The Frequency Domain

Somewhere in Cinque Terre, May 2005

Many slides borrowed from Steve Seitz

15-463: Computational Photography Alexei Efros, CMU, Spring 2010

Salvador Dali
"Gala Contemplating the Mediterranean Sea, which at 30 meters becomes the portrait of Abraham Lincoln", 1976

A nice set of basis

Teases away fast vs. slow changes in the image.

This change of basis has a special name...

Jean Baptiste Joseph Fourier (1768-1830)

had crazy idea (1807):
Any periodic function
can be rewritten as a weighted sum of sines and cosines of different frequencies.

Don't believe it?

- Neither did Lagrange, Laplace, Poisson and other big wigs
- Not translated into English until 1878!

But it's true!

- called Fourier Series

A sum of sines

Our building block:

$$
A \sin (\omega x+\phi)
$$

Add enough of them to get any signal $f(x)$ you want!

How many degrees of freedom?

What does each control?

Which one encodes the coarse vs. fine structure of the signal?

Fourier Transform

We want to understand the frequency ω of our signal. So, let's reparametrize the signal by ω instead of x :

$$
f(x) \longrightarrow \quad \begin{gathered}
\text { Fourier } \\
\text { Transform }
\end{gathered} \rightarrow \quad F(\omega)
$$

For every ω from 0 to $\inf , \boldsymbol{F}(\omega)$ holds the amplitude A and phase ϕ of the corresponding sine $A \sin (\omega x+\phi)$

- How can F hold both? Complex number trick!

$$
\begin{gathered}
F(\omega)=R(\omega)+i I(\omega) \\
A= \pm \sqrt{R(\omega)^{2}+I(\omega)^{2}} \quad \phi=\tan ^{-1} \frac{I(\omega)}{R(\omega)}
\end{gathered}
$$

We can always go back:

$$
\left.F(\omega) \longrightarrow \boldsymbol{c} \longrightarrow \boldsymbol{\text { Inverse Fourier }} \begin{array}{c}
\text { Transform }
\end{array} \quad \longrightarrow \boldsymbol{x}\right)
$$

Time and Frequency

example : $g(t)=\sin (2 p f t)+(1 / 3) \sin (2 p(3 f) t)$

Time and Frequency

example: $g(t)=\sin (2 p f t)+(1 / 3) \sin (2 p(3 f) t)$

Frequency Spectra

example : $g(t)=\sin (2 p f t)+(1 / 3) \sin (2 p(3 f) t)$

Frequency Spectra

Usually, frequency is more interesting than the phase

Frequency Spectra

Frequency Spectra

Frequency Spectra

Frequency Spectra

Frequency Spectra

Frequency Spectra

Frequency Spectra

Extension to 2D

in Matlab, check out: imagesc(log(abs(fftshift(fft2(im)))));

Man-made Scene

Can change spectrum, then reconstruct

Low and High Pass filtering

The Convolution Theorem

The greatest thing since sliced (banana) bread!

- The Fourier transform of the convolution of two functions is the product of their Fourier transforms

$$
\mathrm{F}[g * h]=\mathrm{F}[g] \mathrm{F}[h]
$$

- The inverse Fourier transform of the product of two Fourier transforms is the convolution of the two inverse Fourier transforms

$$
\mathrm{F}^{-1}[g h]=\mathrm{F}^{-1}[g] * \mathrm{~F}^{-1}[h]
$$

- Convolution in spatial domain is equivalent to multiplication in frequency domain!

2D convolution theorem example

Fourier Transform pairs

Spatial domain

Frequency domain

Low-pass, Band-pass, High-pass filters

low-pass:

High-pass / band-pass:

Edges in images

What does blurring take away?

original

What does blurring take away?

smoothed (5×5 Gaussian)

High-Pass filter

smoothed - original

Band-pass filtering

Gaussian Pyramid (low-pass images)

Laplacian Pyramid

How can we reconstruct (collapse) this pyramid into the original image?

Why Laplacian?

Image gradient

The gradient of an image:

$$
\nabla f=\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]
$$

The gradient points in the direction of most rapid change in intensity

The gradient direction is given by:

$$
\theta=\tan ^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)
$$

- how does this relate to the direction of the edge?

The edge strength is given by the gradient magnitude

$$
\|\nabla f\|=\sqrt{\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}}
$$

Effects of noise

Consider a single row or column of the image

- Plotting intensity as a function of position gives a signal

Where is the edge?

Solution: smooth first

Where is the edge? Look for peaks in $\frac{\partial}{\partial x}(h \star f)$

Derivative theorem of convolution

$$
\frac{\partial}{\partial x}(h \star f)=\left(\frac{\partial}{\partial x} h\right) \star f
$$

This saves us one operation:

$\frac{\partial}{\partial x} h$

$$
\left(\frac{\partial}{\partial x} h\right) \star f
$$

Laplacian of Gaussian

Consider $\frac{\partial^{2}}{\partial x^{2}}(h \star f)$
Sigma $=50$
f

$\frac{\partial^{2}}{\partial x^{2}} h$

$\left(\frac{\partial^{2}}{\partial x^{2}} h\right) \star f$

Where is the edge?
Zero-crossings of bottom graph

2D edge detection filters

Gaussian
$h_{\sigma}(u, v)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{u^{2}+v^{2}}{2 \sigma^{2}}}$

derivative of Gaussian

$$
\frac{\partial}{\partial x} h_{\sigma}(u, v)
$$

∇^{2} is the Laplacian operator:

$$
\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}
$$

Try this in MATLAB

g = fspecial('gaussian',15,2);
imagesc(g); colormap(gray);
surfl(g)
gclown $=$ conv2(clown,g,'same');
imagesc (conv2 (clown, [-1 1],'same'));
imagesc (conv2(gclown, [-1 1],'same'));
dx = conv2(g, [-1 1],'same');
imagesc (conv2 (clown, dx,'same'));
lg = fspecial('log',15,2);
lclown $=$ conv2(clown,lg,'same');
imagesc(lclown)
imagesc(clown + .2*lclown)

Campbell-Robson contrast sensitivity curve

Depends on Color

R
G
B

Lossy Image Compression (JPEG)

Block-based Discrete Cosine Transform (DCT)

Using DCT in JPEG

The first coefficient $\mathrm{B}(0,0)$ is the DC component, the average intensity
The top-left coeffs represent low frequencies, the bottom right - high frequencies

Image compression using DCT

DCT enables image compression by concentrating most image information in the low frequencies
Loose unimportant image info (high frequencies) by cutting $\mathrm{B}(u, v)$ at bottom right
The decoder computes the inverse DCT - IDCT
-Quantization Table

3	5	7	9	11	13	15	17
5	7	9	11	13	15	17	19
7	9	11	13	15	17	19	21
9	11	13	15	17	19	21	23
11	13	15	17	19	21	23	25
13	15	17	19	21	23	25	27
15	17	19	21	23	25	27	29
17	19	21	23	25	27	29	31

Block size in JPEG

Block size

- small block
- faster
- correlation exists between neighboring pixels
- large block
- better compression in smooth regions
- It's 8×8 in standard JPEG

JPEG compression comparison

89k

12k

Morphological Operation

What if your images are binary masks?

Binary image processing is a well-studied field, based on set theory, called Mathematical Morphology

Preliminaries

a b c

FIGURE 9.1
(a) Two sets A and B. (b) The union of A and B. (c) The intersection of A and B. (d) The complement of A. (e) The difference between A and B.

Preliminaries

TABLE 9.1
The three basic logical operations.

p	q	p AND q (also $p \cdot q$)	p OR q (also $p+q$)	NOT (p) (also $\bar{p})$
0	0	0	0	1
0	1	0	1	1
1	0	0	1	0
1	1	1	1	0

Preliminaries

FIGURE 9.3 Some
logic operations
between binary images. Black represents binary 1s and white binary 0s in this example.

Basic Concepts in Set Theory

A is a set $i \mathbb{Z}^{2} \quad, a=\left(a_{1}, a_{2}\right)$ an element of $A, a \in A$ If not, then $a \notin A$
\varnothing : null (empty) set
Typical set specification: $C=\{w \mid w=-d$, for $d \in D\}$
A subset of B : $A \subseteq B$
Union of A and $B: C=A \cup B$
Intersection of A and $B: D=A \cap B$
Disjoint sets: $A \cap B=\varnothing$
Complement of $\mathrm{A}: \quad A^{c}=\{w \mid w \notin A\}$
Difference of A and $\mathrm{B}: \mathrm{A}-\mathrm{B}=\{\mathrm{w} \mid \mathrm{w} \in \mathrm{A}, \mathrm{w} \notin \mathrm{B}\}=A \cap B^{c}$

Preliminaries

a b

FIGURE 9.2
(a) Translation of A by z.
(b) Reflection of B. The sets A and B are from
Fig. 9.1.

$$
\begin{aligned}
& \hat{B}=\{w \mid w=-b, \text { for } b \in B\} \\
& (A)_{z}=\{c \mid c=a+z, \text { for } a \in A\}
\end{aligned}
$$

Dilation and Erosion

Two basic operations:

- A is the image, B is the "structural element", a mask akin to a kernel in convolution

Dilation :

$$
\begin{aligned}
& A \oplus B=\left\{z \mid(\widehat{B})_{z} \cap A \neq \phi\right\} \\
& A \oplus B=\left\{z \mid\left[(\widehat{B})_{z} \cap A\right] \subseteq A\right\}
\end{aligned}
$$

(all shifts of B that have a non-empty overlap with A)

$$
A \Theta B=\left\{z \mid(B)_{z} \subseteq A\right\}
$$

Erosion :

(all shifts of B that are fully contained within A)

Dilation

$\begin{array}{lll}\text { a b c } \\ \text { d } & \text { e }\end{array}$

FIGURE 9.4
(a) $\operatorname{Set} A$.
(b) Square structuring element (dot is the center).
(c) Dilation of A by B, shown shaded.
(d) Elongated
structuring
element.
(e) Dilation of A using this element.

Dilation

0	1	0
1	1	1
0	1	0

a c

FIGURE 9.5

(a) Sample text of poor resolution with broken characters (magnified view). (b) Structuring element. (c) Dilation of (a) by (b). Broken segments were joined.

Erosion

FIGURE 9.6 (a) Set A. (b) Square structuring element. (c) Erosion of A by B, shown shaded. (d) Elongated structuring element. (e) Erosion of \boldsymbol{A} using this element.

Erosion

Original image

Eroded image

Erosion

Eroded once

Eroded twice

Opening and Closing

Opening : smoothes the contour of an object, breaks narrow isthmuses, and eliminates thin protrusions

$$
A \circ B=(A \Theta B) \oplus B
$$

Closing : smooth sections of contours but, as opposed to opning, it generally fuses narrow breaks and long thin gulfs, eliminates small holes, and fills gaps in the contour

$$
A \bullet B=(A \oplus B) \Theta B
$$

Prove to yourself that they are not the same thing. Play around with bwmorph in Matlab.

Opening and Closing

THE

TEST

 IMAGEOPENING: The original image eroded twice and dilated twice (opened). Most noise is removed

THE TEST
IMAGE

CLOSING: The original image dilated and then eroded. Most holes are filled.

Opening and Closing

FIGURE 9.10
Morphological opening and closing. The structuring element is the small circle shown in various positions in (b).
The dark dot is the center of the structuring element.

Boundary Extraction

$$
\beta(A)=A-(A \Theta B)
$$

a b

FIGURE 9.13 (a) Set A. (b) Structuring element B. (c) A eroded by B.
(d) Boundary, given by the set difference between A and its erosion.

Boundary Extraction

a b

FIGURE 9.14
(a) A simple
binary image, with
1's represented in white. (b) Result
of using
Eq. (9.5-1) with
the structuring
element in
Fig. 9.13(b).

Project \#2: Miniatures!

Project \#2: Fake Miniatures!

