The Frequency Domain

Somewhere in Cinque Terre, May 2005

| 15-463: Computational Photography
Many slides borrowed Alexei Efros, CMU, Spring 2010

from Steve Seitz



Salvador Dali

“Gala Contemplating the Mediterranean Sea,
which at 30 meters becomes the portrait

of Abraham Lincoln”, 1976










A nice set of basis

Teases away fast vs. slow changes in the image.

This change of basis has a special name...



Jean Baptiste Joseph Fourier (1768-1830)
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A sum of sines

Our building block:
Asin(awX + @)

Add enough of them to get
any signal f(x) you want!

How many degrees of
freedom?

What does each control?

Which one encodes the
coarse vs. fine structure of f(target)=

. T+Ff+Ff ...+41F +...
the signal? 1T 23

N




Fourier Transform

We want to understand the frequency o of our signal. So,
let's reparametrize the signal by @ instead of x:

f(x) — Fourier — F(®)
Transform

For every w from O to inf, F(®) holds the amplitude A
and phase ¢ of the corresponding sine ASIN(@X + @)

« How can F hold both? Complex number trick!
F(o) =R(w)+I1l(w)

2 2 4 (o)

A=+,R()? + | (o) g=tan =~

We can always go back:

F(a)) , Inverse Fourier
Transform




Time and Frequency

example : g(t) = sin(2pf t) + (1/3)sin(2p(3f) t)
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Time and Frequency

example : g(t) = sin(2pf t) + (1/3)sin(2p(3f) t)
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Frequency Spectra

example : g(t) = sin(2pf t) + (1/3)sin(2p(3f) t)
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Frequency Spectra

Usually, frequency is more interesting than the phase




Frequency Spectra
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Frequency Spectra
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Frequency Spectra
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Frequency Spectra
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Frequency Spectra
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Frequency Spectra




Extension to 2D

Discrete Fourier Transform 13

iIn Matlab, check out: imagesc(log(abs(fftshift(fft2(im)))));



Man-made Scene




Can change spectrum, then reconstruct

‘FFT of ARCOSL.TGA VARCOSL.TGA 1 {FFT of ARCOSL.TGA JARCOSL.TGA 1

7“

+FFT of ARCOSL.TGA ARLUSL TGA 1 !E]m +FFT of ARCOSL.TGA

AI'I?‘ 1 q ‘




Low and High Pass filtering
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The Convolution Theorem

The greatest thing since sliced (banana) bread!

 The Fourier transform of the convolution of two
functions is the product of their Fourier transforms

FLg *h]=F[g]F[h]

* The inverse Fourier transform of the product of two
Fourier transforms is the convolution of the two
Inverse Fourier transforms

F-[ghl=F"[g]*F[h]

« Convolution in spatial domain is equivalent to
multiplication in frequency domain!



2D convolution theorem example

[F(Sx.Sy)l

h(x.y) [H(SSy)l

g(x.y) 1G(s,08,)]




Fourier Transform pairs

Spatial domain Frequency domain
f(x) F(s) = / f(z)e 2T 4y
$box(x) 4 sinc(s)
X PP 1L NN
+ gauss(x; o) i+ gauss(s; 1/o)
/T
s R __,r'; h’\_ S
} sinc(s) tbox(x)




Low-pass, Band-pass, High-pass filters
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Edges In Images

1 ALBMP 1 M=] E3




What does blurring take away?

original



What does blurring take away?

smoothed (5x5 Gaussian)



High-Pass filter

smoothed — original



Band-pass filtering

Gaussian Pyramid (low-pass images)




Laplacian Pyramid

Original
Image

How can we reconstruct (collapse) this
pyramid into the original image?



Why Laplacian?

Mol
fabielasiuttey

Gaussian

delta function

Laplacian of Gaussian



Unsharp Masking
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Image gradient

The gradient of an image:
— [9f Of
V= [ax’ ay]

The gradient points in the direction of most rapid change in intensity

| = T vi=[33
or-oy IR

The gradient direction is given by:
f =tan—?! (af/

* how does this relate to the dlrectlon of the edge?

The edge strength is given by the gradient magnitude

VAl = GD% + (33




Effects of noise

Consider a single row or column of the image
* Plotting intensity as a function of position gives a signal

.................................................

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

How to compute a derivative?

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge?



Solution: smooth first

Sigma = 50

-
Signal

-~
Kernel

=

hx f

Convolution

Ge(h* f)

Differentiation

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge? Look for peaks in 2=(h x f)



Derivative theorem of convolution

Signal

Kernel

D (hxf)=(Lh)*f
This saves us one operation:;

Sigma = 50

.................................................
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Convolution
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Laplacian of Gaussian

2
Consider 5oz (7 % f)

(25h) * f

Convolution

] ] ]
0 200 400 600

Sigma = 50

] ] ] ] ] ]
800 1000 1200 1400 1600 1800 2000

------------------------- Laplacian of Gaussian ;
. operator . .

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge? Zero-crossings of bottom graph



2D edge detection filters

Laplacian of Gaussian
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Gaussian derivative of Gaussian
ho(u, v) = _UQ2+§U2 0 ho(u,v)
= — (o) —_— u, v
oAt v 271'026 ox

VZ is the Laplacian operator:

52 52
V2 =55+ 5t




Try this in MATLAB

g = fspecial('gaussian',15,2);
imagesc(g); colormap (gray):;

surfl (qg)

gclown = convZ(clown,qg, 'same');
imagesc (convZ (clown, [-1 1], 'same'));
imagesc (convZ (gclown, [-1 1], 'same'));
dx = conv2 (g, [-1 1], 'same');
imagesc(convZ(clown,dx,'same'));

lg = fspecial('log',15,2);

lclown = conv2(clown,lg, "'same');
imagesc (lclown)

imagesc (clown + .2*1lclown)



Campbell-Robson contrast sensitivity curve
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Depends on Color




Lossy Image Compression (JPEG)
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Block-based Discrete Cosine Transform (DCT)



Jsing DCT In JPEG

ne first coefficient B(0,0) is the DC component,
the average intensity

The top-left coeffs represent low frequencies,
the bottom right — high frequencies

i




Image compression using DCT

DCT enables image compression by
concentrating most image information in the
low frequencies

Loose unimportant image info (high
frequencies) by cutting B(u,v) at bottom right

The decoder computes the inverse DCT — IDCT

*Quantization Table

5 7 9 11 13 15 17
/7 9 11 13 15 17 19
/7 9 11 13 15 17 19 21
9 11 13 15 17 19 21 23
11 13 15 17 19 21 23 25
13 15 17 19 21 23 25 27
15 17 19 21 23 25 27 29
17 19 21 23 25 27 29 31

(62 BN ]



Block size in JPEG

Block size

« small block
— faster
— correlation exists between neighboring pixels

« large block
— better compression in smooth regions

* |t's 8x8 in standard JPEG



JPEG compression comparison




Morphological Operation

What if your images are binary masks?

Binary image processing is a well-studied field,
based on set theory, called Mathematical
Morphology



Preliminaries

AUB

(A)

AMNB

aibie
de

FIGURE 9.1

(a) Two sets A
and B. (b) The
union of A and B.
(¢) The
intersection of A
and B. (d) The
complement of A.
(e) The difference
between A and B.



Preliminaries

TABLE 9.1
The three basic
logical operations.

p q pANDgalsop-q) pORgalsop +¢q  NOT(p) (also p)
{ 0 0 0 ]
0 I 0 | ]
| 0 0 | 0
| ] | | 0




Preliminaries

NOT

AND

OR

XOR

NOT-
AND

FIGURE 9.3 Some
logic aperations
between binary
images. Black
represents binary
Is and white
binary 0s in this
example.



Basic Concepts In Set Theory

Aisasetid’ |, a=(a.,a:) an element of A, acA

If not, then ag¢A

. null (empty) set

Typical set specification: C={w|w=-d, for d € D}

A subset of B: AcB

Union of A and B: C=AuB

Intersection of A and B: D=ANB

Disjoint sets: AnB= <

Complement of A: A°={w|we A4}

Difference of A and B: A-B={w|w € A, w ¢ B}= 4N B*



Preliminaries

% ab

| FIGURE 9.2
L (a) Translation of
o Abvz,

. (b) Reflection of

B B.The sets A and
B are from

(A), Fig. 9.1.

B={w|w=-b, for be B}
(A), ={c|c=a+z, for ac A}



Dilation and Erosion —

Two basic operations: o[1o

* Ais the image, B is the “structural element”, a mask akin to a kernel
in convolution

ADB={z|(B), " A= ¢}
A®B={z|[(B), " Alc A}

Dilation :

(all shifts of B that have a non-empty overlap with A)

AGB ={z|(B), c A}
Erosion :

(all shifts of B that are fully contained within A)



Dilation

abc
d e

FIGURE 9.4

(a) Set A.

(b) Square
structuring
element (dot is
the center).

(c) Dilation of A
by B.shown
shaded.

(d) Elongated
structuring
element.

(e) Dilation of A
using this
element.

a
d /4 i |
o |dHd E i
B=B | |
A
1 d I
d I."IS dl."ls
d ."II4
o |d i :
B=8
I d |
d/8 dfs

d I."I2

dp
A®B



Dilation

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"
as 1900 rather than the 3@

el

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"
as 1900 rather than tha

2000,

0
b
FIGURE 9.5
(a) Sample text of
poor resolution
with broken
characters
(nmﬂn[fiu,d view).
(b) Structuring
element.
(c) Dilation of (a)
by (b). Broken
segments were
joined.



Erosion
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FIGURE 9.6 (a) Set A. (b) Square structuring element. (¢) Erosion of A by B, shown
shaded. (d) Elongated structuring element. (¢) Erosion of A using this element.



Erosion

Original image Eroded image



Erosion

THE
TEST

IMAGE

Eroded once Eroded twice



Opening and Closing

Opening : smoothes the contour of an object, breaks narrow
Isthmuses, and eliminates thin protrusions

A-B = (AGB)® B

Closing : smooth sections of contours but, as opposed to opning, it
generally fuses narrow breaks and long thin gulfs, eliminates
small holes, and fills gaps in the contour

AeB = (AP B)OB

Prove to yourself that they are not the same thing. Play around
with bwmorph in Matlab.



Opening and Closing

OPENING: The
original image
eroded twice and
dilated twice
(opened). Most
noise is removed

L

CLOSING: The
original image
dilated and then
eroded. Most
holes are filled.
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Opening and Closing

a
b ¢ L]
de 1] o
I

h i

FIGURE 9.10
Morphological
opening and
closing. The
structuring
element is the
small circle shown
in various
positions in (b).
The dark dot is
the center of the
structuring
element.
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“““““““ A-B=(ABB)SB



Boundary Extraction

p(A) = A-(AGB)

ab —Origin
cd

FIGURE 9.13 (a) Set

A.(b) Structuring y B

element B. (c) A
eroded by B.

(d) Boundary. given
by the set
difference between
A and its erosion.




Boundary Extraction

ab

FIGURE 9.14

(a) A simple
binary image, with
I's represented in
white. (b) Result
of using

Eq. (9.5-1) with
the structuring
element in

Fig. 9.13(b).



Project #2: Miniatures!




Project #2: Fake Miniatures!




