Data-driven Methods: Faces

The Power of Averaging

8-hour exposure

© Atta Kim

Figure-centric averages

Antonio Torralba \& Aude Oliva (2002)
Averages: Hundreds of images containing a person are averaged to reveal regularities in the intensity patterns across all the images.

More by Jason Salavon

Homes for Sale

109 Homes for Sale, Seattle/Tacoma

121 Homes for Sale, LA/Orange County

117 Homes for Sale, Chicagoland

114 Homes for Sale, Dallas/Ft. Worth Metroplex

124 Homes for Sale, The 5 Boroughs

112 Homes for Sale, Miami-Dade County

More at: http://www.salavon.com/

"100 Special Moments" by Jason Salavon

Little Leaguer

The Graduate

Kids with Santa

Why blurry?

Computing Means

Two Requirements:

- Alignment of objects
- Objects must span a subspace

Useful concepts:

- Subpopulation means
- Deviations from the mean

Images as Vectors

Vector Mean: Importance of Alignment

How to align faces?

Shape Vector

Provides alignment!

Average Face

1. Warp to mean shape
2. Average pixels

Objects must span a subspace

Example

Does not span a subspace

Subpopulation means

Examples:

- Happy faces
- Young faces
- Asian faces
- Etc.
- Sunny days
- Rainy days
- Etc.
- Etc.

Average male

Deviations from the mean

$=$

$$
\Delta X=X-\underline{X}
$$

Deviations from the mean

Manipulating Facial Appearance through Shape and Color

Duncan A. Rowland and David I. Perrett
St Andrews University
IEEE CG\&A, September 1995

Face Modeling

Compute average faces (color and shape)

Compute deviations between male and female (vector and color differences)

Changing gender

Deform shape and/or color of an input face in the direction of "more female"

> original

Enhancing gender

more same original androgynous more opposite

Changing age

Face becomes
"rounder" and "more textured" and "grayer"

Back to the Subspace

Linear Subspace: convex combinations

Any new image X can be obtained as weighted sum of stored "basis" images.

$$
X=\sum_{i=1}^{m} a_{i} X_{i}
$$

Our old friend, change of basis! What are the new coordinates of X ?

The Morphable Face Model

The actual structure of a face is captured in the shape vector $\mathbf{S}=\left(x_{1}, y_{1}, x_{2}, \ldots, y_{n}\right)^{\top}$, containing the (x, y) coordinates of the n vertices of a face, and the appearance (texture) vector $\mathbf{T}=\left(R_{1}, G_{1}, B_{1}, R_{2}, \ldots, G_{n}\right.$, $\left.B_{n}\right)^{\top}$, containing the color values of the mean-warped face image.

Shape S

Appearance T

The Morphable face model

Again, assuming that we have \boldsymbol{m} such vector pairs in full correspondence, we can form new shapes $\mathbf{S}_{\text {model }}$ and new appearances $\mathbf{T}_{\text {model }}$ as:

$$
\begin{aligned}
& \mathbf{S}_{\text {model }}=\sum_{i=1}^{m} a_{i} \mathbf{S}_{i} \quad \mathbf{T}_{\text {model }}=\sum_{i=1}^{m} b_{i} \mathbf{T}_{i} \\
& s=\alpha_{1} \cdot(1)+\alpha_{2} \cdot(5)+\alpha_{3} \cdot(1)+\alpha_{4} \cdot \ldots=S \cdot a \\
& t=\beta_{1} \cdot(\sqrt{ })+\beta_{2} \cdot\left(\sigma _ { 3 } \cdot \left(\beta_{4} \cdot(\underline{y})+\ldots=\mathbf{T} \cdot \beta\right.\right.
\end{aligned}
$$

If number of basis faces \boldsymbol{m} is large enough to span the face subspace then:
Any new face can be represented as a pair of vectors

$$
\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)^{\top} \text { and }\left(\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right)^{\top} \text { ! }
$$

Issues:

1. How many basis images is enough?
2. Which ones should they be?
3. What if some variations are more important than others?

- E.g. corners of mouth carry much more information than haircut

Need a way to obtain basis images automatically, in order of importance!

But what's important?

Principal Component Analysis

Given a point set $\left\{\overrightarrow{\mathbf{p}}_{j}\right\}_{j=1 \ldots P}$, in an M-dim space, PCA finds a basis such that

- coefficients of the point set in that basis are uncorrelated
- first $r<M$ basis vectors provide an approximate basis that minimizes the mean-squared-error (MSE) in the approximation (over all bases with dimension r)

PCA via Singular Value Decomposition

Principal Component Analysis

Choosing subspace dimension $r:$

- look at decay of the eigenvalues as a function of r
- Larger r means lower expected error in the subspace data approximation

EigenFaces

First popular use of PCA on images was for modeling and recognition of faces [Kirby and Sirovich, 1990, Turk and Pentland, 1991]

- Collect a face ensemble
- Normalize for contrast, scale, \& orientation.
- Remove backgrounds
- Apply PCA \& choose the first N eigen-images that account for most of the variance of the/ data.

First 3 Shape Basis

Using 3D Geometry: Blinz \& Vetter, 1999

show SIGGRAPH video

