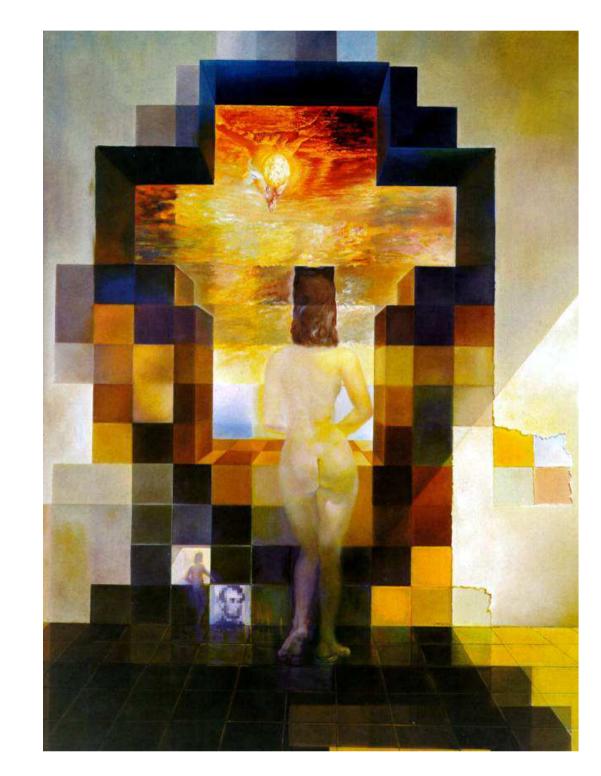
The Frequency Domain

Somewhere in Cinque Terre, May 2005

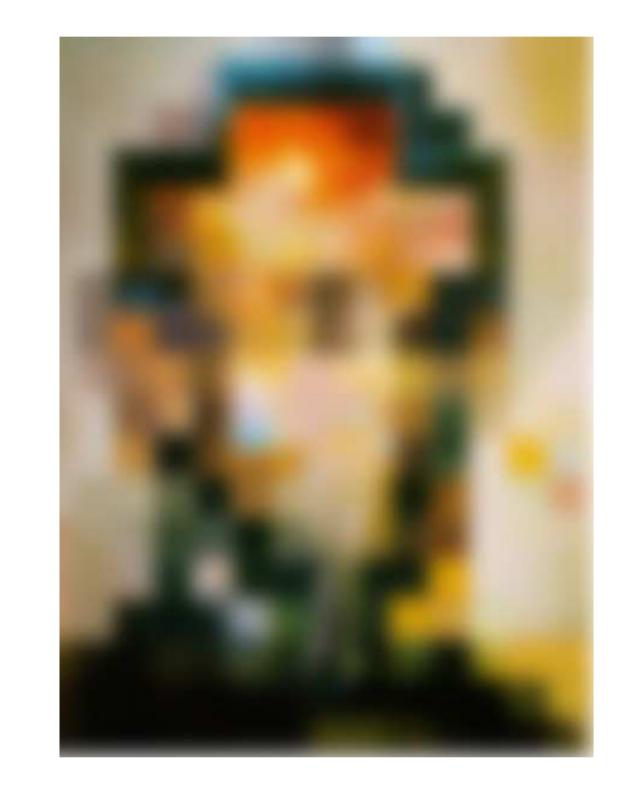
Many slides borrowed from Steve Seitz

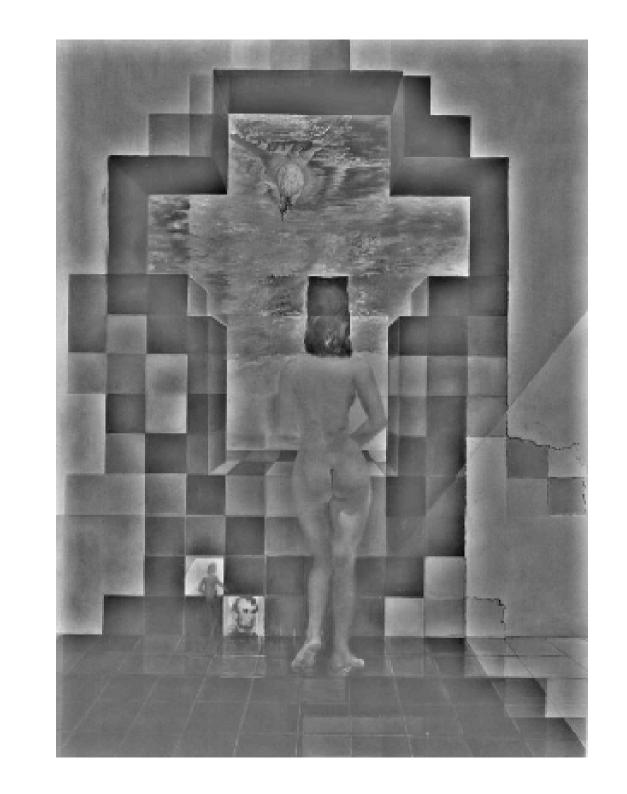
15-463: Computational Photography Alexei Efros, CMU, Fall 2011



Salvador Dali

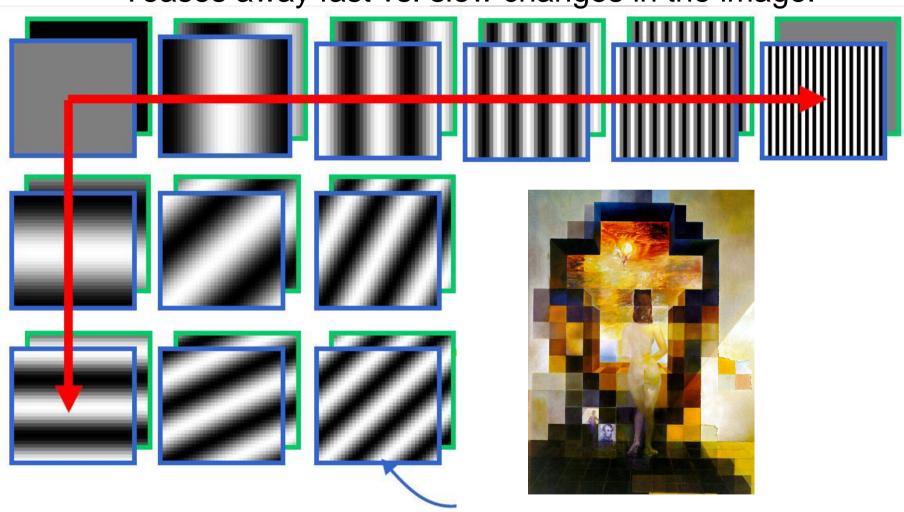
"Gala Contemplating the Mediterranean Sea, which at 30 meters becomes the portrait of Abraham Lincoln", 1976





A nice set of basis

Teases away fast vs. slow changes in the image.



This change of basis has a special name...

Jean Baptiste Joseph Fourier (1768-1830)

had crazy idea (1807

Any univariate function cabe rewritten as a weighted sum of sines and cosines different frequencies.

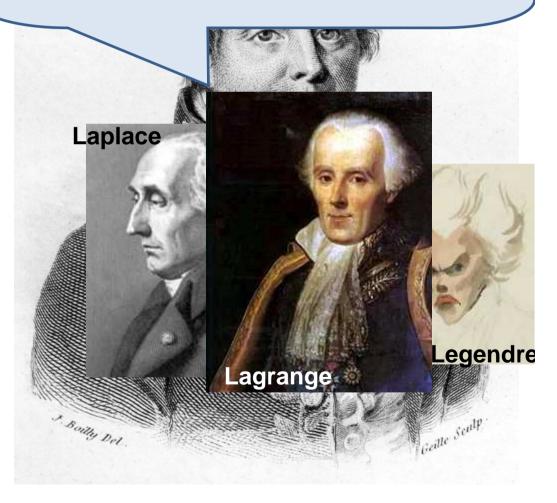
Don't believe it?

- Neither did Lagrange, Laplace, Poisson and other big wigs
- Not translated into English until 1878!

But it's (mostly) true!

- called Fourier Series
- there are some subtle restrictions

...the manner in which the author arrives at these equations is not exempt of difficulties and...his analysis to integrate them still leaves something to be desired on the score of generality and even rigour.



A sum of sines

Our building block:

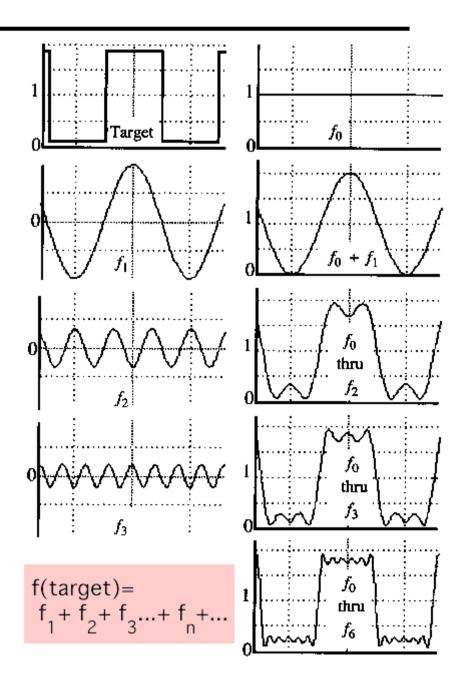
$$A\sin(\omega x + \phi)$$

Add enough of them to get any signal f(x) you want!

How many degrees of freedom?

What does each control?

Which one encodes the coarse vs. fine structure of the signal?



Fourier Transform

We want to understand the frequency ω of our signal. So, let's reparametrize the signal by ω instead of x:

For every ω from 0 to inf, $F(\omega)$ holds the amplitude A and phase ϕ of the corresponding sine $A\sin(\omega x + \phi)$

How can F hold both? Complex number trick!

$$F(\omega) = R(\omega) + iI(\omega)$$

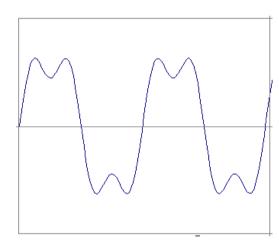
$$A = \pm \sqrt{R(\omega)^2 + I(\omega)^2} \qquad \phi = \tan^{-1} \frac{I(\omega)}{R(\omega)}$$

We can always go back:

$$F(\omega)$$
 — Inverse Fourier Transform — $f(x)$

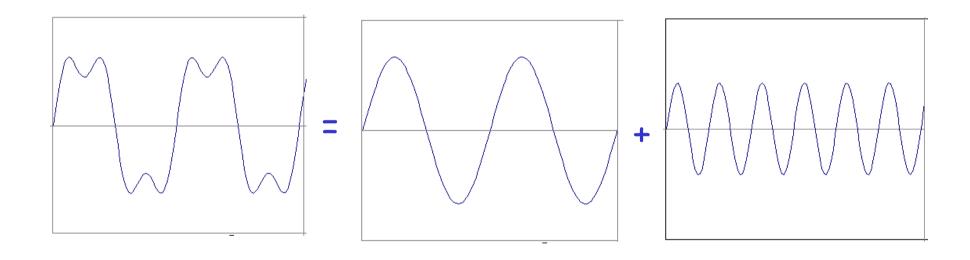
Time and Frequency

example: $g(t) = \sin(2pf t) + (1/3)\sin(2p(3f) t)$

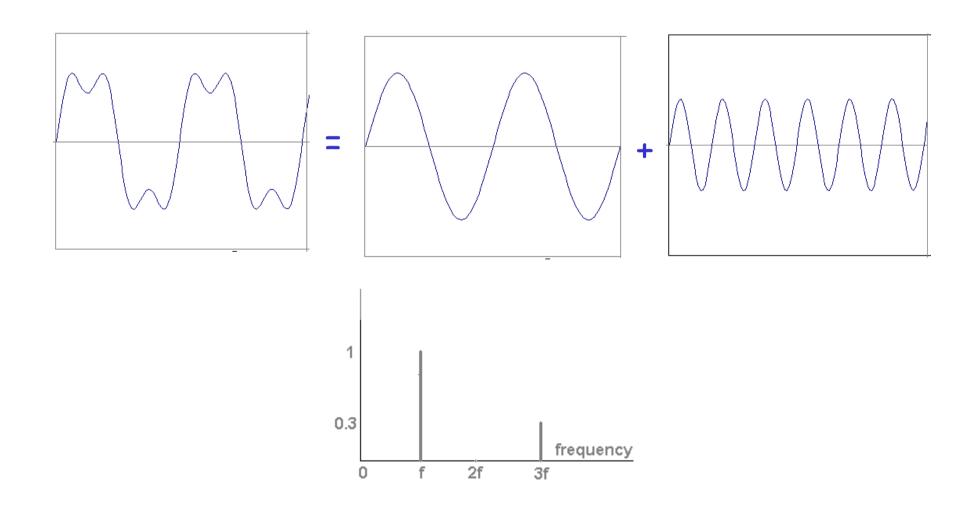


Time and Frequency

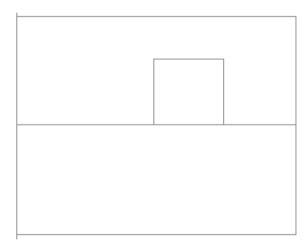
example: $g(t) = \sin(2pf t) + (1/3)\sin(2p(3f) t)$

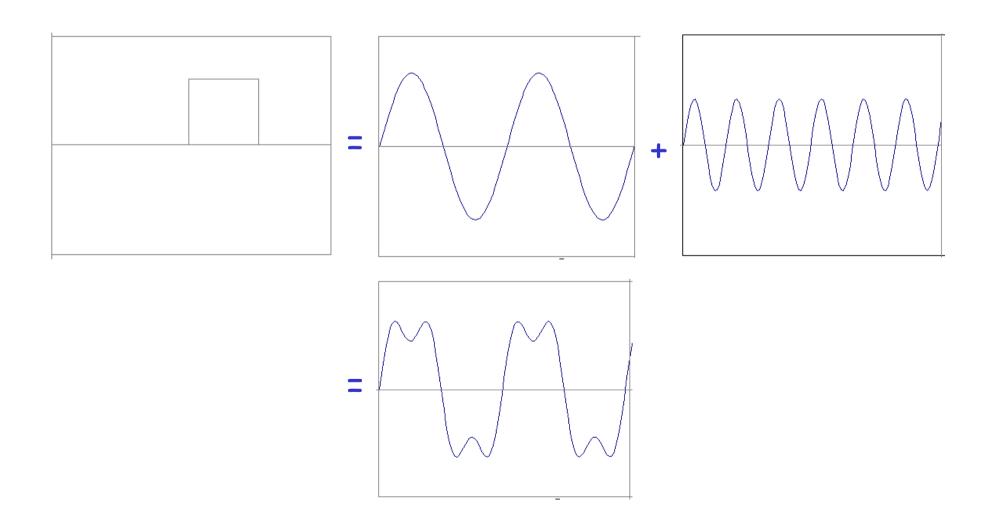


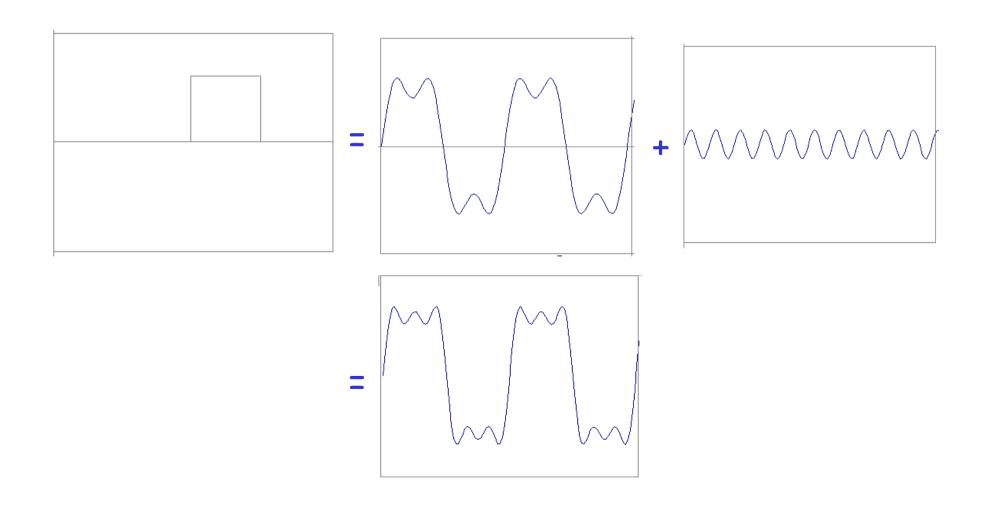
example: $g(t) = \sin(2pf t) + (1/3)\sin(2p(3f) t)$

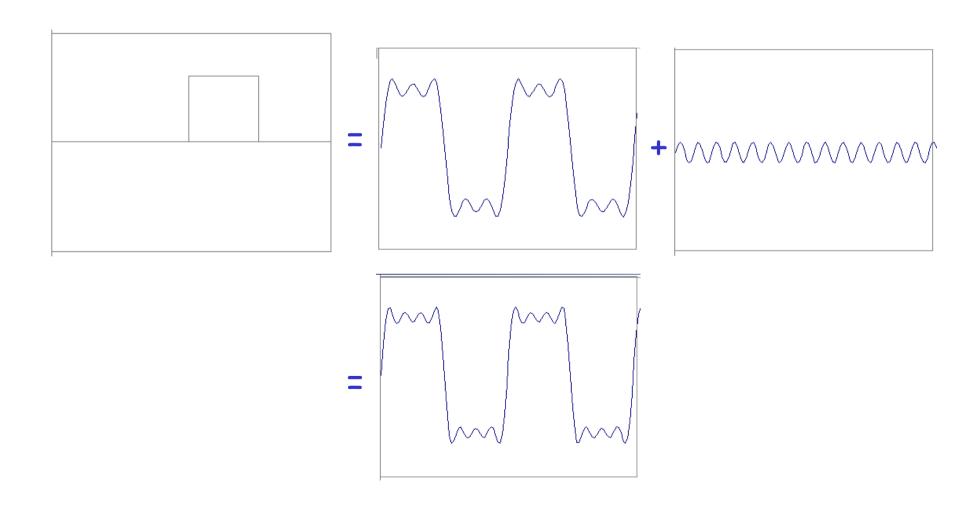


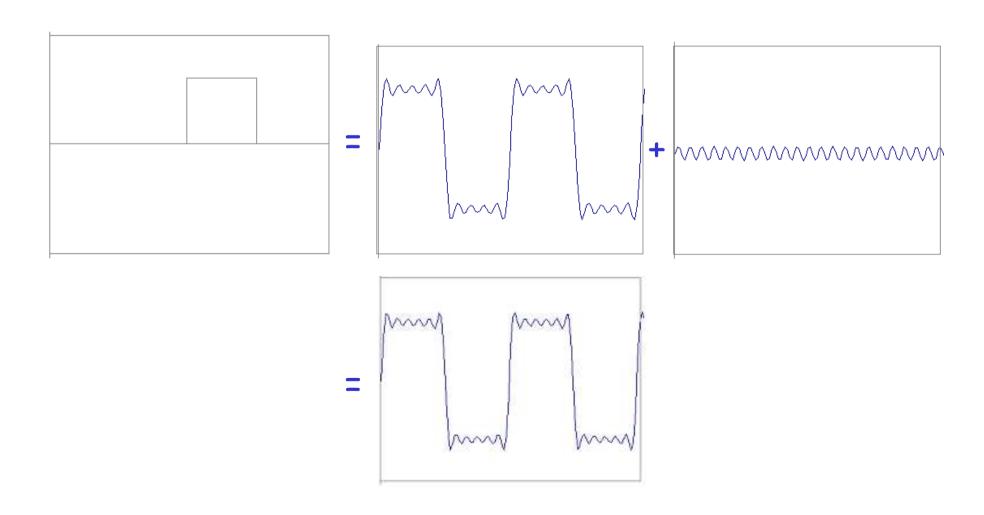
Usually, frequency is more interesting than the phase

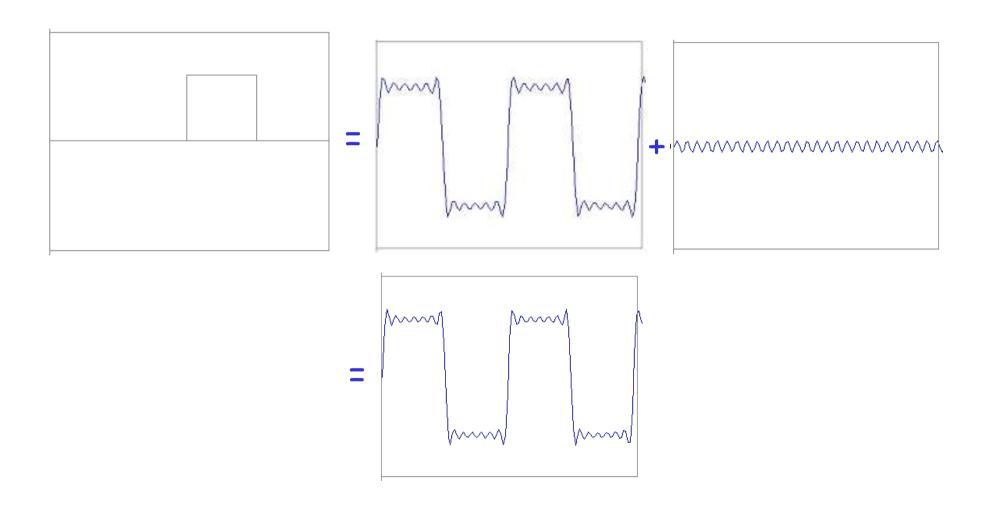


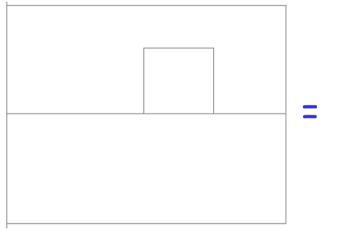




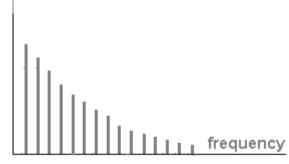


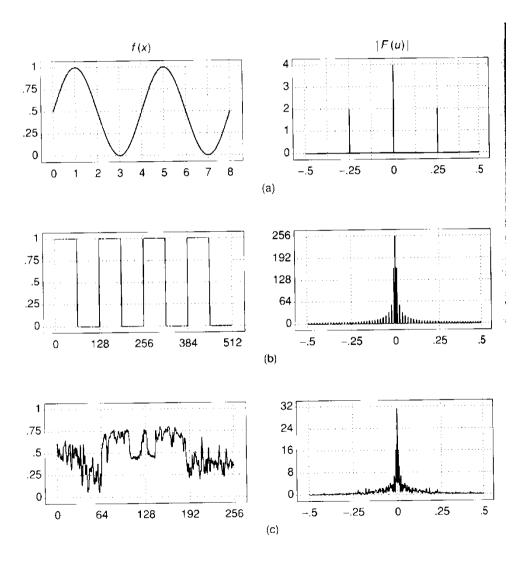




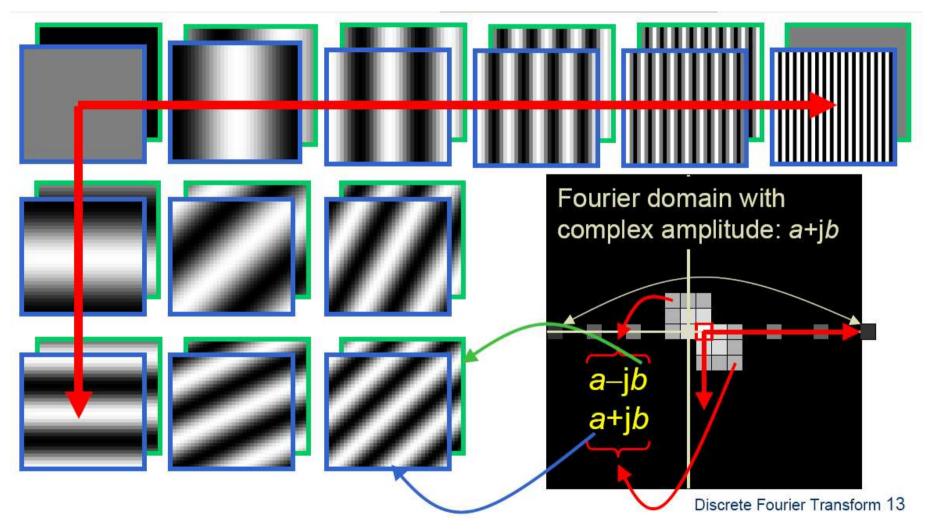


$$A\sum_{k=1}^{\infty} \frac{1}{k} \sin(2\pi kt)$$



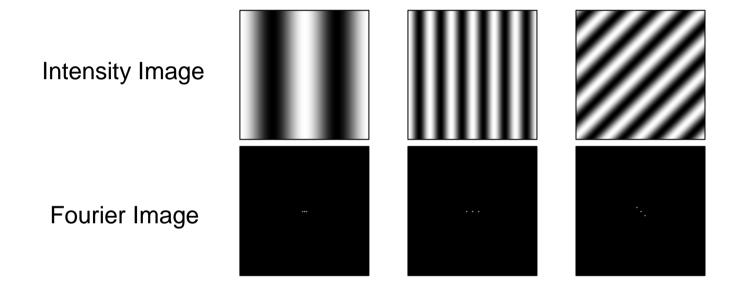


Extension to 2D

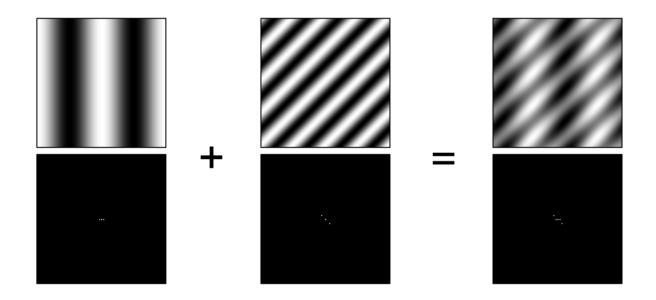


in Matlab, check out: imagesc(log(abs(fftshift(fft2(im)))));

Fourier analysis in images

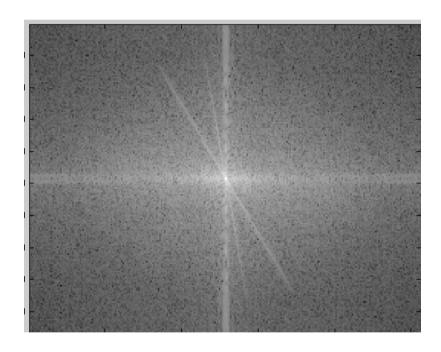


Signals can be composed

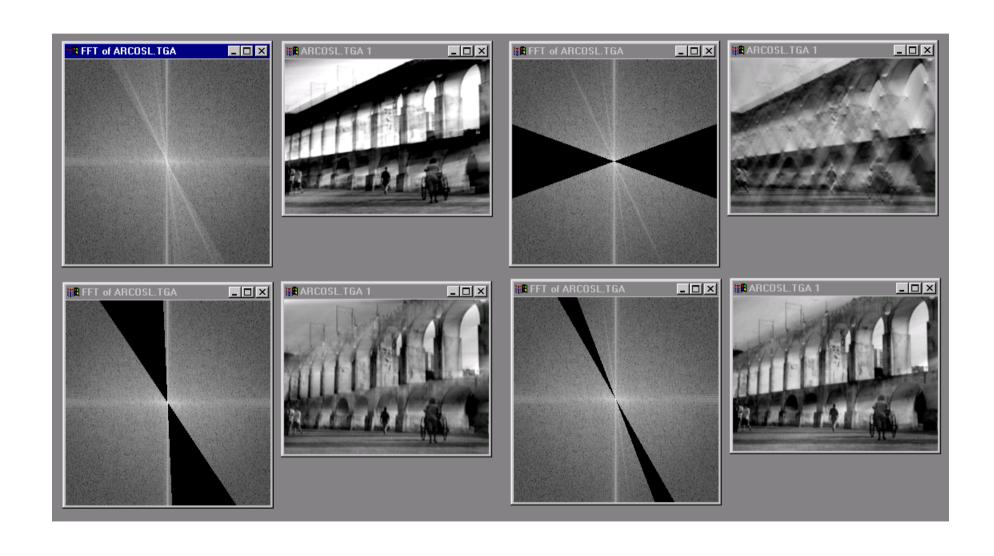


http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering More: http://www.cs.unm.edu/~brayer/vision/fourier.html

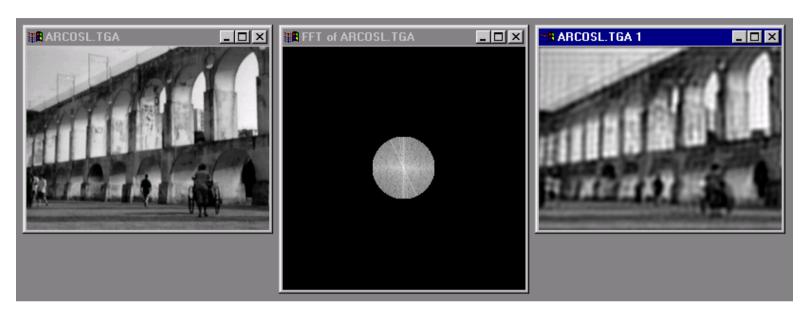
Man-made Scene

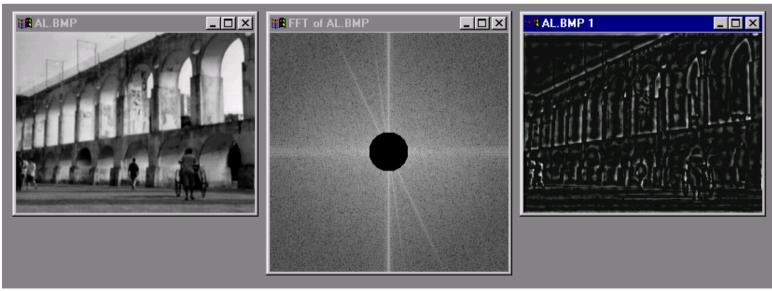


Can change spectrum, then reconstruct



Low and High Pass filtering





The Convolution Theorem

The greatest thing since sliced (banana) bread!

 The Fourier transform of the convolution of two functions is the product of their Fourier transforms

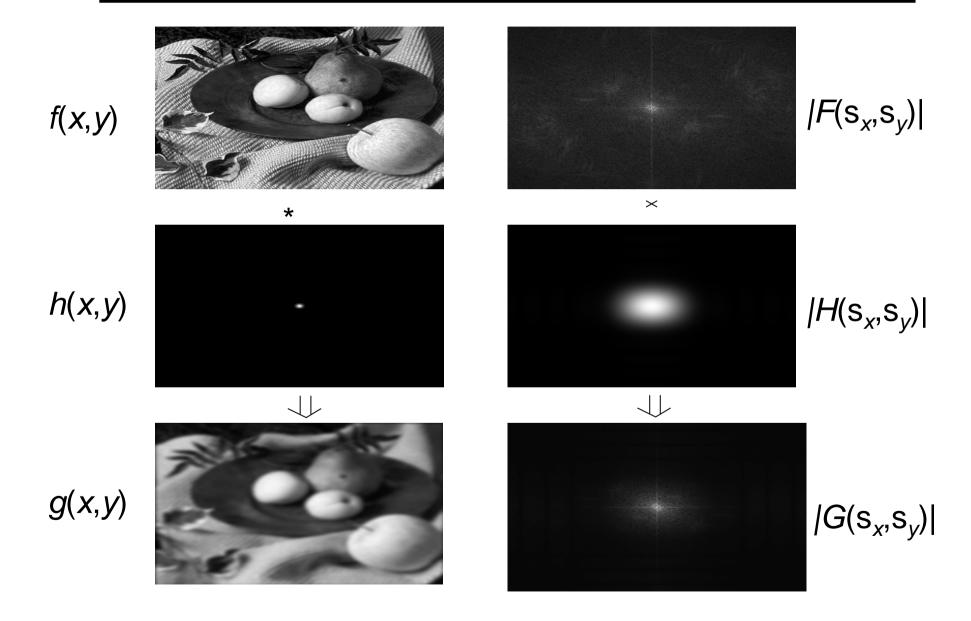
$$F[g * h] = F[g]F[h]$$

 The inverse Fourier transform of the product of two Fourier transforms is the convolution of the two inverse Fourier transforms

$$F^{-1}[gh] = F^{-1}[g] * F^{-1}[h]$$

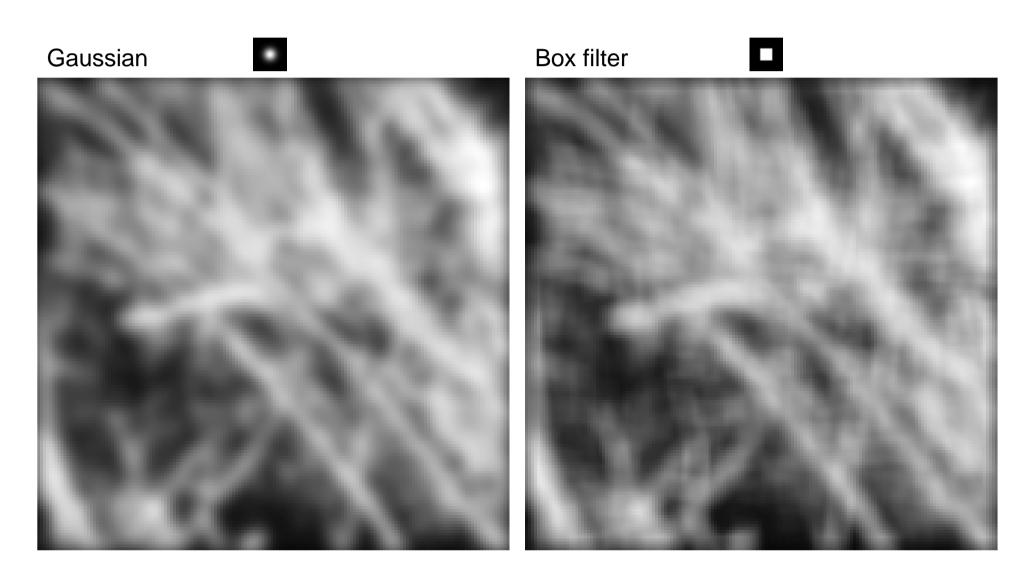
 Convolution in spatial domain is equivalent to multiplication in frequency domain!

2D convolution theorem example

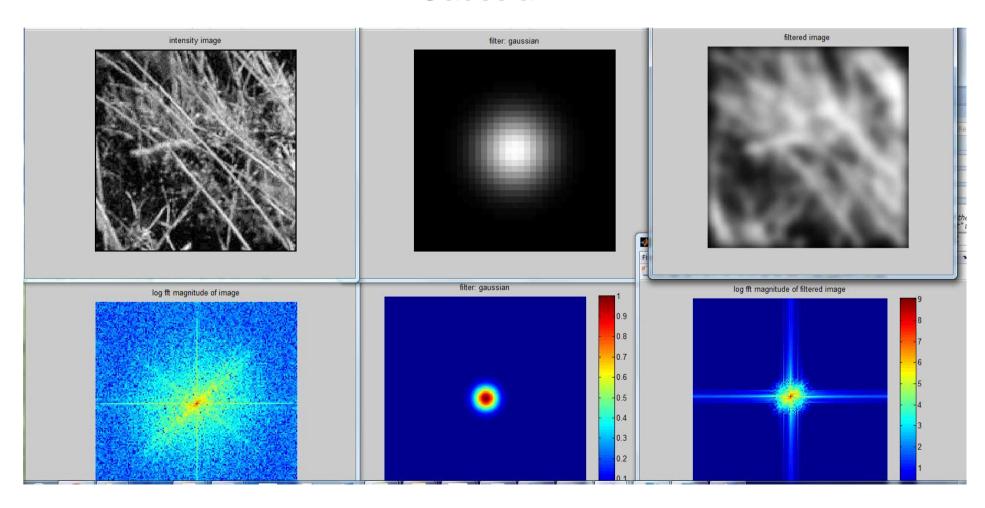


Filtering

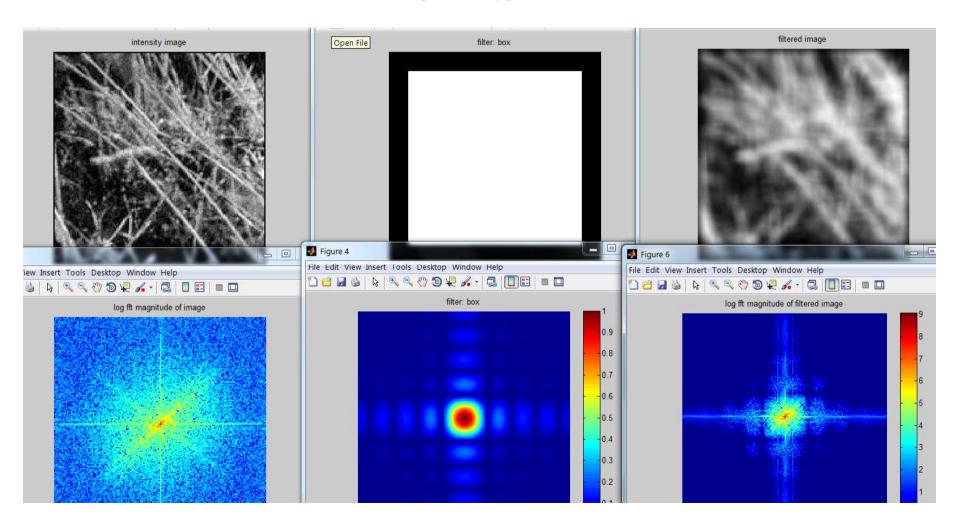
Why does the Gaussian give a nice smooth image, but the square filter give edgy artifacts?



Gaussian

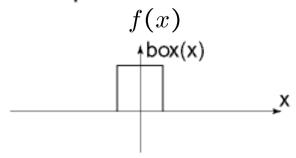


Box Filter

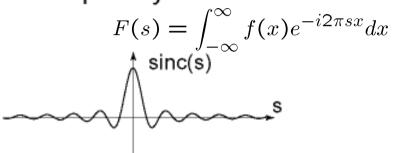


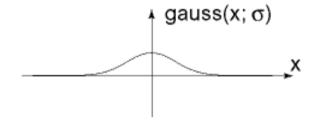
Fourier Transform pairs

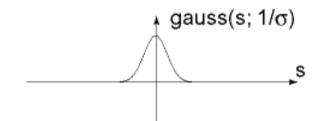
Spatial domain

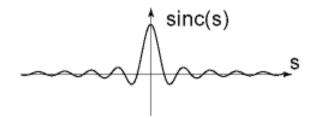


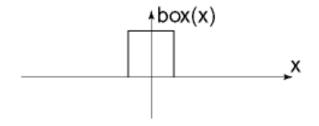
Frequency domain





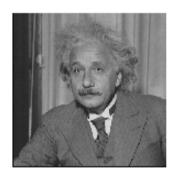


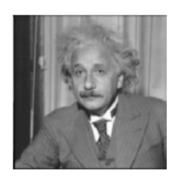


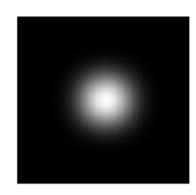


Low-pass, Band-pass, High-pass filters

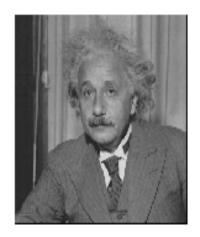
low-pass:

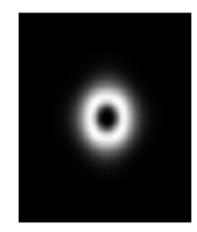




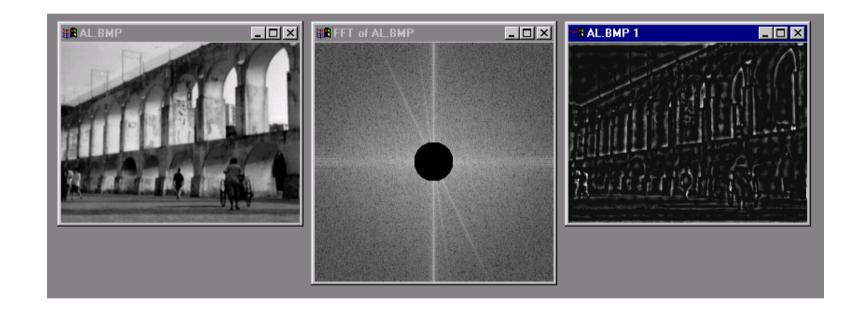


High-pass / band-pass:





Edges in images



What does blurring take away?

original

What does blurring take away?

smoothed (5x5 Gaussian)

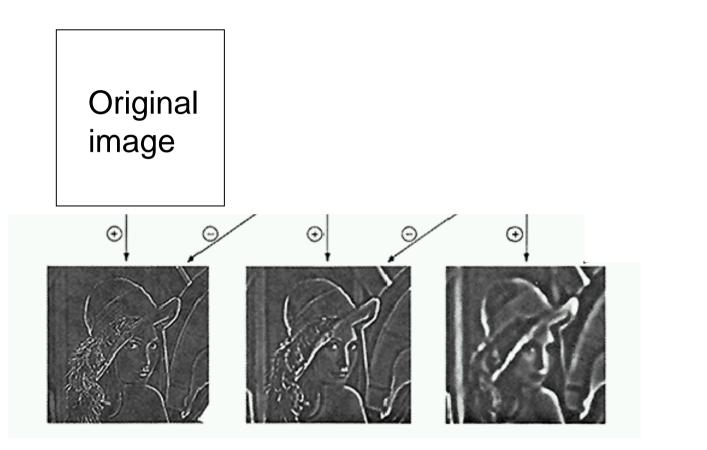
High-Pass filter

smoothed - original

Band-pass filtering

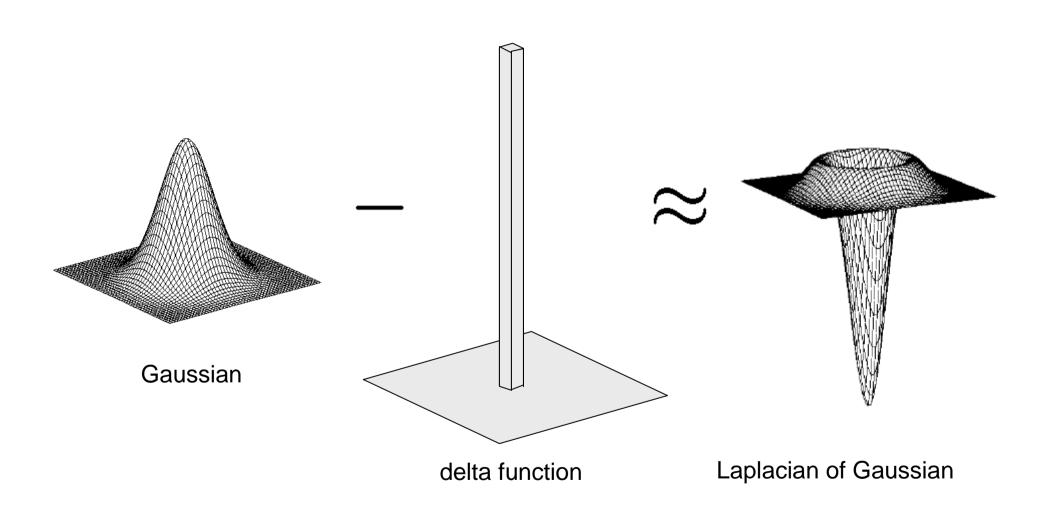
Gaussian Pyramid (low-pass images)

Laplacian Pyramid

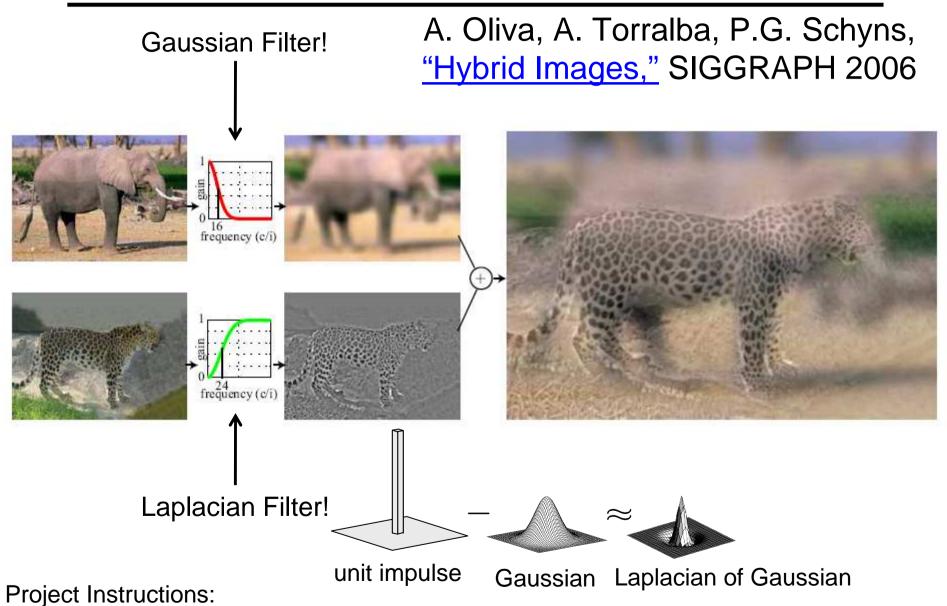


How can we reconstruct (collapse) this pyramid into the original image?

Why Laplacian?



Project 1g: Hybrid Images

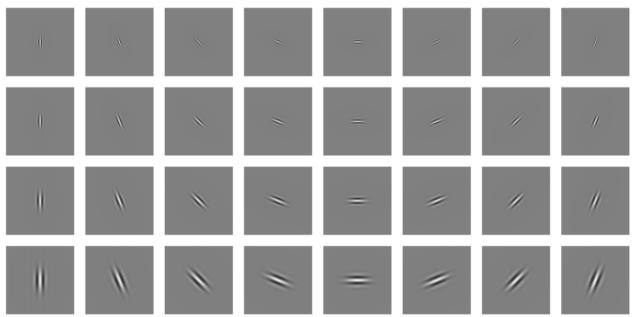


http://www.cs.illinois.edu/class/fa10/cs498dwh/projects/hybrid/ComputationalPhotography ProjectHybrid.html

Clues from Human Perception

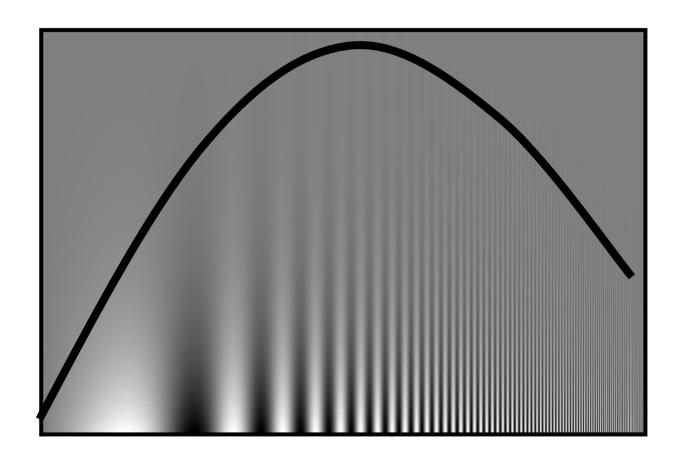
Early processing in humans filters for various orientations and scales of frequency

Perceptual cues in the mid frequencies dominate perception When we see an image from far away, we are effectively subsampling it



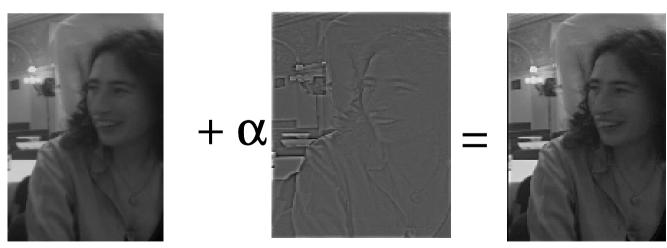
Early Visual Processing: Multi-scale edge and blob filters

Frequency Domain and Perception



Campbell-Robson contrast sensitivity curve

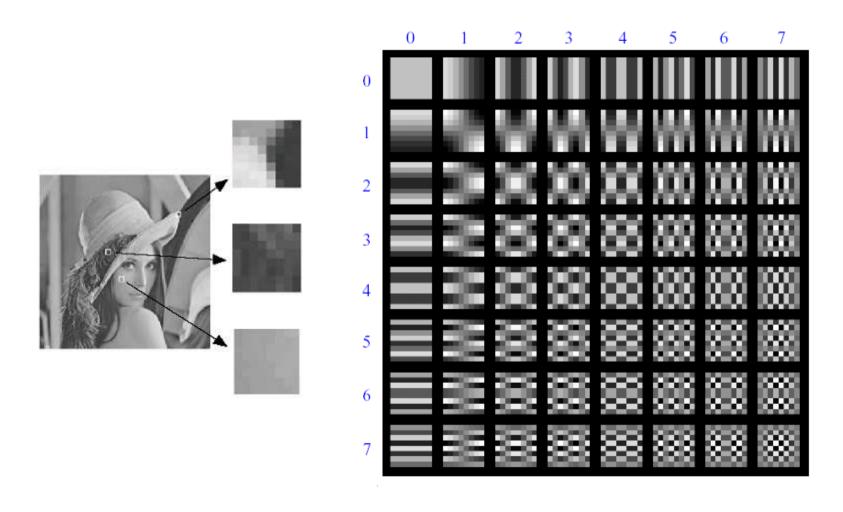
Unsharp Masking



Freq. Perception Depends on Color

R G B

Lossy Image Compression (JPEG)



Block-based Discrete Cosine Transform (DCT)

Using DCT in JPEG

The first coefficient B(0,0) is the DC component, the average intensity

The top-left coeffs represent low frequencies, the bottom right – high frequencies

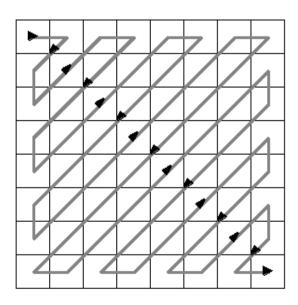


Image compression using DCT

Quantize

- More coarsely for high frequencies (which also tend to have smaller values)
- Many quantized high frequency values will be zero

Encode

Can decode with inverse dct

Filter responses

$$G = \begin{bmatrix} -415.38 & -30.19 & -61.20 & 27.24 & 56.13 & -20.10 & -2.39 & 0.46 \\ 4.47 & -21.86 & -60.76 & 10.25 & 13.15 & -7.09 & -8.54 & 4.88 \\ -46.83 & 7.37 & 77.13 & -24.56 & -28.91 & 9.93 & 5.42 & -5.65 \\ -48.53 & 12.07 & 34.10 & -14.76 & -10.24 & 6.30 & 1.83 & 1.95 \\ 12.12 & -6.55 & -13.20 & -3.95 & -1.88 & 1.75 & -2.79 & 3.14 \\ -7.73 & 2.91 & 2.38 & -5.94 & -2.38 & 0.94 & 4.30 & 1.85 \\ -1.03 & 0.18 & 0.42 & -2.42 & -0.88 & -3.02 & 4.12 & -0.66 \\ -0.17 & 0.14 & -1.07 & -4.19 & -1.17 & -0.10 & 0.50 & 1.68 \end{bmatrix}$$

Quantized values

Quantization table

$$Q = \begin{bmatrix} 16 & 11 & 10 & 16 & 24 & 40 & 51 & 61 \\ 12 & 12 & 14 & 19 & 26 & 58 & 60 & 55 \\ 14 & 13 & 16 & 24 & 40 & 57 & 69 & 56 \\ 14 & 17 & 22 & 29 & 51 & 87 & 80 & 62 \\ 18 & 22 & 37 & 56 & 68 & 109 & 103 & 77 \\ 24 & 35 & 55 & 64 & 81 & 104 & 113 & 92 \\ 49 & 64 & 78 & 87 & 103 & 121 & 120 & 101 \\ 72 & 92 & 95 & 98 & 112 & 100 & 103 & 99 \end{bmatrix}$$

JPEG Compression Summary

Subsample color by factor of 2

People have bad resolution for color

Split into blocks (8x8, typically), subtract 128

For each block

- a. Compute DCT coefficients for
- b. Coarsely quantize
 - Many high frequency components will become zero
- c. Encode (e.g., with Huffman coding)

Block size in JPEG

Block size

- small block
 - faster
 - correlation exists between neighboring pixels
- large block
 - better compression in smooth regions
- It's 8x8 in standard JPEG

JPEG compression comparison

89k 12k

Image gradient

The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

The gradient points in the direction of most rapid change in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The gradient direction is given by:

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$$

how does this relate to the direction of the edge?

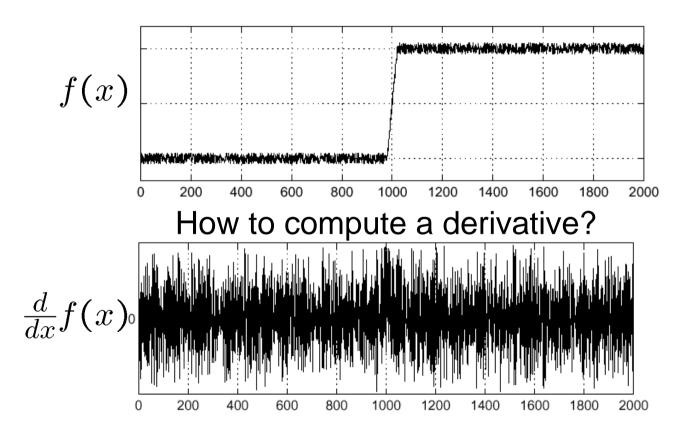
The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Effects of noise

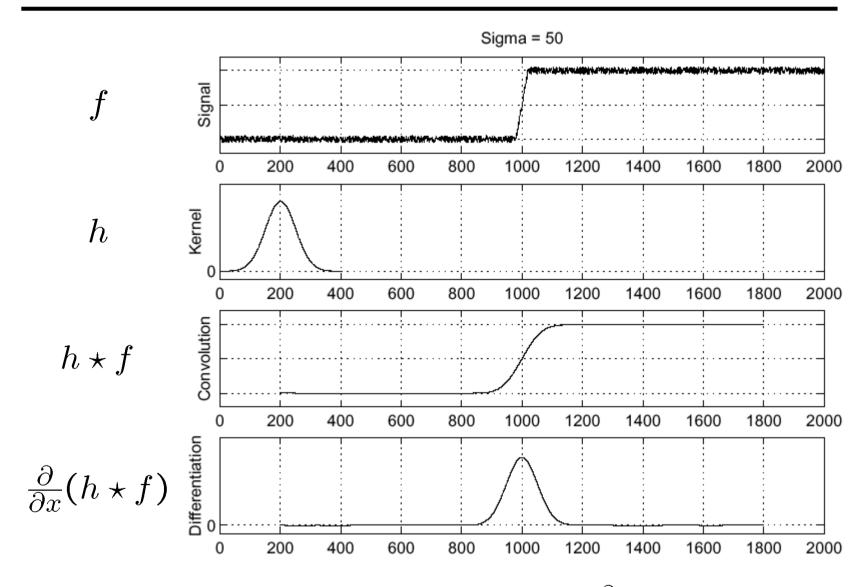
Consider a single row or column of the image

Plotting intensity as a function of position gives a signal



Where is the edge?

Solution: smooth first



Where is the edge? Look for peaks in $\frac{\partial}{\partial x}(h \star f)$

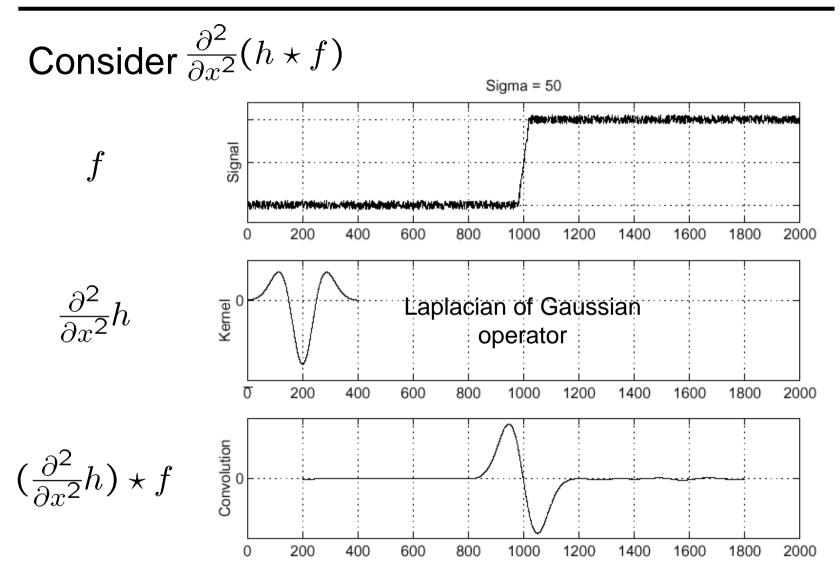
Derivative theorem of convolution

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$

This saves us one operation:

Kernel $\frac{\partial}{\partial x}h$ Convolution $\left(\frac{\partial}{\partial x}h\right)\star f$

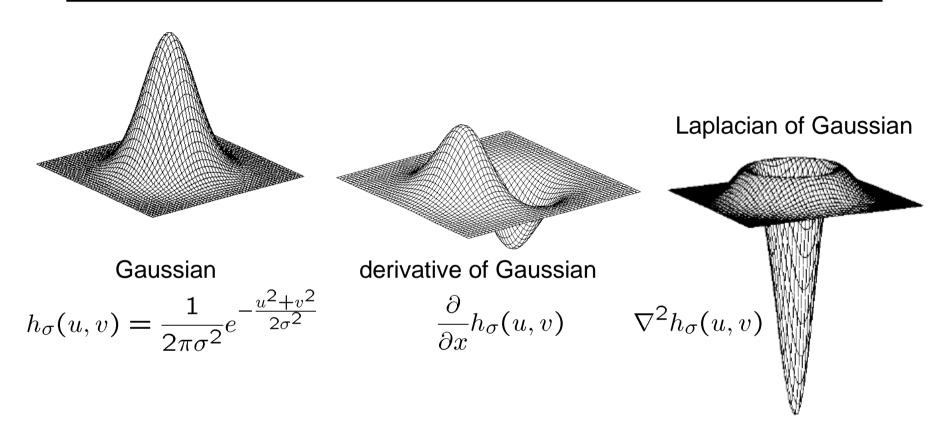
Laplacian of Gaussian



Where is the edge?

Zero-crossings of bottom graph

2D edge detection filters



 ∇^2 is the **Laplacian** operator:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Try this in MATLAB

```
g = fspecial('gaussian',15,2);
imagesc(g); colormap(gray);
surfl(g)
gclown = conv2(clown,g,'same');
imagesc(conv2(clown, [-1 1], 'same'));
imagesc(conv2(gclown,[-1 1],'same'));
dx = conv2(g, [-1 1], 'same');
imagesc(conv2(clown,dx,'same'));
lg = fspecial('log', 15, 2);
lclown = conv2(clown, lg, 'same');
imagesc(lclown)
imagesc(clown + .2*lclown)
```