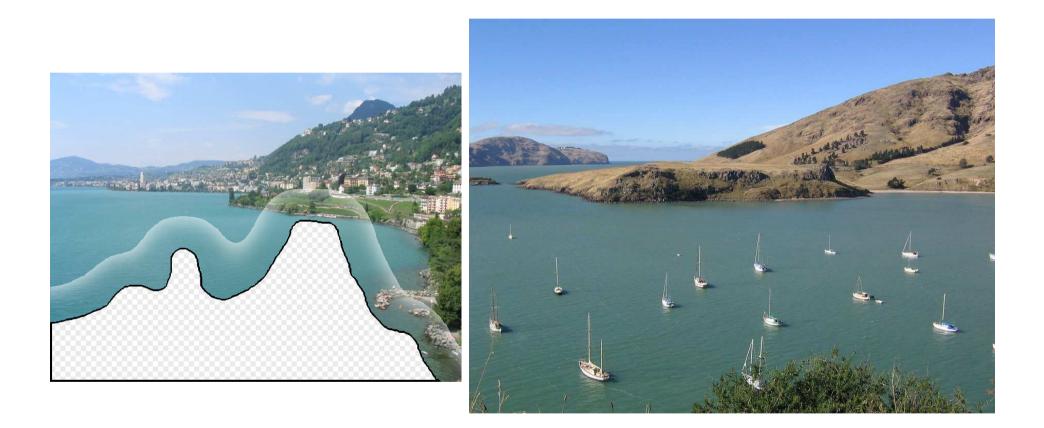


Scene Gist Descriptor (Oliva and Torralba 2001)

2 Million Flickr Images

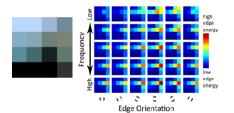
... 200 total

Context Matching



Result Ranking

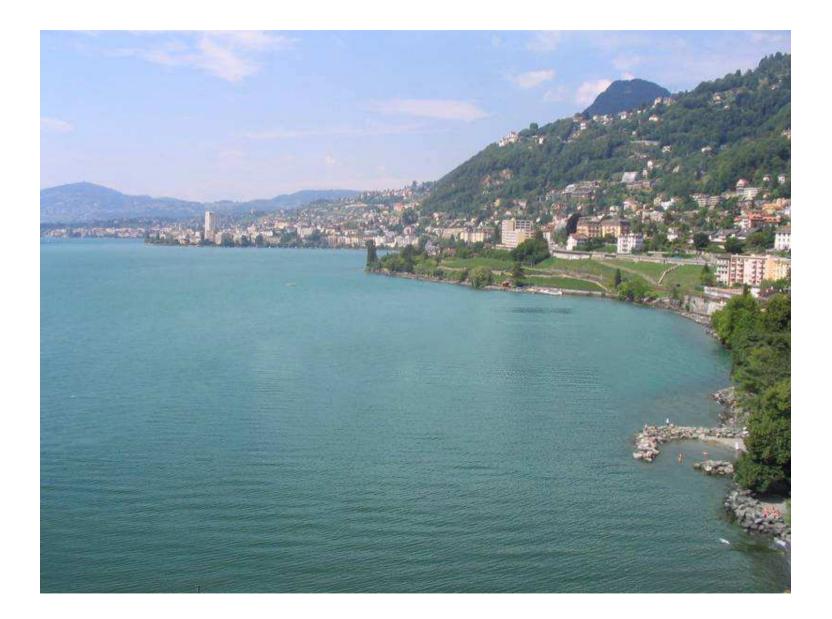
We assign each of the 200 results a score which is the sum of:

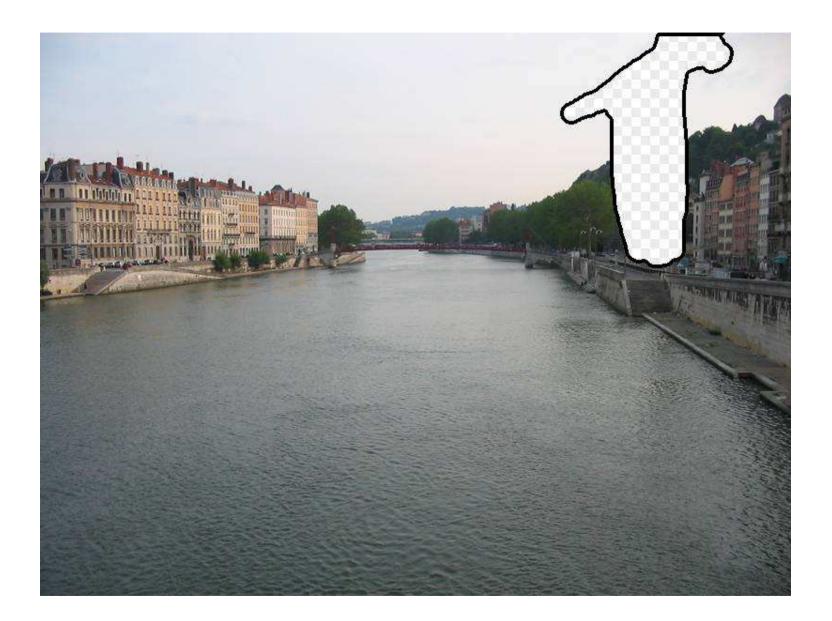


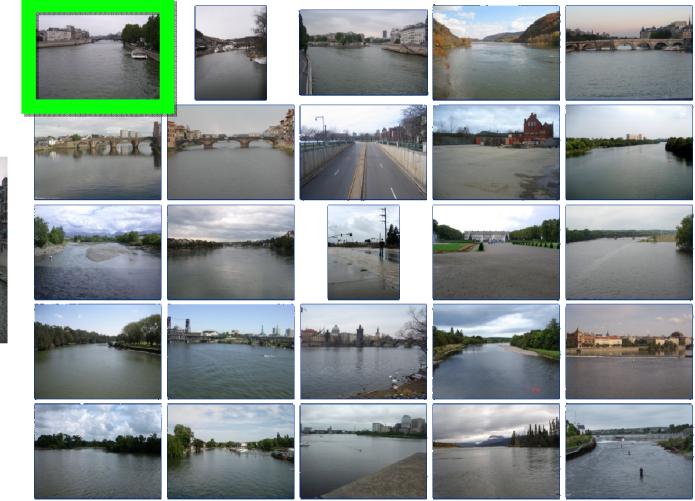
The scene matching distance

The context matching distance (color + texture)

The graph cut cost

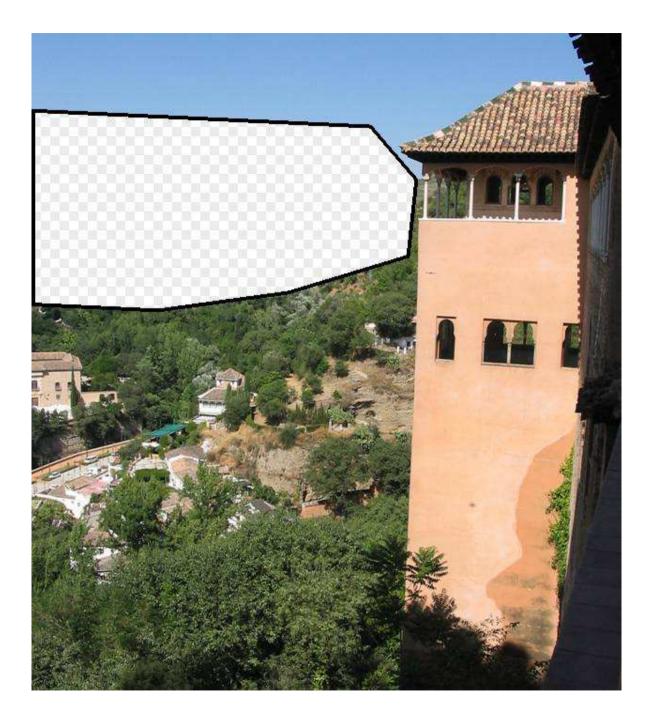


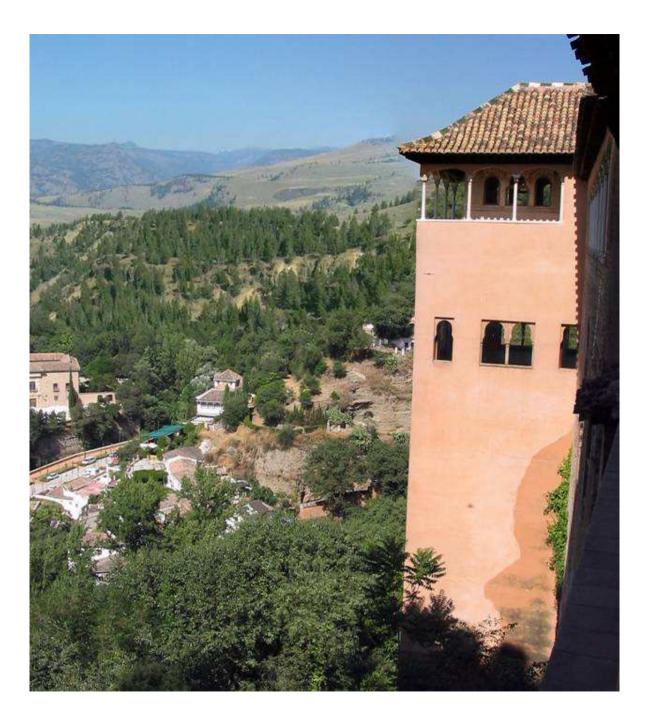




... 200 scene matches







Why does it work?

Nearest neighbors from a collection of 20 thousand images

Nearest neighbors from a collection of 2 million images

"Unreasonable Effectiveness of Data"

[Halevy, Norvig, Pereira 2009]

- Parts of our world can be explained by elegant mathematics
 - physics, chemistry, astronomy, etc.
- But much cannot
 - psychology, economics, genetics, etc.
- Enter <u>The Data!</u>
 - Great advances in several fields:
 - e.g. speech recognition, machine translation
 - Case study: Google

- A.I. for the postmodern world:
 - all questions have already been answered...many times, in many ways

– Google is dumb, the "intelligence" is in the data

🔆 Google Search: clime stairs - Netscape												
File Edit Vie	🔆 Google Sea											
i 살 [ommunicator									
Back	آ ن ا	Ň	3	1	10	Mul	đ	e f	(a)			N
🧃 🦋 Book	Back	Forward	Reload	Home	Search	Netscape	Print	Security	Shop	Stop		
🛯 🖳 WebM	👔 🦋 Bookmarks 🐰 Location: http://www.google.com/search?hl=en&lr=&ie=ISO-8859-1&q=clime+punishment									💽 🎧 🖤 What's F	elated	
	🛛 🖳 WebMa	ail 🖳 C	alendar 🖳	Radio	People	関 Yellow	Pages [🖳 Download	l 🖳 Cus	tomize		
Advanced Search Preferences Language Tools Search Tips										-		
	COOO Clime punishment											
		-	0		Google	Search						
Web												
Searche	Web Images Groups Directory News											
	Searchec	I the we	eb for <u>cli</u>	me pu	unishme	<u>nt</u> Res	ults 1 -	• 10 of ab	out 4,2	50. Searcl	h took 0.06 sec	ond
Did you												
Contraction of the	Did you	mea	n: crim	e pu	nishme	ent				0 10-10-2003		
			and the state of the state of the			and the second	anna amhrai	Constant and the second	an a			

How about visual data?

• text is simple:

- clean, segmented, compact, 1D

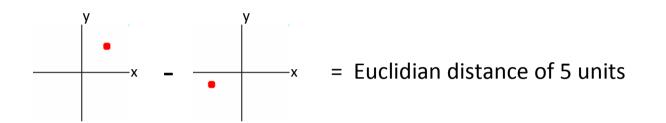
- Visual data is much harder:
 - Noisy, unsegmented, high entropy, 2D/3D

Quick Overview Comparing Images

Uses of Visual Data

The Dangers of Data

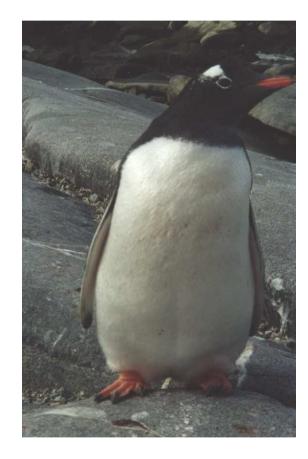
Distance Metrics



= Grayvalue distance of 50 values

SSD says these are not similar

n



Tiny Images

 80 million tiny images: a large dataset for nonparametric object and scene recognition Antonio Torralba, Rob Fergus and William T. Freeman. PAMI 2008. 256x256

office

drawers

desk

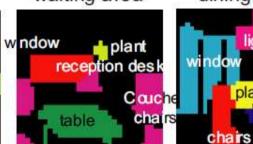
windows

32x32

wall-space

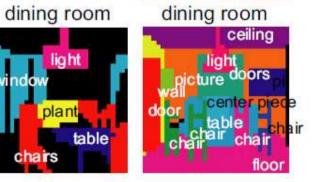


waiting area



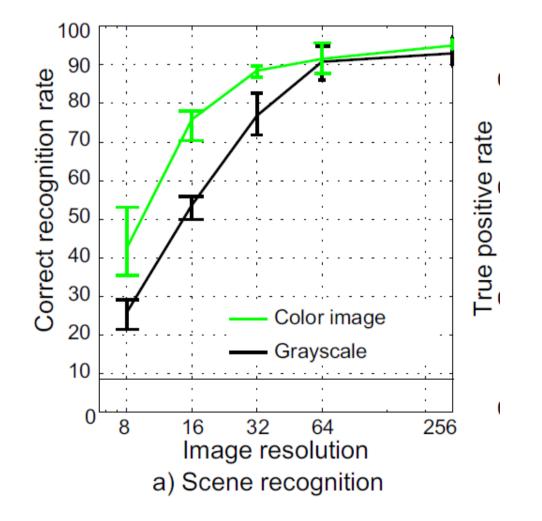
light

plan



c) Segmentation of 32x32 images

Human Scene Recognition



Tiny Images Project Page

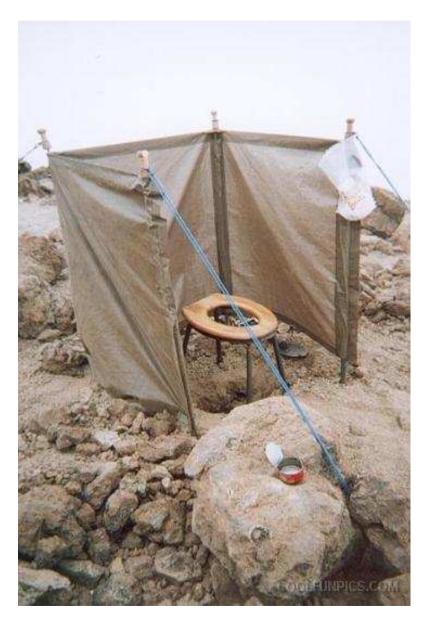
http://groups.csail.mit.edu/vision/TinyImages/

Powers of 10

11/

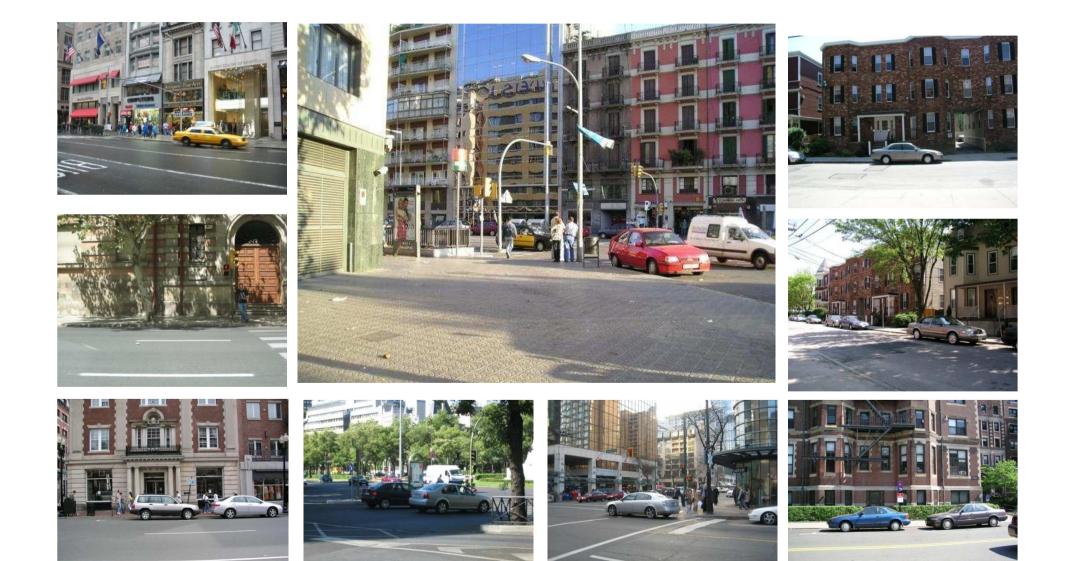
Number of images on my hard drive:	104	
Number of images seen during my first 10 years: (3 images/second * 60 * 60 * 16 * 365 * 10 = 630720000)	10 ⁸	
Number of images seen by all humanity: 106,456,367,669 humans ¹ * 60 years * 3 images/second * 60 * 60 * 16 * 365 = 1 from http://www.prb.org/Articles/2002/HowManyPeopleHaveEverLivedonEarth.aspx	10 ²⁰	
Number of photons in the universe:	10 ⁸⁸	
Number of all 32x32 images: 256 ^{32*32*3} ~ 10 ⁷³⁷³	10 ⁷³⁷³	

Scenes are unique



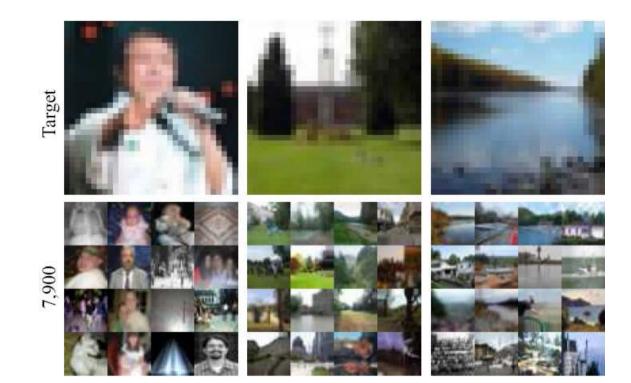
But not all scenes are so original

But not all scenes are so original



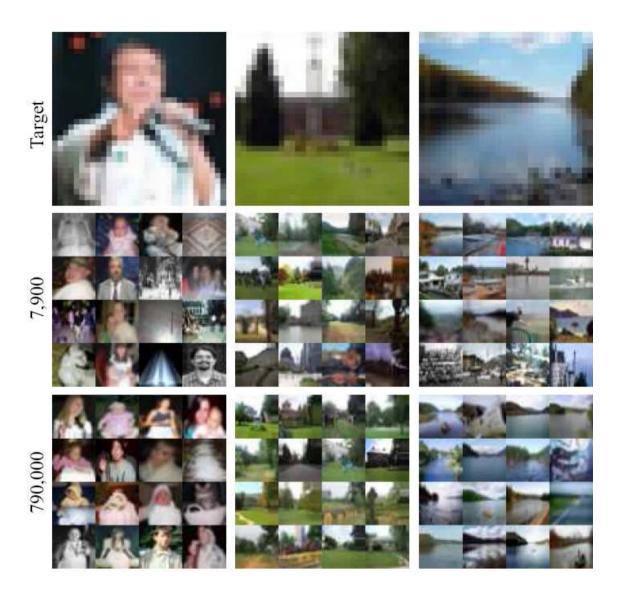
Lots Of

Images



Lots Of

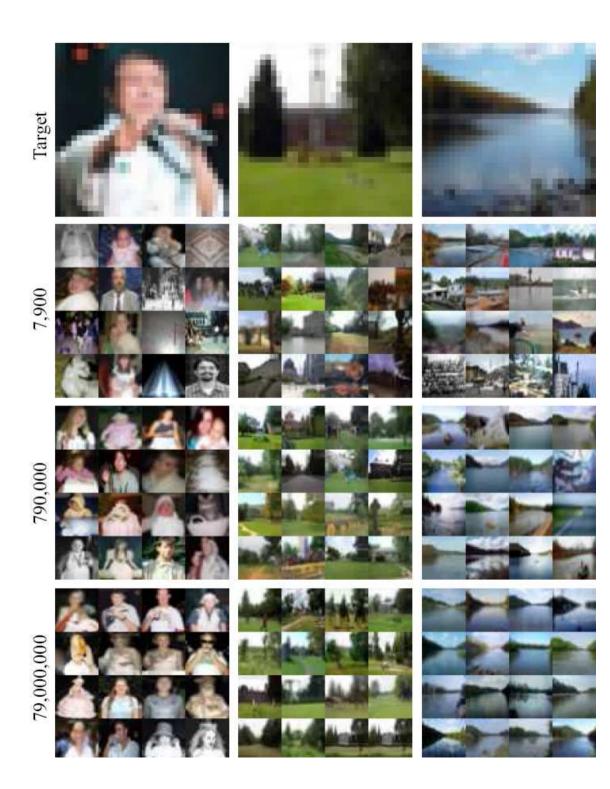
Images



A. Torralba, R. Fergus, W.T.Freeman. PAMI 2008

Lots Of

Images



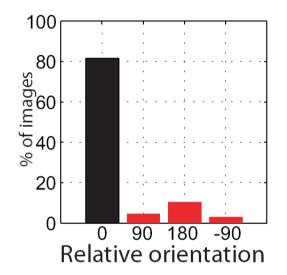
Automatic Colorization Result

Grayscale input High resolution

Colorization of input using average

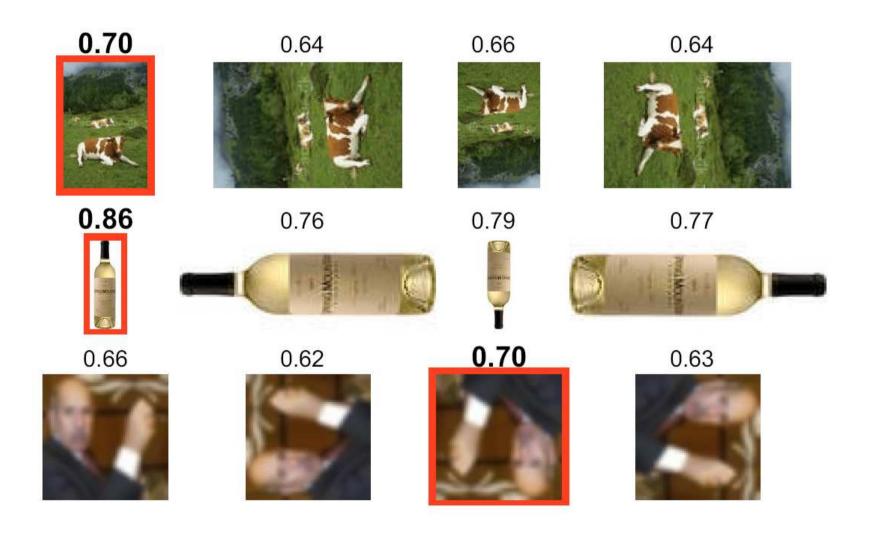
Automatic Orientation

- Many images have ambiguous orientation
- Look at top 25% by confidence:



• Examples of high and low confidence images:

Automatic Orientation Examples

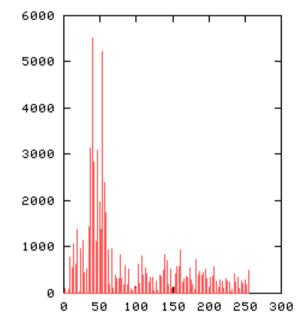


A. Torralba, R. Fergus, W.T.Freeman. 2008

Tiny Images Discussion

- Why SSD?
- Can we build a better image descriptor?

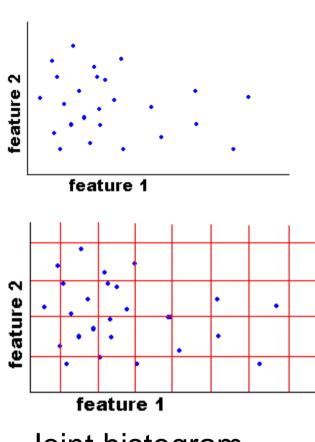
Images from Dave Kauchak





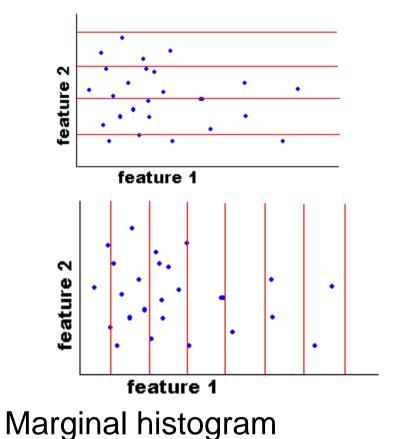
global histogram

- Represent distribution of features
 - Color, texture, depth, ...



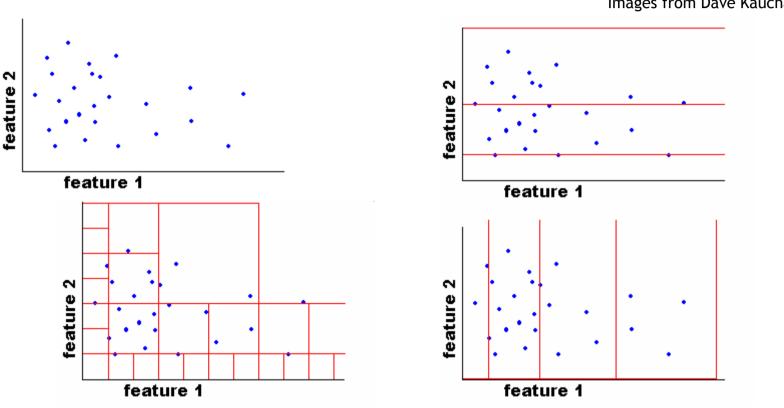
Joint histogram

- Requires lots of data
- Loss of resolution to avoid empty bins



Images from Dave Kauchak

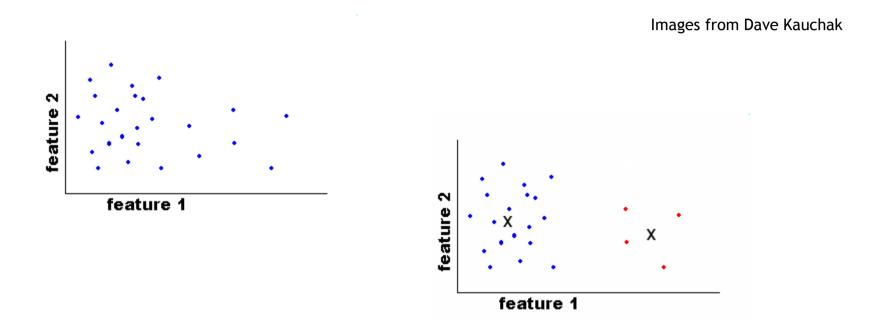
- Requires independent features
- More data/bin than joint histogram



Images from Dave Kauchak

Adaptive binning

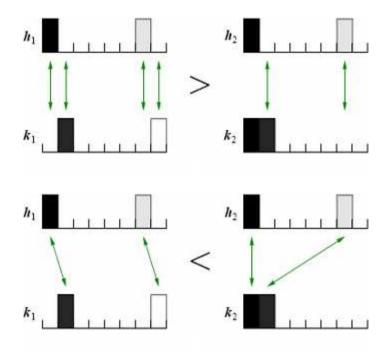
- Better data/bin distribution, fewer empty bins •
- Can adapt available resolution to relative feature importance ٠

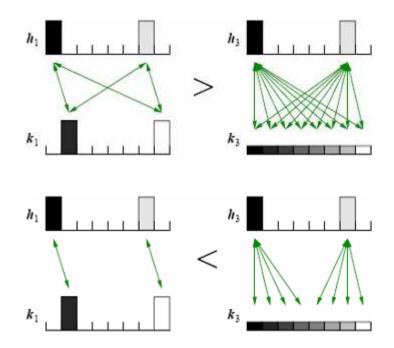


Clusters / Signatures

- "super-adaptive" binning
- Does not require discretization along any fixed axis

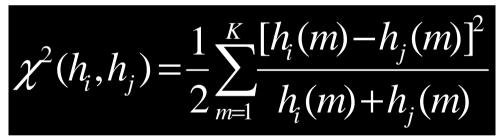
Issue: How to Compare Histograms?





Bin-by-bin comparison Sensitive to bin size. Could use wider bins but at a loss of resolution **Cross-bin comparison** How much cross-bin influence is necessary/sufficient?

Red Car Retrievals (Color histograms)



Histogram matching distance

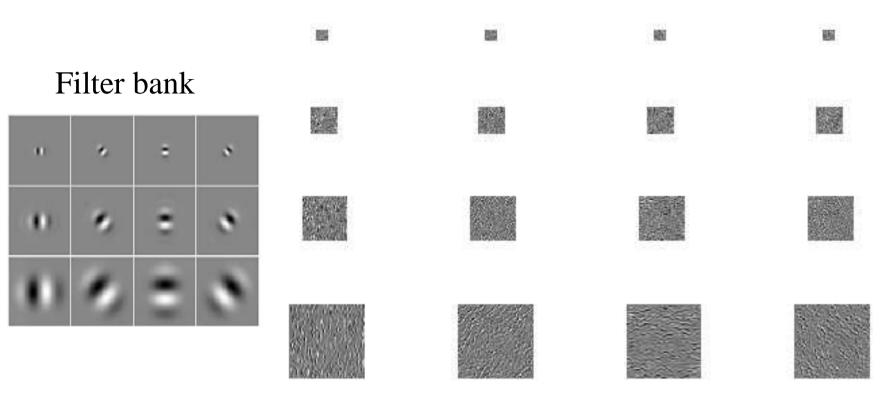
Capturing the "essence" of texture

...for real images

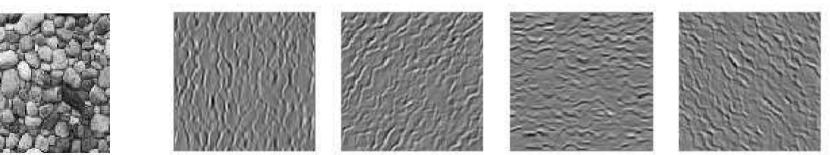
We don't want an actual texture realization, we want a texture invariant

What are the tools for capturing <u>statistical</u> properties of some signal?

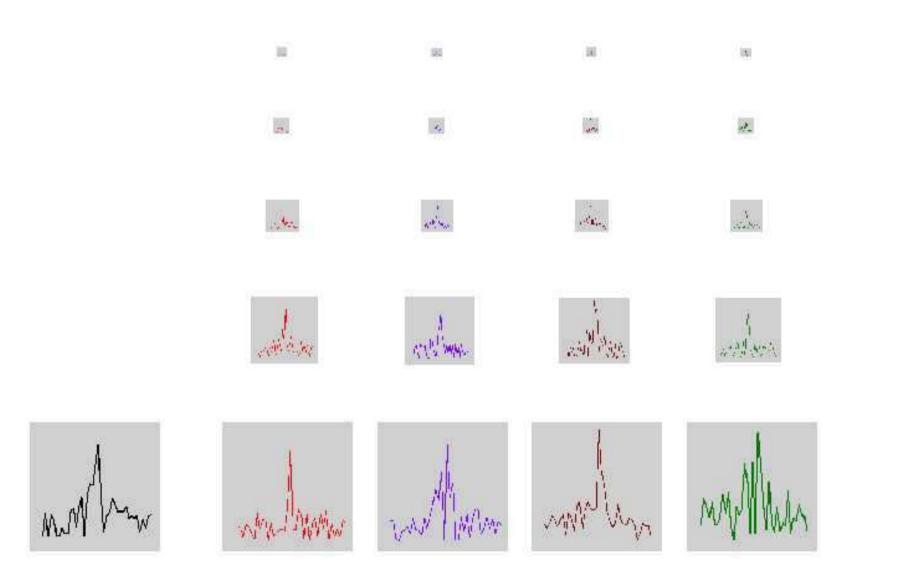
Multi-scale filter decomposition



Input image



Filter response histograms



Heeger & Bergen '95

Start with a noise image as output Main loop:

- Match pixel histogram of output image to input
- Decompose input and output images using multi-scale filter bank (Steerable Pyramid)
- Match subband histograms of input and output pyramids
- Reconstruct input and output images (collapse the pyramids)

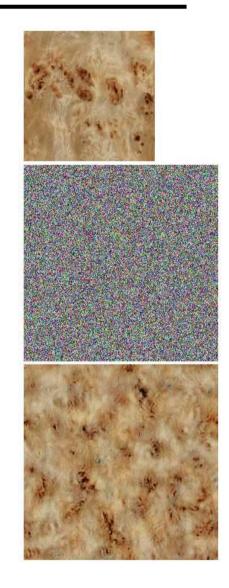
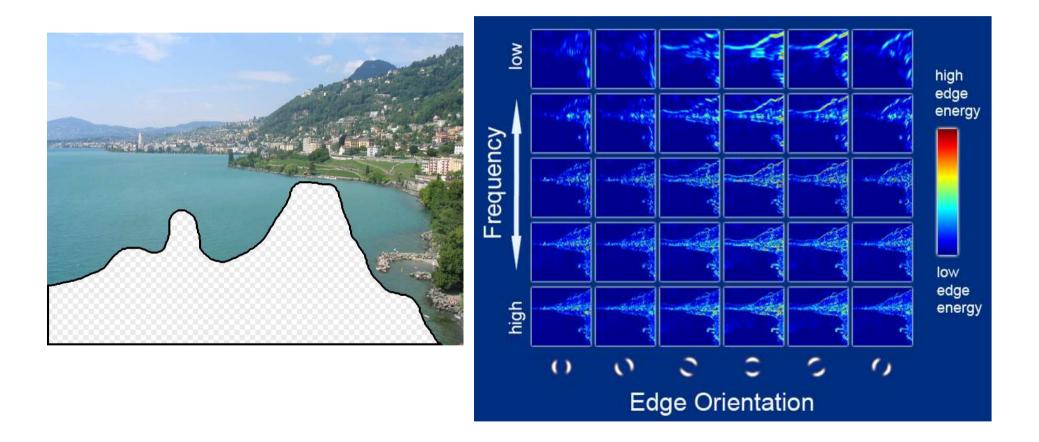
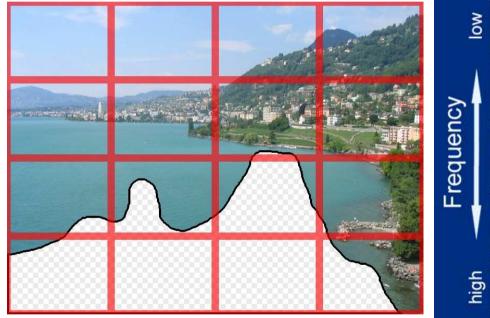
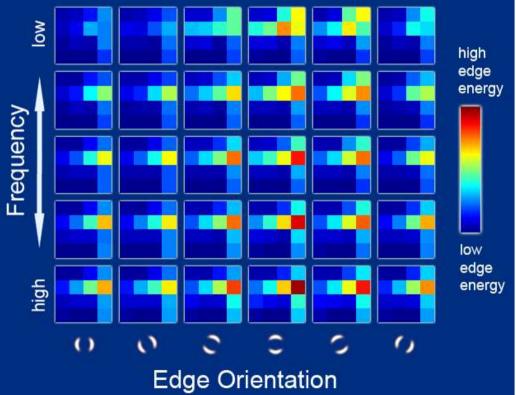


Image Descriptors

- Blur + SSD
- Color / Texture histograms
- Gradients + Histogram (GIST, SIFT, HOG, etc)
- "Bag of Visual Words"

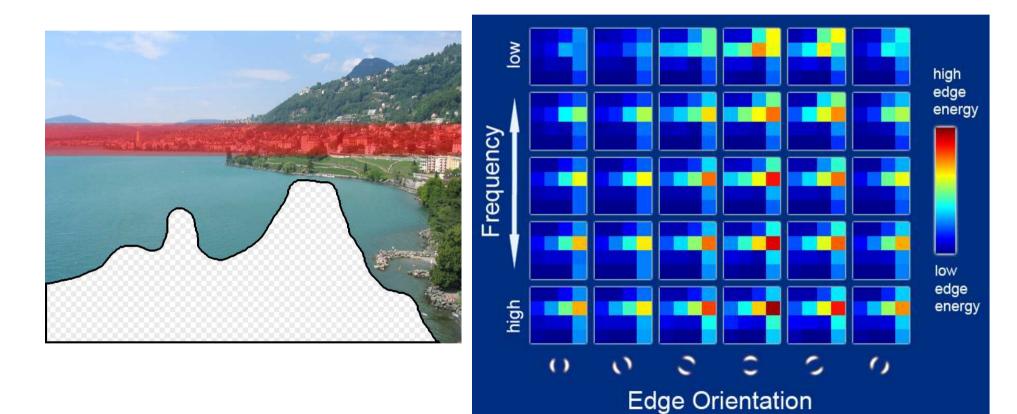






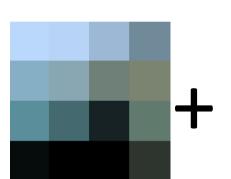
Gist scene descriptor (Oliva and Torralba 2001)

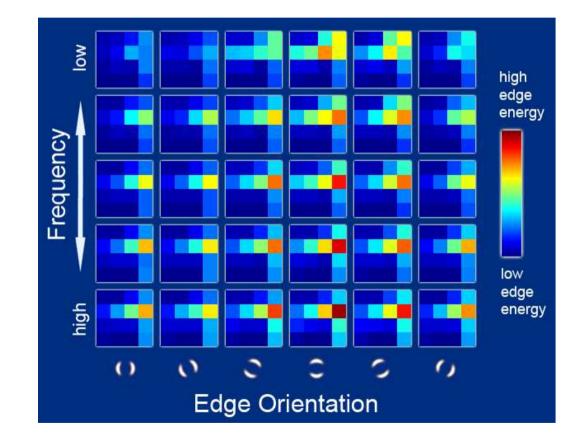
Hays and Efros, SIGGRAPH 2007



Gist scene descriptor (Oliva and Torralba 2001)

Hays and Efros, SIGGRAPH 2007

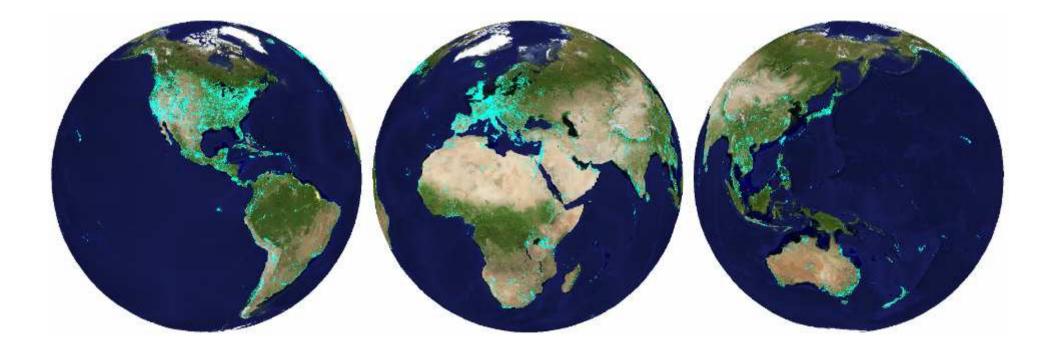




Gist scene descriptor (Oliva and Torralba 2001)

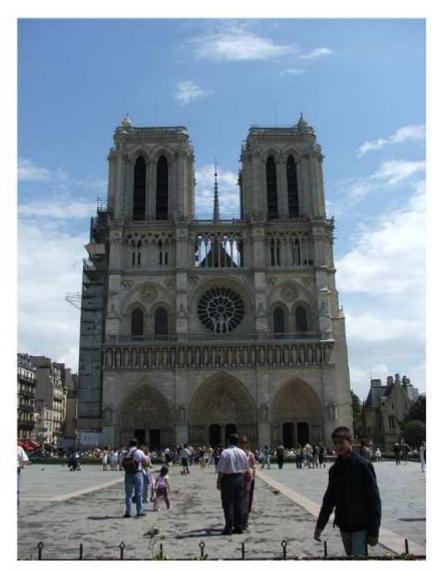
Hays and Efros, SIGGRAPH 2007

im2gps (Hays & Efros, CVPR 2008)



6 million geo-tagged Flickr images

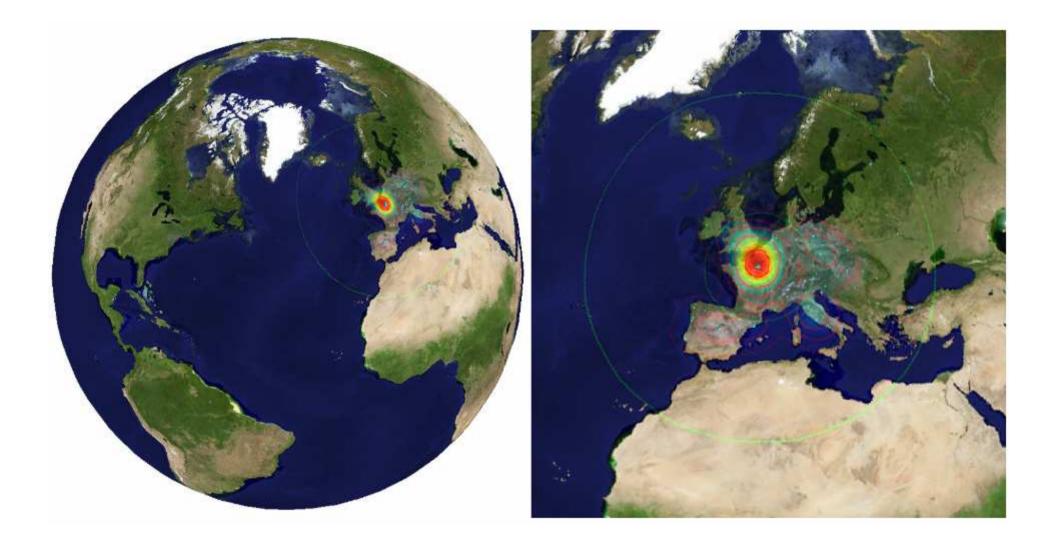
How much can an image tell about its geographic location?



Madrid

Paris

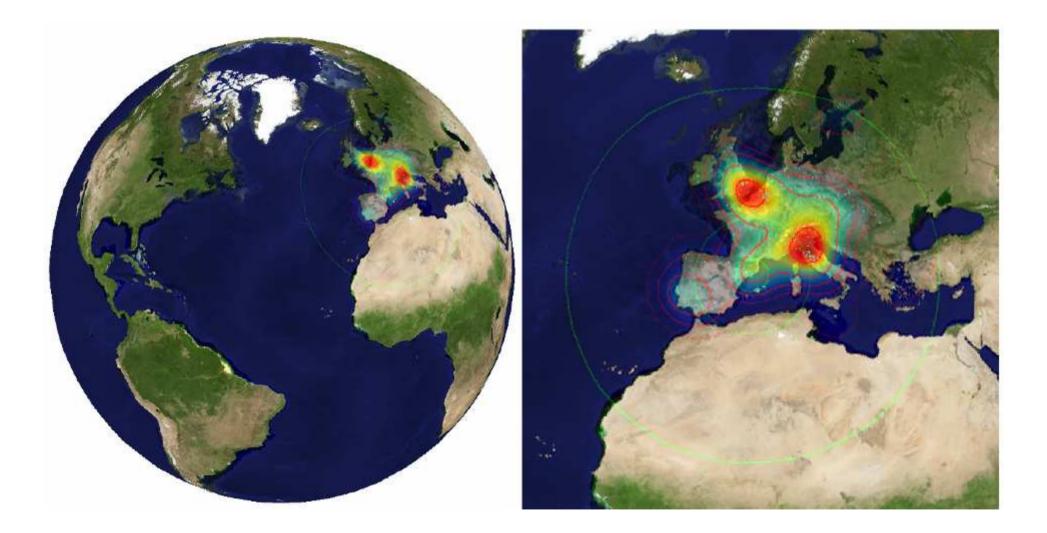
Paris



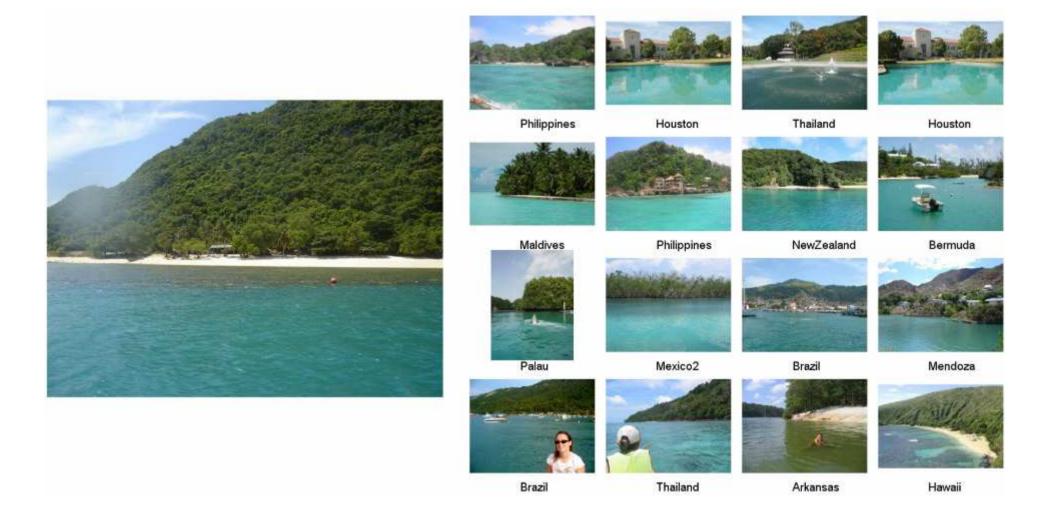
Im2gps

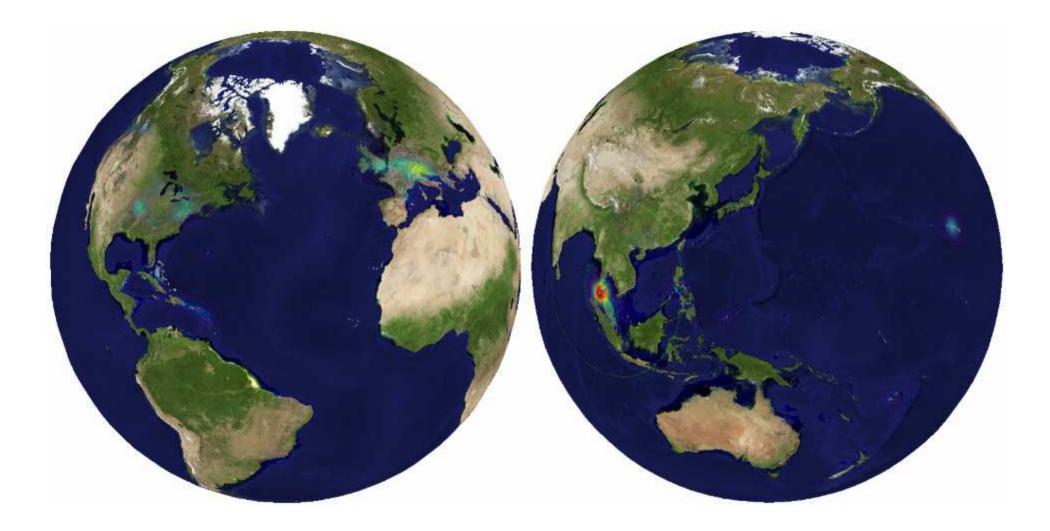
Example Scene Matches

Voting Scheme



im2gps





Italy

USA

Utah

Utah

Kenya

Utah

Utah

Utah

Utah

LosAngeles

Utah

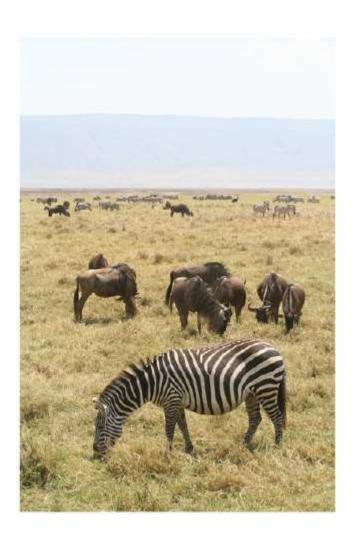
Burundi

Utah

Tunisia

NewMexico

Mendoza



Hyderabad

Mongolia

SouthAfrica

Кепуа

Kenya

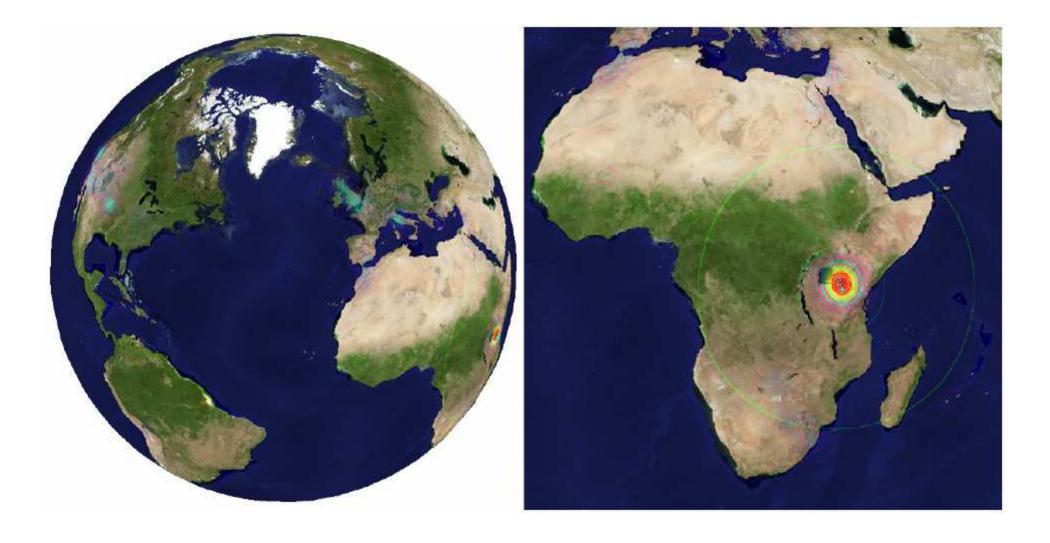
Morocco

Ethiopia

Tennessee

Nevada

africa

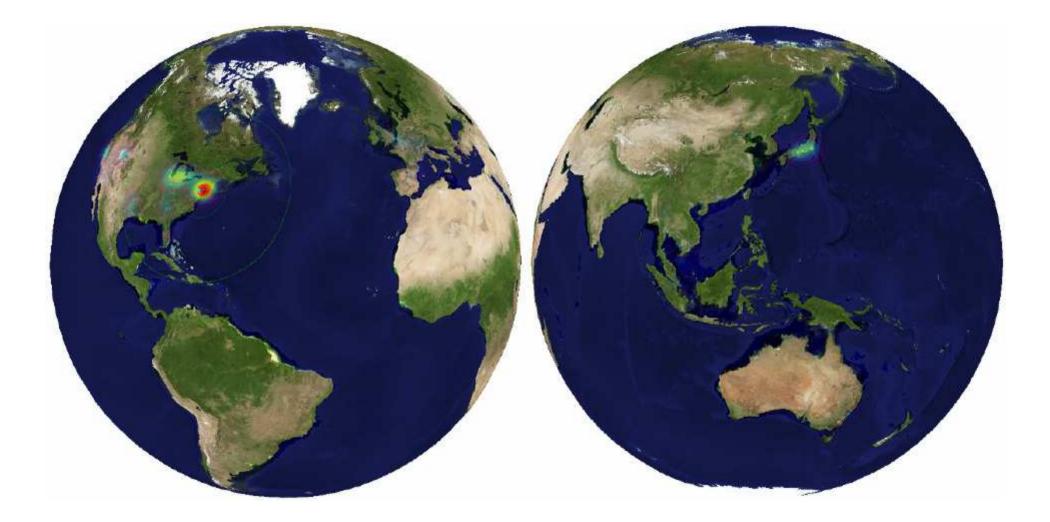


Ohio

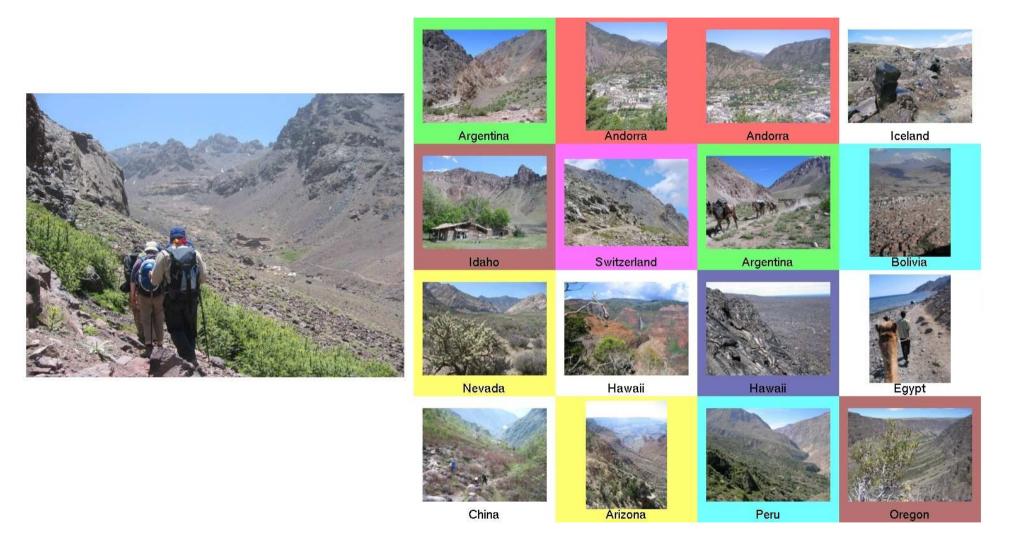
Philadelphia

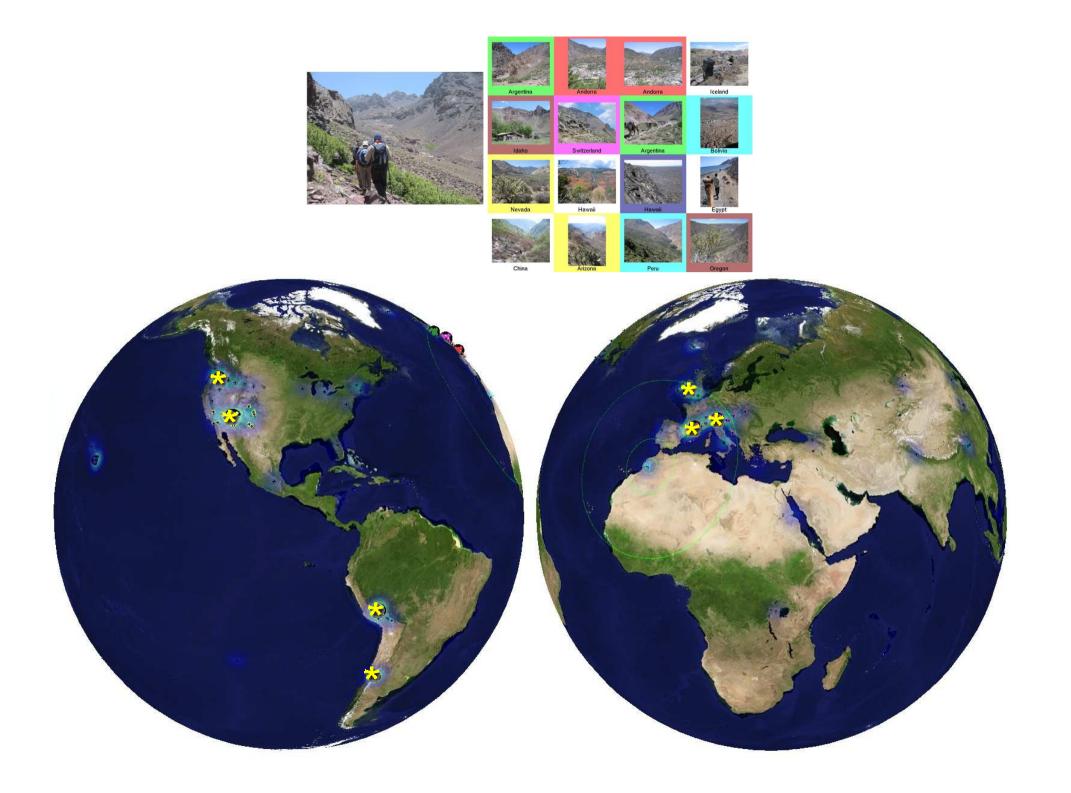
NewYorkCity

Boston

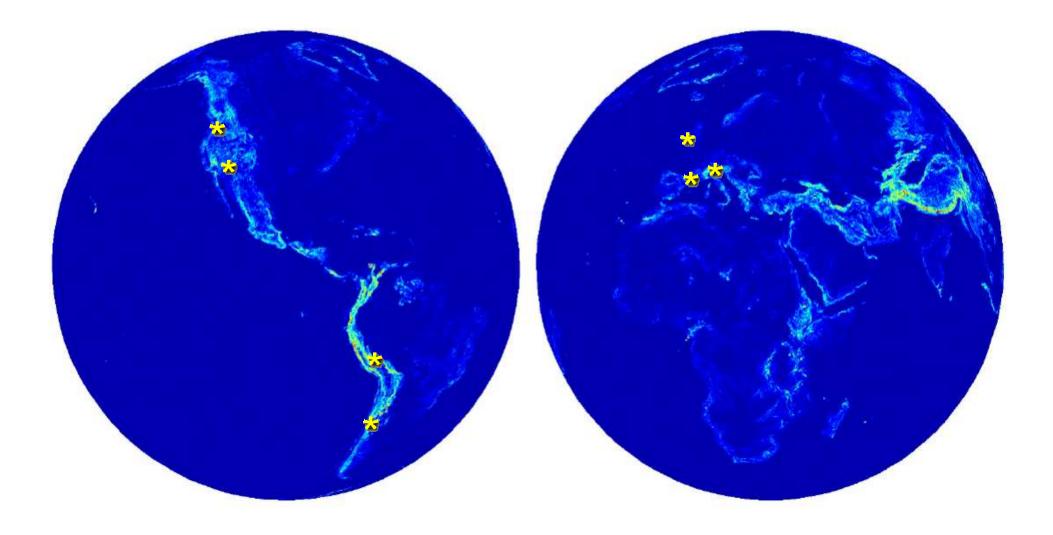


Data-driven categories





Elevation gradient = 112 m / km



Elevation gradient magnitude ranking

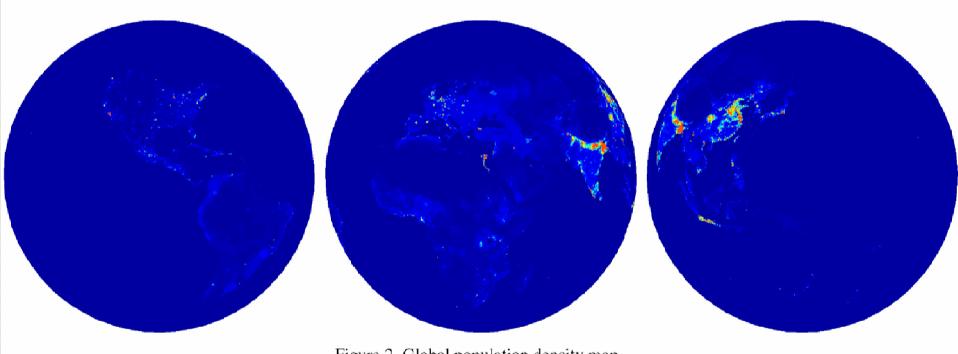
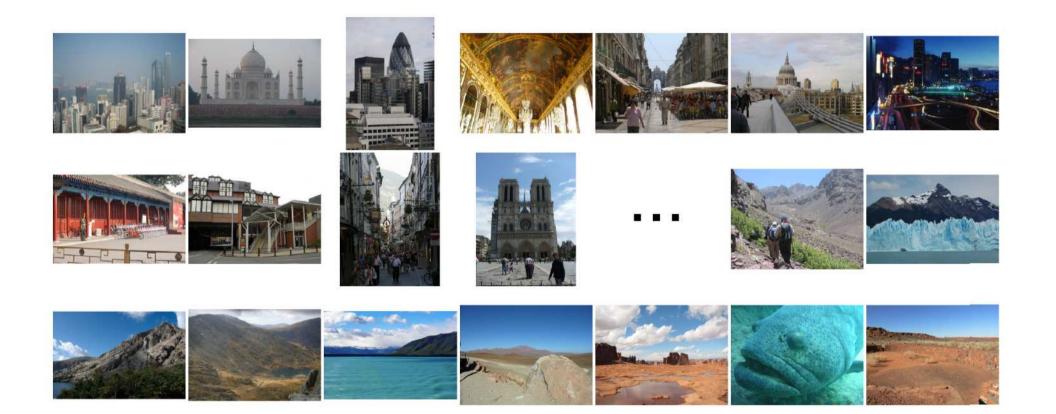


Figure 2. Global population density map.

Population density ranking



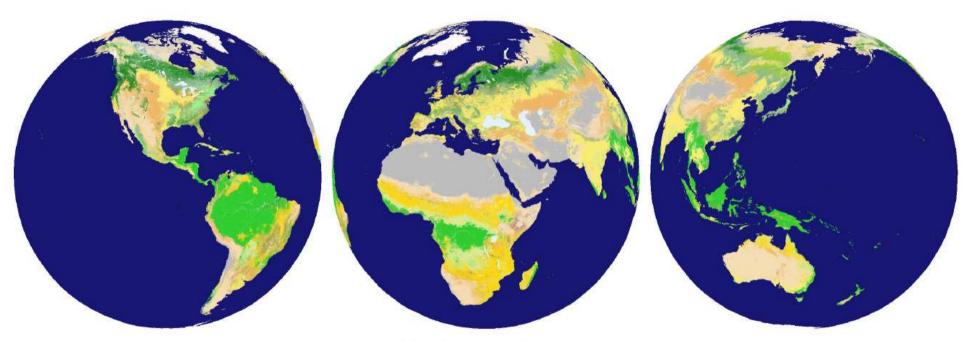
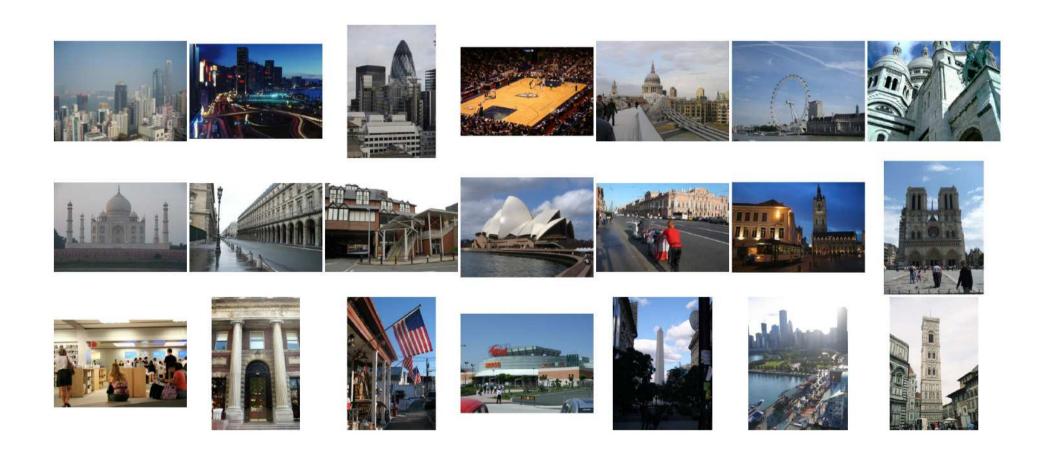


Figure 4. Global land cover classification map.

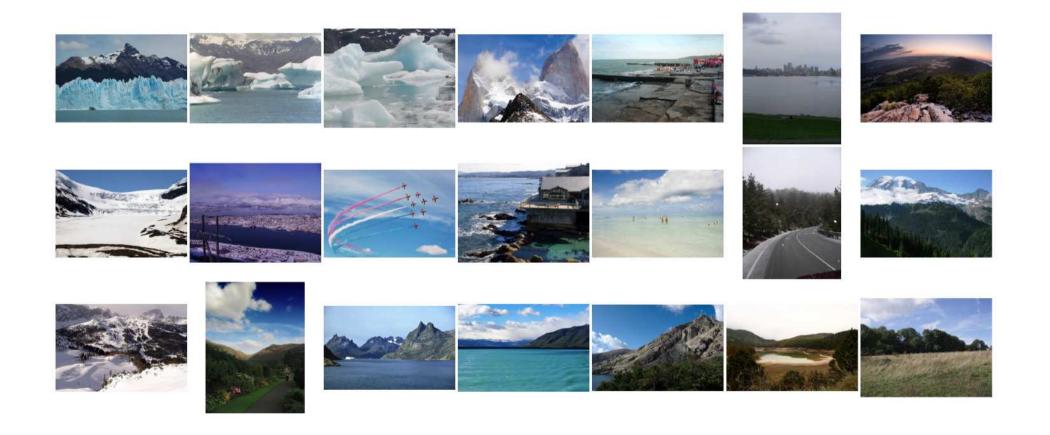
Barren or sparsely populated



Urban and built up



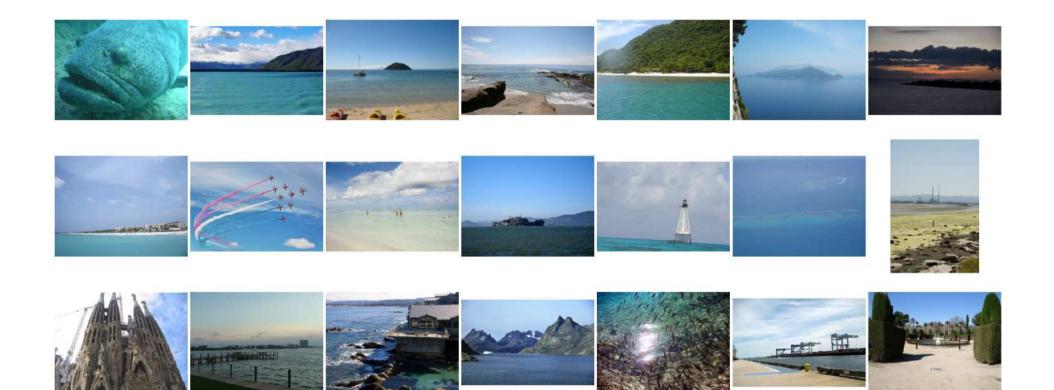
Snow and Ice



Savannah



Water



Scene matching with camera transformations

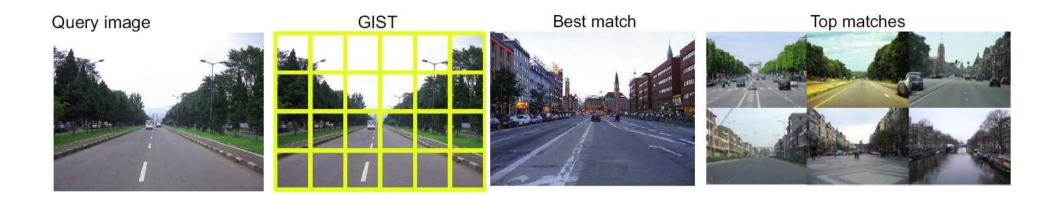
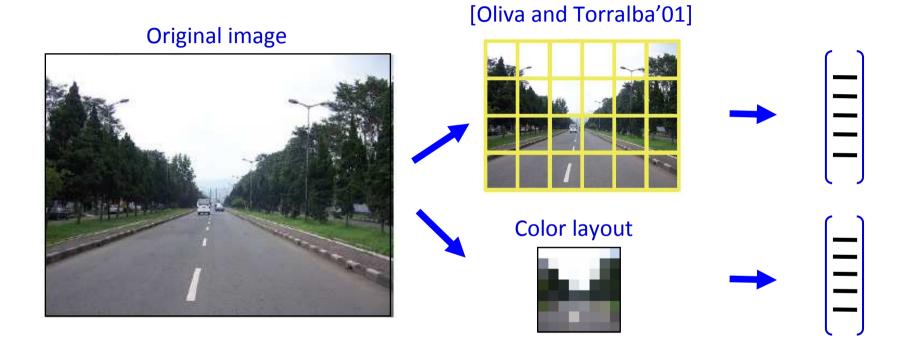


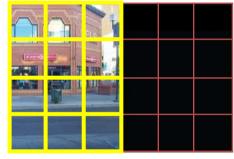
Image representation

GIST



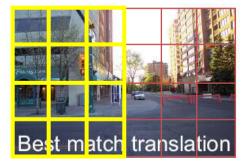
Scene matching with camera view transformations: Translation

1. Move camera



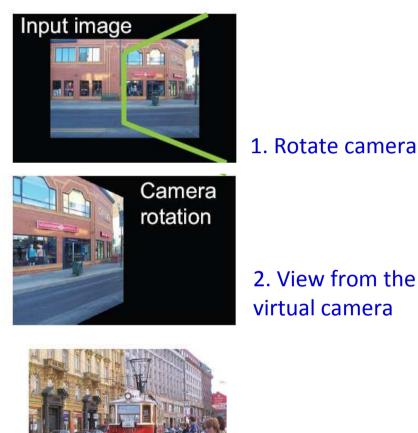
2. View from the virtual camera

- 4. Locally align images
- 5. Find a seam
- 6. Blend in the gradient domain



3. Find a match to fill the missing pixels

Scene matching with camera view transformations: Camera rotation

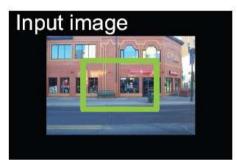


Best match rotatio

4. Stitched rotation

5. Display on a cylinder

Scene matching with camera view transformations: Forward motion



1. Move camera

2. View from the virtual camera

3. Find a match to replace pixels

Tour from a single image

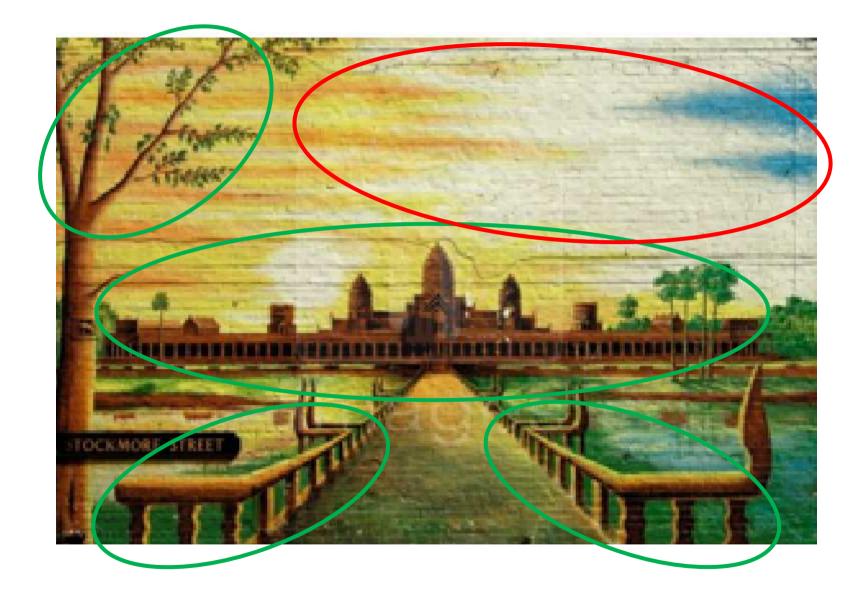
Navigate the virtual space using intuitive motion controls

Video

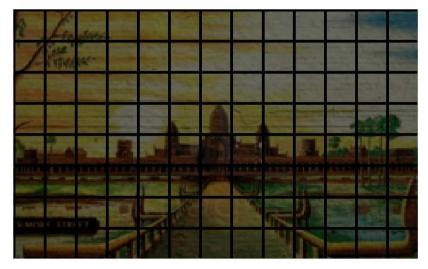
http://www.youtube.com/watch?v=E0rboU10rPo

LEARNING QUERY-CENTRIC VISUAL SIMILARITY

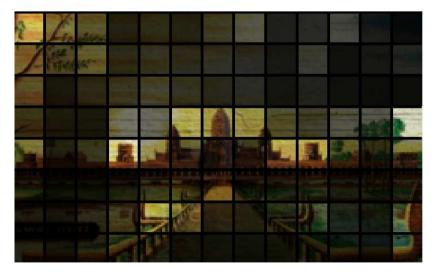
Abhinav Shrivastava, Tomasz Malisiewicz, Abhinav Gupta, Alyosha Efros Carnegie Mellon University



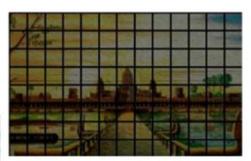
Query



Uniform Weights



Learnt Weights



Uniform Weights

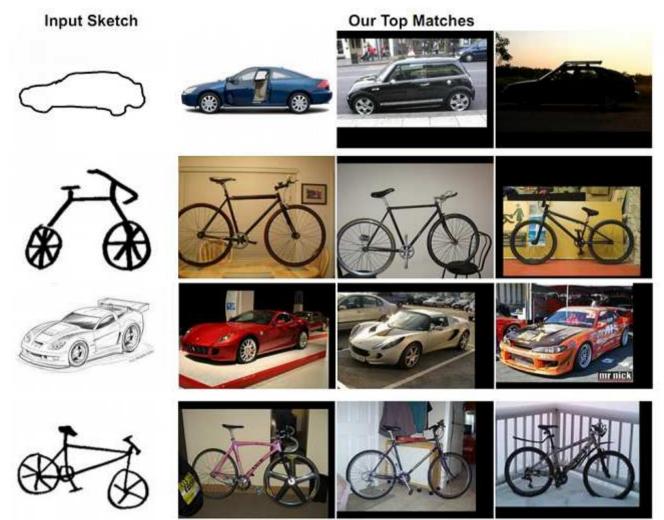
Uniform Weight Matches

Input Image

Learnt Weights

Our Matches

Sketch based Image Retrieval



Painting based Image Retrieval

Input Painting

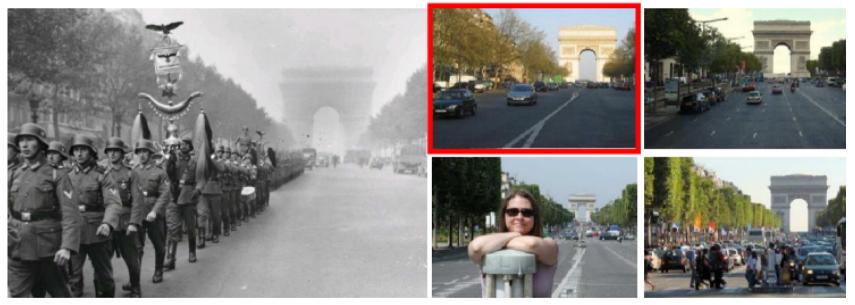
Our Top Matches

Painting2GPS

Internet Re-photography

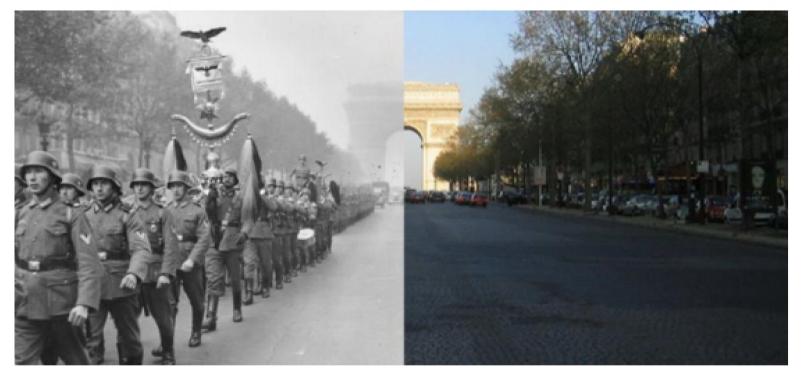
Paris (1940)

Top Matches



Internet Re-photography

Manual Alignment



Video

PhotoBios

Ira Kemelmacher-Shlizerman, Eli Shechtman, Rahul Garg, Steven M. Seitz. SIGGRAPH'11

Source

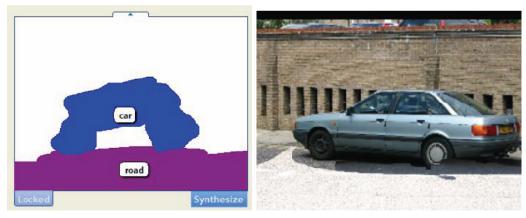
Automatically generated transition

Target

Using Data for Graphics...

Semantic Photo Synthesis [EG'06]

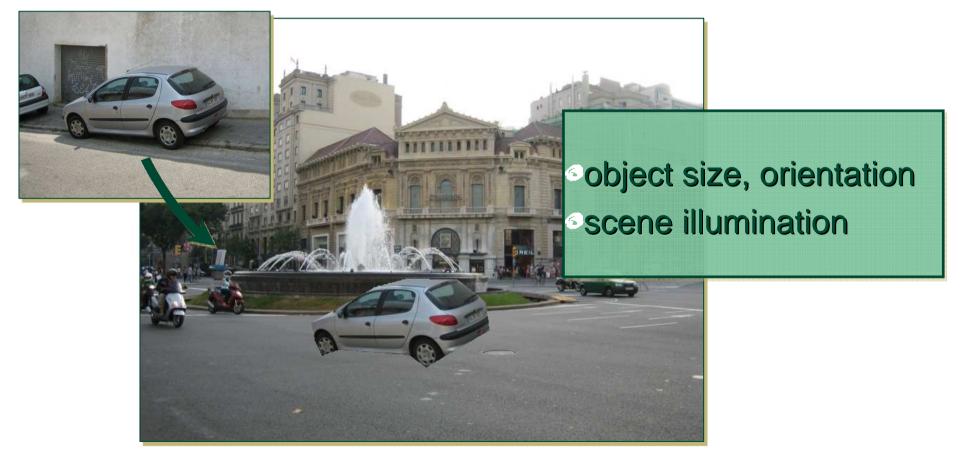




Johnson, Brostow, Shotton, Arandjelovic, Kwatra, and Cipolla. Eurographics 2006.

Photo Clip Art [SG'07]

Inserting a single object -- still very hard!



Lalonde et al, SIGGRAPH 2007

Photo Clip Art [SG'07]

Use database to find well-fitting object

Lalonde et al, SIGGRAPH 2007

Webcam Clip Art [SG Asia'09]

(a) source webcam Object transfer (b) target webcam

(c) transfer results

illuminant transfer

Lalonde et al, SIGGRAPH Asia 2009

CG2Real

Input

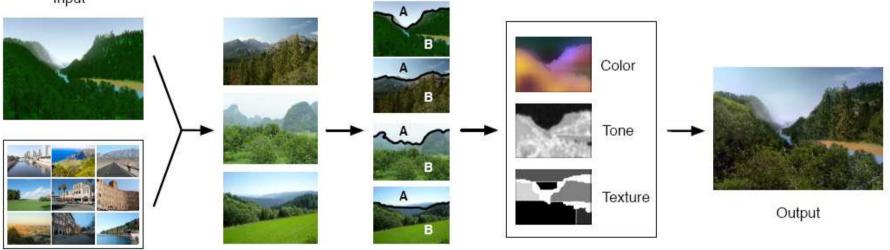


Image Database

Similar images Cosegmentation Local style transfer CG2Real: Improving the Realism of Computer Generated Images using a Large Collection of Photographs, Johnson, Dale, Avidan, Pfister, Freeman, Matusik, Tech. Rep. MIT-CSAIL-TR-2009-034

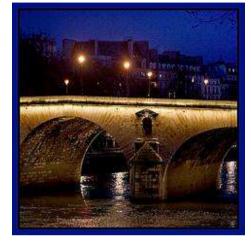
ShadowDraw

The Dangers of Data

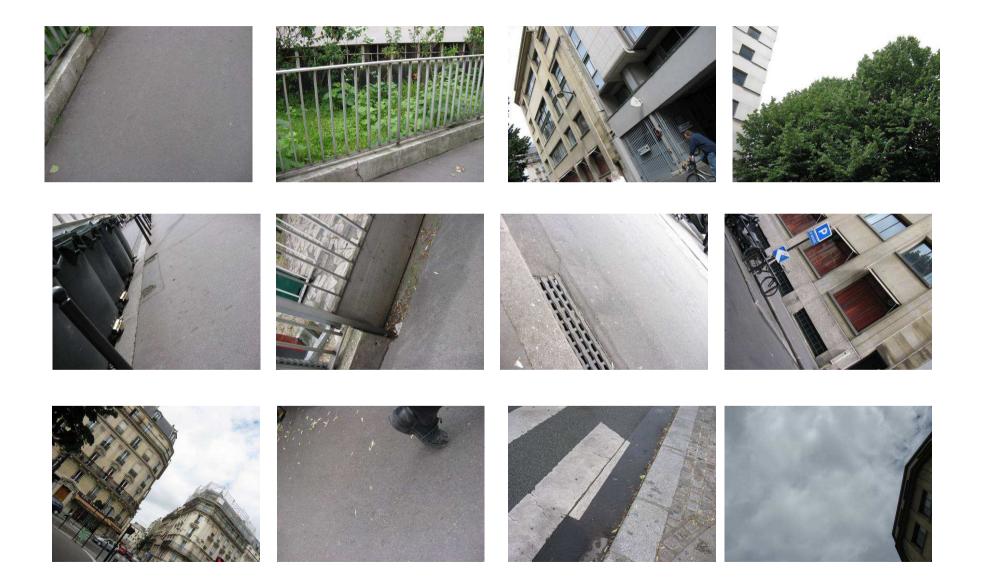
Bias

- Internet is a tremendous repository of visual data (Flickr, YouTube, Picassa, etc)
- But it's <u>not</u> random samples of visual world
- Many sources of bias:
 - Sampling bias
 - Photographer bias
 - Social bias

Flickr Paris



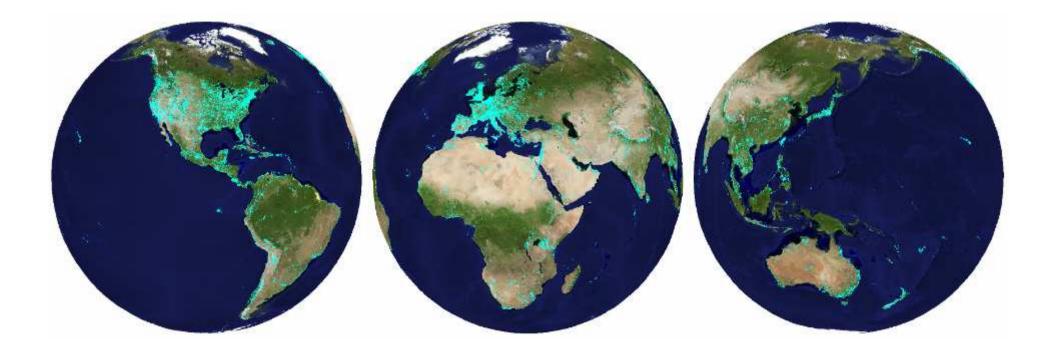
Real Paris



Real Notre Dame

Sampling Bias

People like to take pictures on vacation



Photographer Bias

 People want their pictures to be recognizable and/or interesting

VS.

Photographer Bias

People follow photographic conventions

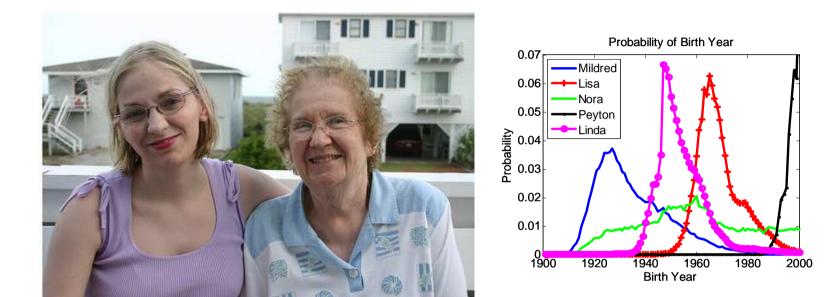
VS.

Social Bias

Newlyweds

"100 Special Moments" by Jason Salavon

Social Bias



Mildred and Lisa

Source: U.S. Social Security Administration

Gallagher et al CVPR 2008

Social Bias

Gallagher et al CVPR 2008

Gallagher et al, CVPR 2009

Reducing / Changing Bias

Street side Google StreetView

Satellite google.com

Webcams

- Autonomous capture methods can reduce / change bias
 - But it won't go away completely
- Sometimes you can just pick your data to suit your problem, but not always...