The Frequency Domain

Somewhere in Cinque Terre, May 2005

15-463: Computational Photography

Many slides borrowed -
fom Steve Seitz Alexei Efros, CMU, Fall 2011



Salvador Dali

“Gala Contemplating the Mediterranean Sea,
which at 30 meters becomes the portrait

of Abraham Lincoln”, 1976










A nice set of basis

Teases away fast vS. slow changes in th

_'I 1 8 il Hi

2 £ BT |
i ,3 |2 3
&8
|
) ol k.
Sy

image.

This change of basis has a special name...



Jean Baptiste Joseph Fourier (1768-1830)
had crazy idea (180

Any univariate function ce
be rewritten as a weightec
sum of sines and cosines
different frequencies.

Don’t believe Iit?

* Neither did Lagrange,
Laplace, Poisson and
other big wigs

 Not translated into
English until 1878!

But it's (mostly) true!

e called Fourier Series

- e
» there are some subtle | f 2
restrictions Lagrange -+




A sum of sines

Our building block:
Asin(nx + 1)

Add enough of them to get
any signal f(x) you want!

How many degrees of
freedom?

What does each control?

f

Which one encodes the
coarse vs. fine structure of f(target)=

. T +T +fF ...+ F +...
the signal? 1723

n




Fourier Transform

We want to understand the frequency wof our signal. So,
let’s reparametrize the signal by winstead of x:

f(x , Fourier . F
( ) Transform (”&

For every wfrom O to inf, F(») holds the amplitude A
and phase f of the corresponding sine AsSINn(x+ 1)

« How can F hold both? Complex number trick!
F(w)=R(w)+il (w)

> > 1 (W)
A=+./R | f=tan'——~
\/ (W)~ + 1 (W) an R(M)

We can always go back:

F(M . | Inverse Fourier

— {(x)
Transform




Time and Frequency
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Time and Frequency
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Frequency Spectra
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Frequency Spectra

Usually, frequency is more interesting than the phase




Frequency Spectra
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Frequency Spectra
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Frequency Spectra
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Frequency Spectra
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Frequency Spectra




Extension to 2D

Discrete Fourier Transform 13

In Matlab, check out: imagesc(log(abs(fftshift(fft2(im)))));



Fourier analysis In images

Intensity Image

Fourier Image

14 il
]

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering




Signals can be composed

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering
More: http://www.cs.unm.edu/~brayer/vision/fourier.html



Man-made Scene




Can change spectrum, then reconstruct




Low and High Pass filtering




The Convolution Theorem

The greatest thing since sliced (banana) bread!

e The Fourier transform of the convolution of two
functions is the product of their Fourier transforms

Flg* h] = F[g]F[h]

* The inverse Fourier transform of the product of two
Fourier transforms is the convolution of the two
Inverse Fourier transforms

F[gh] = F'[g]* F[h]

e Convolution in spatial domain is equivalent to
multiplication in frequency domain!



2D convolution theorem example

f(x,y) IF(SxSy)l

h(x,y) [H(S,.S,)l

g(x.y) 1G(s,08,)|



Filtering

Gaussian Box filter n



Gaussian



Box Filter



f(x)



Low-pass, Band-pass, High-pass filters

low-pass:

High-pass / band-pass:



Edges in Images




What does blurring take away?

original



What does blurring take away?

smoothed (5x5 Gaussian)



High-Pass filter

smoothed — original



Band-pass filtering

Gaussian Pyramid (low-pass images)



Laplacian Pyramid

Original
Image

How can we reconstruct (collapse) this
pyramid into the original image?



Why Laplacian?

Gaussian

delta function Laplacian of Gaussian



Project 1g: Hybrid Images

Gaussian Filter! A. Oliva, A. Torralba, P.G. Schyns,
1 “Hybrid Images,” SIGGRAPH 2006

|

Laplacian Filter! _ ~

. . unitimpulse  Gaussian Laplacian of Gaussian
Project Instructions:

http://www.cs.illinois.edu/class/fal0/cs498dwh/projects/hybrid/ComputationalPhotography ProjectHybrid.html




Clues from Human Perception

Early processing in humans filters for various orientations and scales
of frequency

Perceptual cues in the mid frequencies dominate perception

When we see an image from far away, we are effectively subsampling
it

Early Visual Processing: Multi-scale edge and blob filters



Frequency Domain and Perception

Campbell-Robson contrast sensitivity curve



Unsharp Masking

+a




Freq. Perception Depends on Color




Lossy Image Compression (JPEG)

Block-based Discrete Cosine Transform (DCT)



Using DCT in JPEG

The first coefficient B(0,0) is the DC component,
the average intensity

The top-left coeffs represent low frequencies,
the bottom right — high frequencies



Image compression using DCT

Quantize
* More coarsely for high frequencies (which also tend to have smaller
values)
« Many quantized high frequency values will be zero
Encode
e Can decode with inverse dct
Filter responses u
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JPEG Compression Summary

Subsample color by factor of 2
 People have bad resolution for color

Split into blocks (8x8, typically), subtract 128

For each block

a. Compute DCT coefficients for

b. Coarsely quantize
—  Many high frequency components will become zero

c. Encode (e.g., with Huffman coding)

http://en.wikipedia.org/wiki/YCbCr
http://en.wikipedia.org/wiki/JPEG




Block size in JPEG

Block size

e small block
— faster
— correlation exists between neighboring pixels

 large block
— better compression in smooth regions

e |t's 8x8 in standard JPEG



JPEG compression comparison

89k 12k



Image gradient

The gradient of an image:

The gradient points in the direction of most rapid change in intensity

— 1 4,

The gradient direction is given by:

* how does this relate to the direction of the edge?

The edge strength is given by the gradient magnitude



Effects of noise

Consider a single row or column of the image
» Plotting intensity as a function of position gives a signal

f(x)

How to compute a derivative?

L f(z)

Where Is the edge?



Solution: smooth first

h* f

Where is the edge? Look for peaks in



Derivative theorem of convolution

This saves us one operation:



Laplacian of Gaussian

Consider
f
i h Laplacian of Gaussian
Ox:2 operator

Where is the edge? Zero-crossings of bottom graph



2D edge detection filters

Laplacian of Gaussian

Gaussian derivative of Gaussian

V< is the Laplacian operator:



Try this in MATLAB

g = fspecial('gaussian’,15,2);
Imagesc(g); colormap(gray);
surfl(g)

gclown = conv2(clown,g,'same’);
iImagesc(conv2(clown,[-1 1],'same’));
iImagesc(conv2(gclown,[-1 1],'same’));
dx = conv2(g,[-1 1],'same’);
Imagesc(conv2(clown,dx,'same"));

lg = fspecial('log',15,2);

Iclown = conv2(clown,lg,'same’);
Imagesc(lclown)

Imagesc(clown + .2*Ilclown)



