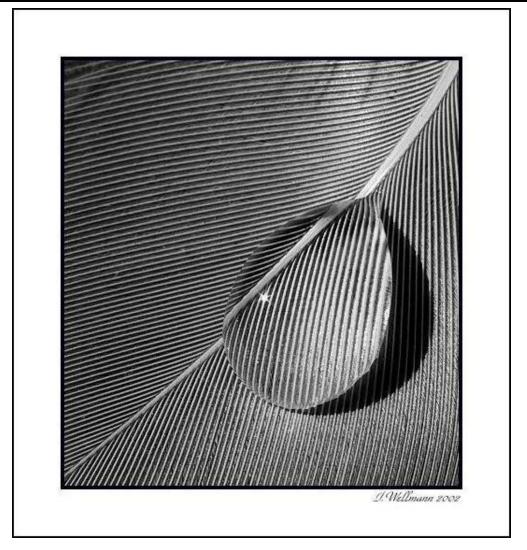
Matting and Transparency



15-463: Computational Photography Alexei Efros, CMU, Spring 2010

How does Superman fly?

Super-human powers?
OR
Image Matting?

Physics of Alpha Matting



Semi-transparent objects

Pixels too large

alpha channel

Add one more channel:

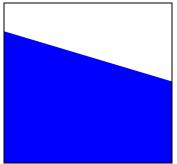
Encodes transparency (or pixel coverage):

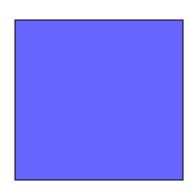
Alpha = 1: opaque object (complete coverage)

Alpha = 0: transparent object (no coverage)

• 0<Alpha<1: semi-transparent (partial coverage)

Example: alpha = 0.7





or semi-transparency

Multiple Alpha Blending

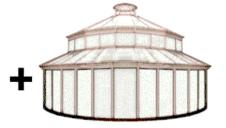
So far we assumed that one image (background) is opaque.

If blending semi-transparent sprites (the "A over B" operation):

$$I_{comp} = \alpha_a I_a + (1 - \alpha_a) \alpha_b I_b$$
$$\alpha_{comp} = \alpha_a + (1 - \alpha_a) \alpha_b$$

Note: sometimes alpha is premultiplied: $im(\alpha R, \alpha G, \alpha B, \alpha)$:

$$I_{comp} = I_a + (1-\alpha_a)I_b$$
 (same for alpha!)



"Pulling a Matte"

Problem Definition:

- The separation of an image C into
 - A foreground object image C_o,
 - a background image C_b,
 - and an alpha matte α
- C_o and α can then be used to composite the foreground object into a different image

Hard problem

- Even if alpha is binary, this is hard to do automatically (background subtraction problem)
- For movies/TV, manual segmentation of each frame is infeasible
- Need to make a simplifying assumption...

Average/Median Image

What can we do with this?

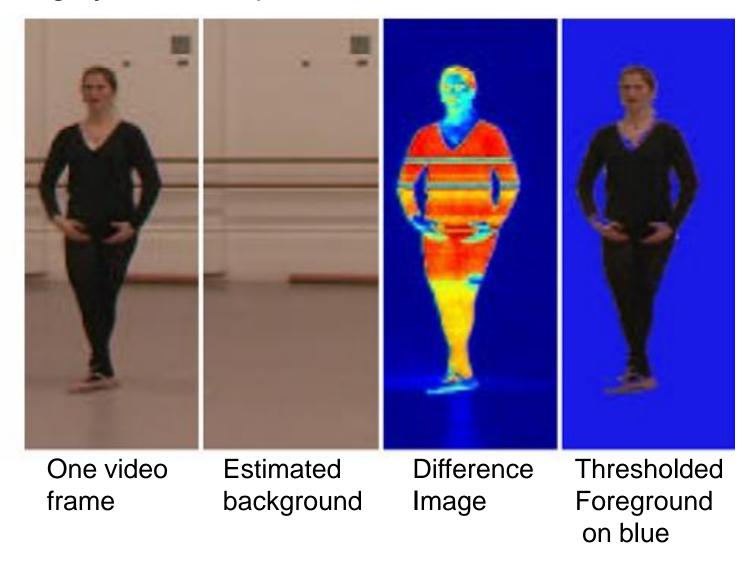
Background Subtraction

Crowd Synthesis (with Pooja Nath)

- 1. Do background subtraction in each frame
- 2. Find and record "blobs"
- 3. For synthesis, randomly sample the blobs, taking care not to overlap them

Background Subtraction

A largely unsolved problem...



Blue Screen

Blue Screen matting

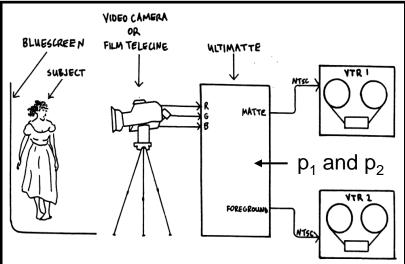
Most common form of matting in TV studios & movies

Petros Vlahos invented blue screen matting in the 50s. His Ultimatte[®] is still the most popular equipment. He won an Oscar for lifetime achievement.

A form of background subtraction:

- Need a known background
- Compute alpha as SSD(C,Cb) > threshold
 - Or use Vlahos' formula: $\alpha = 1-p_1(B-p_2G)$
- Hope that foreground object doesn't look like background
 - no blue ties!
- Why blue?
- Why uniform?

The Ultimatte



Blue screen for superman?

Semi-transparent mattes

compositing glass with portrait using a semi-transparent matte

What we really want is to obtain a true alpha matte, which involves semi-transparency

Alpha between 0 and 1

Matting Problem: Mathematical Definition

For every pixel in the composite image, given

- backing color $C_k = [R_k G_k B_k]$, and
- composite pixel color C = [R G B]

compute

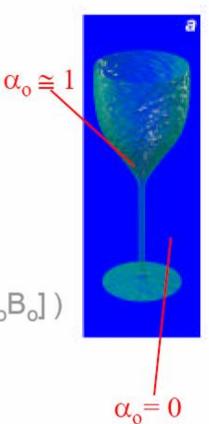
- foreground pixel color

$$C_o = [R_o G_o B_o \alpha_o] (= [\alpha_o R_o \alpha_o G_o \alpha_o B_o])$$

such that

The matting equation

$$C = C_o + (1 - \alpha_o) C_k$$



Why is general matting hard?

Matting Equation:

$$C = C_o + (1 - \alpha_o) C_k$$

Solution #1: No Blue!

Matting Equation:

$$C = C_o + (1 - \alpha_o) C_k$$

- If we know that the foreground contains no blue, we have B_o = 0
- This leaves us with 3 equations and 3 unknowns, which has exactly one solution $R = \alpha R + (1 \alpha) R$ $\leftarrow 3$. Solve for R

Main difficulty:

$$R = \alpha_{o}R_{o} + (1 - \alpha_{o}) R_{k}$$

$$G = \alpha_{o}G_{o} + (1 - \alpha_{o}) G_{k}$$

$$B = B_{k} - \alpha_{o}B_{k}$$

$$\leftarrow 3. \text{ Solve for } R_{o}$$

$$\leftarrow 2. \text{ Solve for } G_{o}$$

$$\leftarrow 1. \text{ Solve for } \alpha_{o}$$

Solution #2: Gray or Flesh

Matting Equation:

$$C = C_o + (1 - \alpha_o) C_k$$

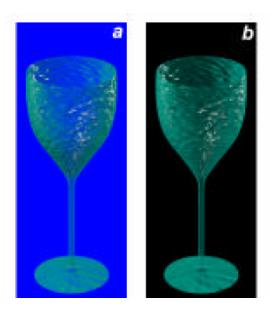
- If we know that the foreground contains gray, that means that R_o = B_o = G_o
- This leaves us with 3 equations and 2 unknowns

Triangulation Matting (Smith & Blinn)

Matting Equation:

$$C = C_o + (1 - \alpha_o) C_k$$

- Instead of reducing the number of unknowns, we could attempt to increase the number of equations
- One way to do this is to photograph an object of interest in front of two known but distinct backgrounds



How many equations?

How many unknowns?

Does the background need to be constant color?

The Algorithm

For every pixel p in the composite image, given

- backing color $C_{k1} = [R_{k1} G_{k1} B_{k1}]$ at p,
- backing color $C_{k2} = [R_{k2} G_{k2} B_{k2}]$ at p,
- composite pixel color $C_1 = [R_1 \ G_1 \ B_1]$ at p, and
- composite pixel color $C_2 = [R_2 \ G_2 \ B_2]$ at p,

solve the system of 6 equations

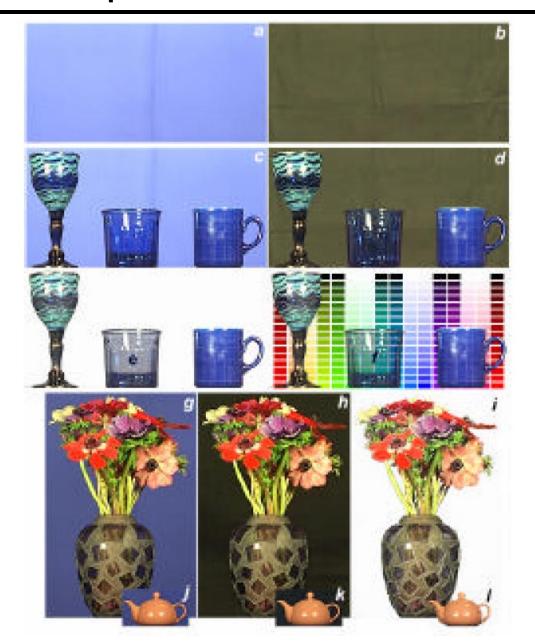
$$\begin{split} R_1 &= \alpha_o R_o \, + (1 - \alpha_o) \, R_{k1} &\quad R_2 = \alpha_o R_o \, + (1 - \alpha_o) \, R_{k2} \\ G_1 &= \alpha_o G_o \, + (1 - \alpha_o) \, G_{k1} \quad G_2 = \alpha_o G_o \, + (1 - \alpha_o) \, G_{k2} \\ B_1 &= \alpha_o B_o \, + (1 - \alpha_o) \, B_{k1} \quad B_2 = \alpha_o B_o \, + (1 - \alpha_o) \, B_{k2} \end{split}$$

for unknowns R_o , G_o , B_o , α_o

Triangulation Matting Examples

From Smith & Blinn's SIGGRAPH'96 paper

More Examples

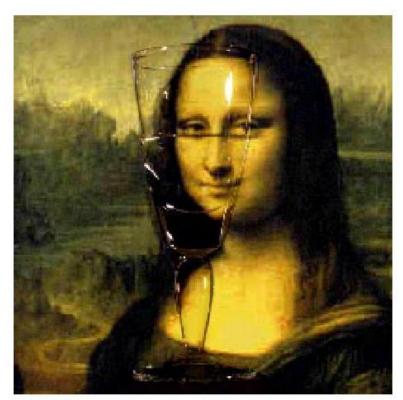


More examples

Problems with Matting

Images do not look realistic Lack of Refracted Light Lack of Reflected Light

Solution: Modify the Matting Equation



Environment Matting and Compositing

slides by Jay Hetler

Douglas E. Zongker ~ Dawn M. Werner ~ Brian Curless ~ David H. Salsin

Environment Matting Equation

$$\mathbf{C} = \mathbf{F} + (\mathbf{1} - \alpha)\mathbf{B} + \mathbf{\Phi}$$

C ~ Color

F ~ Foreground color

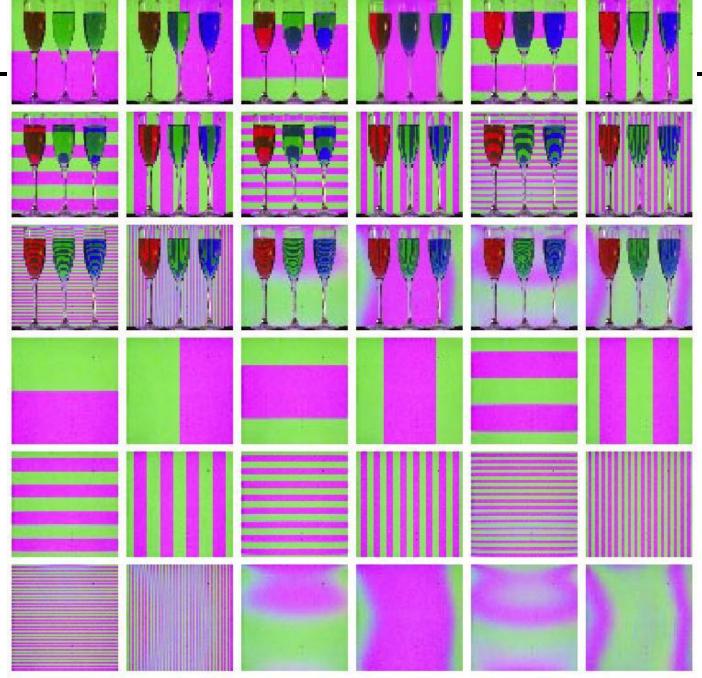
B ~ Background color

- α ~ Amount of light that passes through the foreground

Explanation of Φ

R – reflectance image

T – Texture image



Environment Mattes

Performance

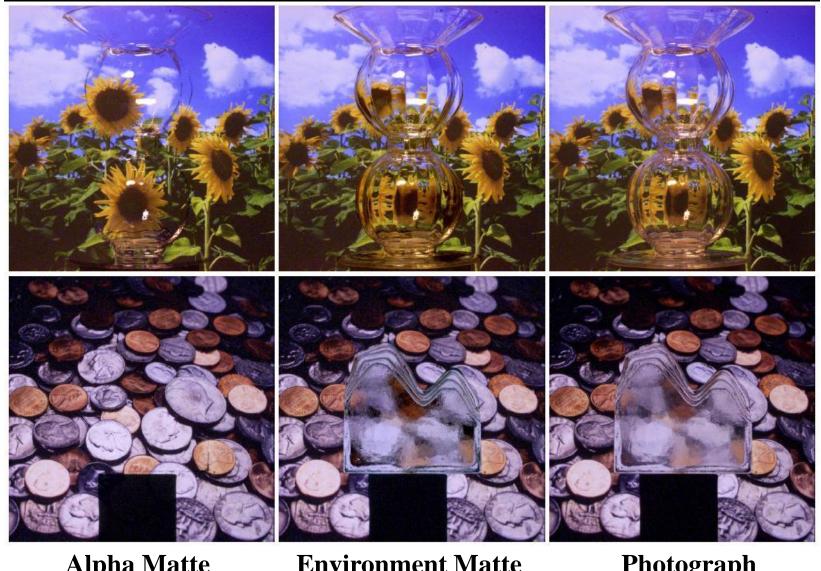
Calibration

Matting: 10-20 minutes extraction time for each texture map (Pentium II 400Mhz)

Compositing: 4-40 frames per second

Real-Time?

How much better is Environment Matting?

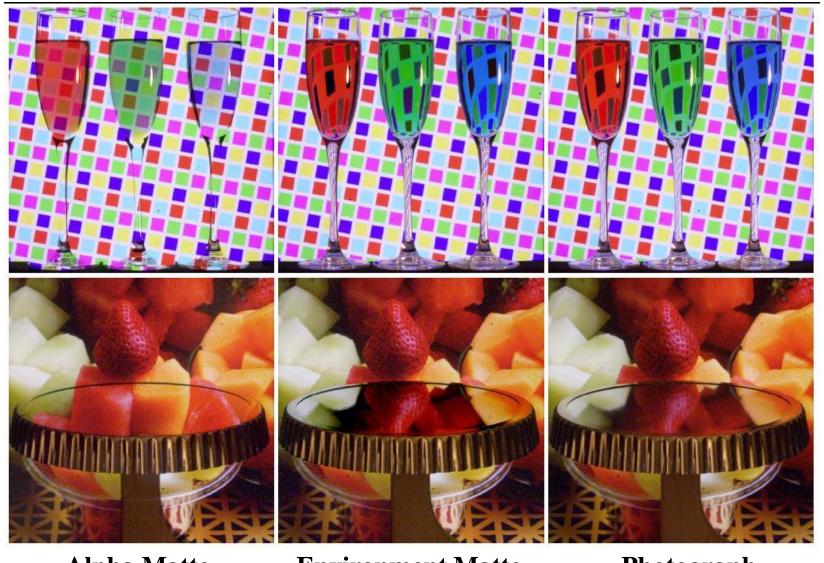


Alpha Matte

Environment Matte

Photograph

How much better is Environment Matting?



Alpha Matte

Environment Matte

Photograph

Movies!

Fast Separation of Direct and Global Images Using High Frequency Illumination

Shree K. Nayar

Gurunandan G. Krishnan

Columbia University

Michael D. Grossberg

City College of New York

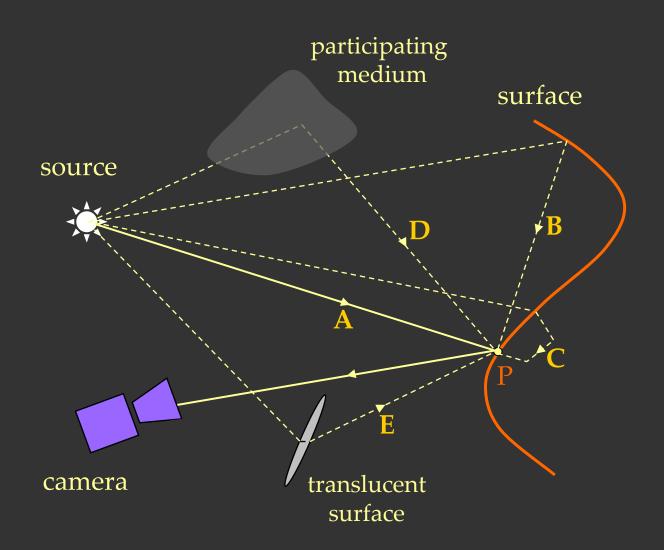
Ramesh Raskar

MERL

SIGGRAPH Conference Boston, July 2006

Support: ONR, NSF, MERL

Direct and Global Illumination



A: Direct

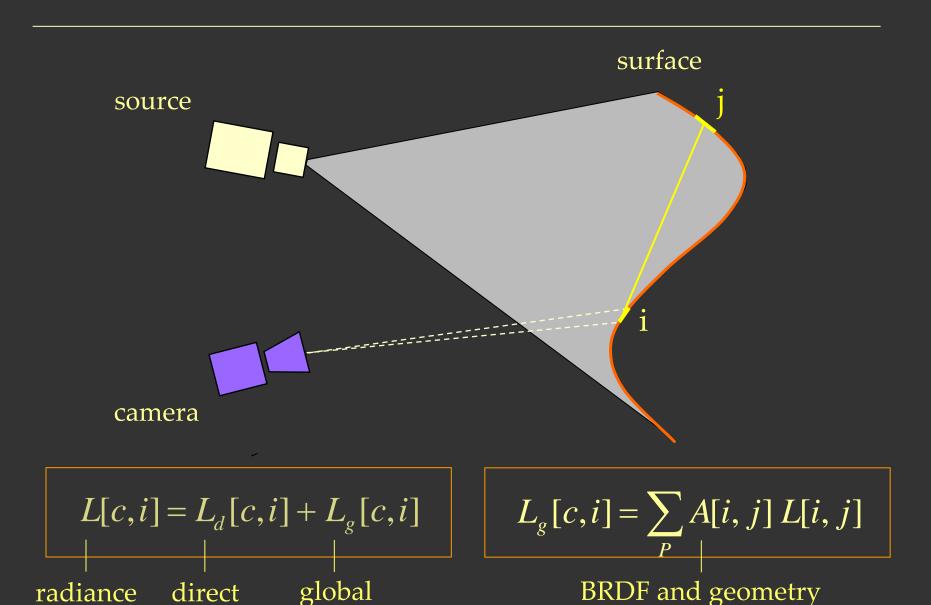
B: Interrelection

C: Subsurface

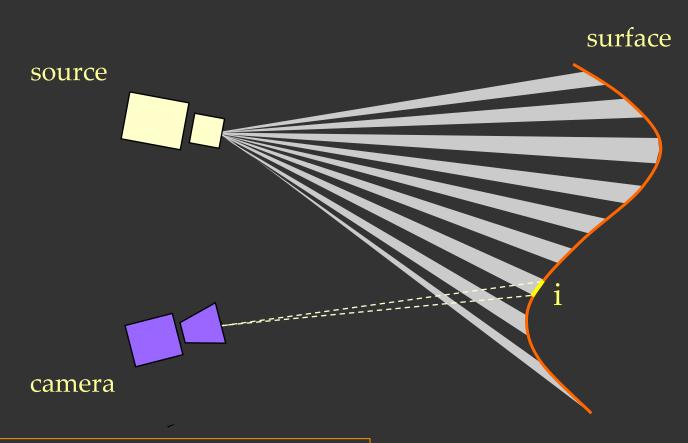
D: Volumetric

E: Diffusion

Direct and Global Components: Interreflections



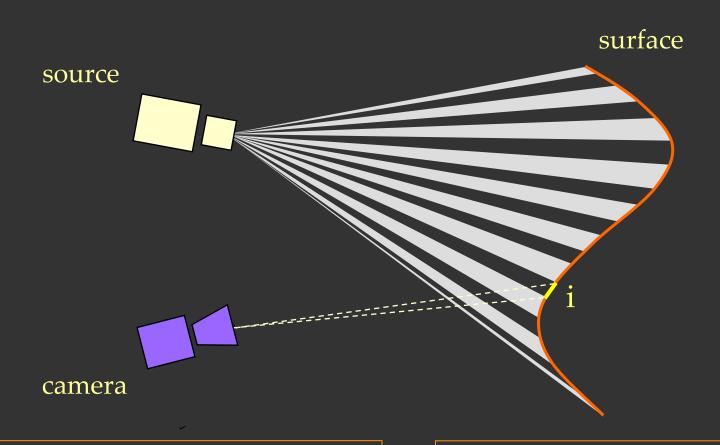
High Frequency Illumination Pattern



$$L^{\dagger}[c,i] = L_d[c,i] + \alpha L_g[c,i]$$

fraction of activated source elements

High Frequency Illumination Pattern



$$L^{\dagger}[c,i] = L_d[c,i] + \alpha L_g[c,i]$$

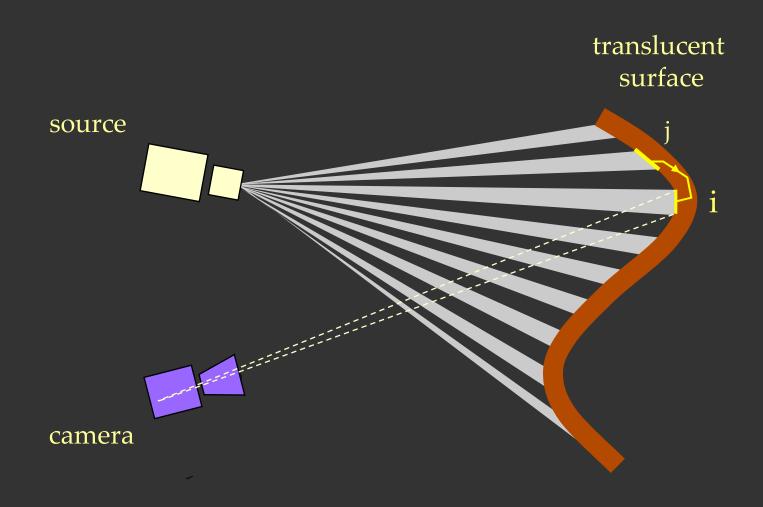
$$\overline{L}[c,i] = (1-\alpha) L_g[c,i]$$

fraction of activated source elements

Separation from Two Images

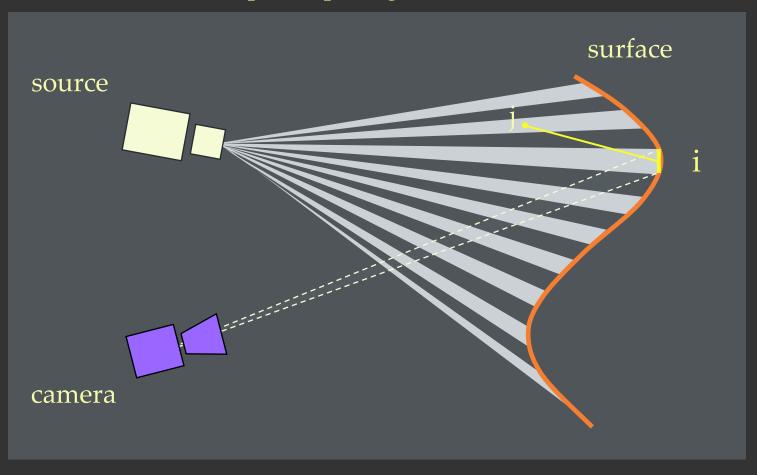
$$lpha = rac{1}{2}$$
: $L_d = L_{\max} - L_{\min}$, $L_g = 2L_{\min}$ direct global

Other Global Effects: Subsurface Scattering



Other Global Effects: Volumetric Scattering

participating medium



Diffuse Interreflections

Diffusion

Volumetric Scattering

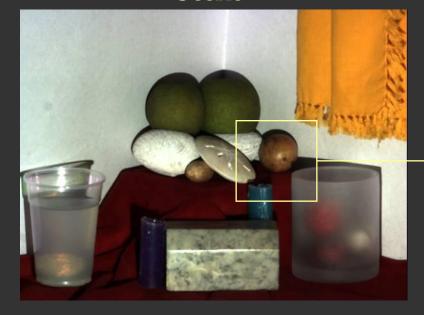
Specular

Interreflections

Subsurface Scattering

Scene

Scene



Global

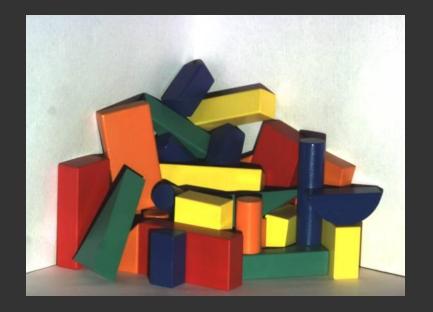
Real World Examples:

Can You Guess the Images?

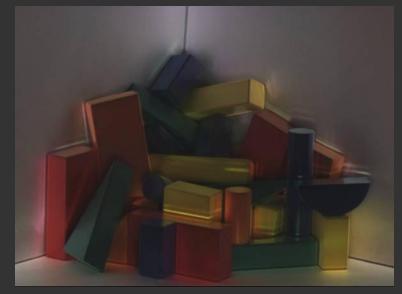
Eggs: Diffuse Interreflections

Direct Global

Wooden Blocks: Specular Interreflections



Direct



Global

Kitchen Sink: Volumetric Scattering

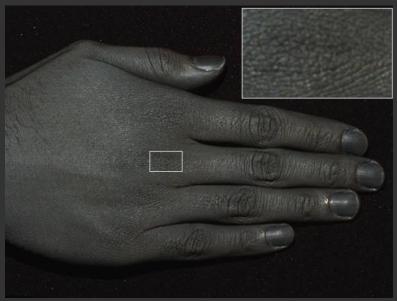
Volumetric Scattering: Chandrasekar 50, Ishimaru 78

Peppers: Subsurface Scattering

Direct Global

Hand

Skin: Hanrahan and Krueger 93, Uchida 96, Haro 01, Jensen et al. 01, Cula and Dana 02, Igarashi et al. 05, Weyrich et al. 05

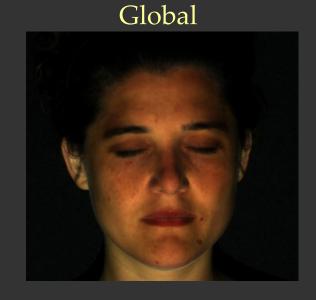


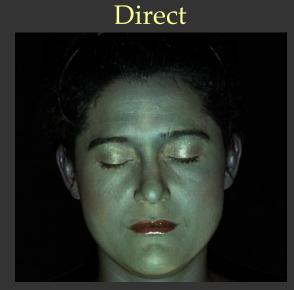
Direct Global

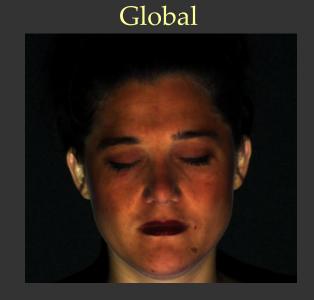
Face: Without and With Makeup

Without Makeup

Direct

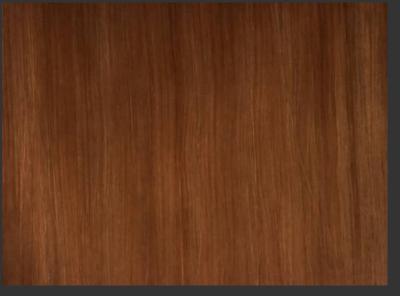




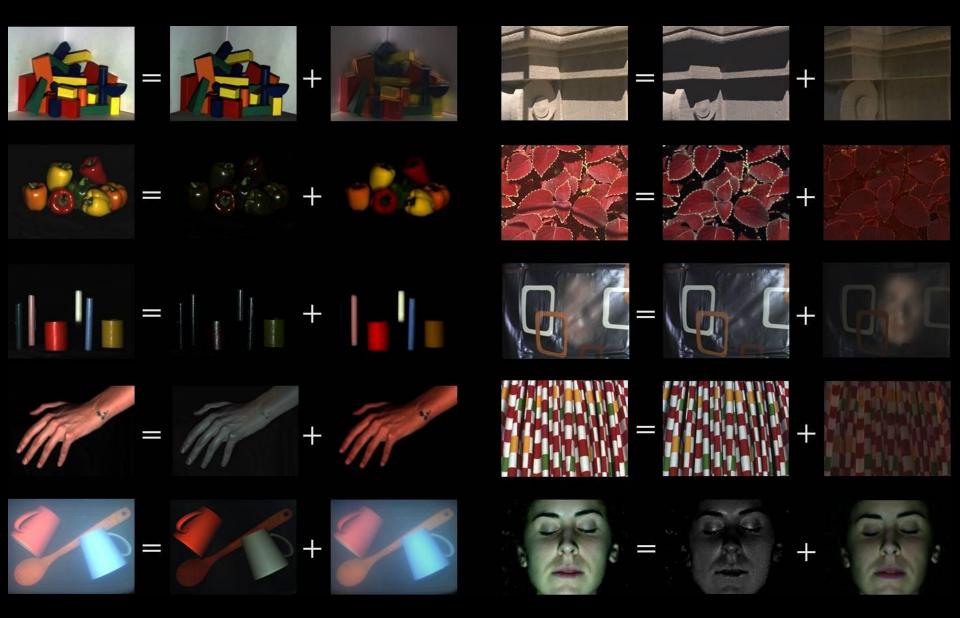


Blonde Hair

Hair Scattering: Stamm et al. 77, Bustard and Smith 91, Lu et al. 00 Marschner et al. 03



Direct Global



www.cs.columbia.edu/CAVE