Image Warping and Morphing
Women in Art video

http://youtube.com/watch?v=nUDloN-Hxs
Image Warping in Biology

D'Arcy Thompson

http://www-groups.dcs.st-and.ac.uk/~history/Miscellaneous/darcy.html

Importance of shape and structure in evolution

Fig. 517. *Argyropelecus Olfersi.*

Fig. 518. *Sternopyx diaphana.*

Skulls of a human, a chimpanzee and a baboon and transformations between them

Slide by Durand and Freeman
Recovering Transformations

What if we know \(f \) and \(g \) and want to recover the transform \(T \)?

- e.g. better align images from Project 1
- willing to let user provide correspondences
 - How many do we need?
Translation: # correspondences?

How many correspondences needed for translation?
How many Degrees of Freedom?
What is the transformation matrix?

\[
M = \begin{bmatrix}
1 & 0 & p'_x - p_x \\
0 & 1 & p'_y - p_y \\
0 & 0 & 1
\end{bmatrix}
\]
Euclidian: # correspondences?

How many correspondences needed for translation+rotation? How many DOF?
Affine: # correspondences?

How many correspondences needed for affine?
How many DOF?
Projective: # correspondences?

How many correspondences needed for projective?
How many DOF?
Example: warping triangles

Given two triangles: ABC and A’B’C’ in 2D (12 numbers)
Need to find transform T to transfer all pixels from one to the other.

What kind of transformation is T?

How can we compute the transformation matrix:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Two ways: Algebraic and geometric
warping triangles (Barycentric Coordinates)

$(0,0) \quad (1,0) \quad (0,1)$

Inverse change of basis

T_1^{-1}

Change of basis

T_2

Source

A

B

C

Destination

A'

B'

C'

Don’t forget to move the origin too!

Very useful for Project 3… (hint,hint,nudge,nudge)
Given a coordinate transform \((x',y') = T(x,y)\) and a source image \(f(x,y)\), how do we compute a transformed image \(g(x',y') = f(T(x,y))\)?
Forward warping

Send each pixel $f(x,y)$ to its corresponding location $(x',y') = T(x,y)$ in the second image.

Q: what if pixel lands “between” two pixels?
Forward warping

Send each pixel \(f(x,y) \) to its corresponding location \((x',y') = T(x,y)\) in the second image.

Q: what if pixel lands “between” two pixels?

A: distribute color among neighboring pixels \((x',y')\)

- Known as “splatting”
- Check out \texttt{griddata} in Matlab
Inverse warping

Get each pixel $g(x',y')$ from its corresponding location $(x,y) = T^{-1}(x',y')$ in the first image.

Q: what if pixel comes from “between” two pixels?
Inverse warping

Get each pixel $g(x',y')$ from its corresponding location $(x,y) = T^{-1}(x',y')$ in the first image.

Q: what if pixel comes from “between” two pixels?

A: Interpolate color value from neighbors
 - nearest neighbor, bilinear, Gaussian, bicubic
 - Check out \texttt{interp2} in Matlab
Forward vs. inverse warping

Q: which is better?

A: usually inverse—eliminates holes
 • however, it requires an invertible warp function—not always possible...
Morphing = Object Averaging

The aim is to find “an average” between two objects

• Not an average of two images of objects…
• …but an image of the average object!
• How can we make a smooth transition in time?
 – Do a “weighted average” over time t

How do we know what the average object looks like?

• We haven’t a clue!
• But we can often fake something reasonable
 – Usually required user/artist input
Averaging Points

What’s the average of P and Q?

Linear Interpolation (Affine Combination): New point $aP + bQ$, defined only when $a+b = 1$
So $aP+bQ = aP+(1-a)Q$

P and Q can be anything:
- points on a plane (2D) or in space (3D)
- Colors in RGB or HSV (3D)
- Whole images (m-by-n D)… etc.
Idea #1: Cross-Dissolve

Interpolate whole images:
\[\text{Image}_{\text{halfway}} = (1-t)\text{Image}_1 + t\text{image}_2 \]
This is called **cross-dissolve** in film industry

But what is the images are not aligned?
Idea #2: Align, then cross-dissolve

Align first, then cross-dissolve
- Alignment using global warp – picture still valid
Dog Averaging

What to do?

- Cross-dissolve doesn’t work

- Global alignment doesn’t work
 - Cannot be done with a global transformation (e.g. affine)

- Any ideas?

Feature matching!

- Nose to nose, tail to tail, etc.

- This is a local (non-parametric) warp
Idea #3: Local warp, then cross-dissolve

Morphing procedure:

for every t,

1. **Find the average shape (the “mean dog”)**
 - local warping

2. **Find the average color**
 - Cross-dissolve the warped images
Local (non-parametric) Image Warping

Need to specify a more detailed warp function

- Global warps were functions of a few (2,4,8) parameters
- Non-parametric warps $u(x, y)$ and $v(x, y)$ can be defined independently for every single location x, y!
- Once we know vector field u, v we can easily warp each pixel (use backward warping with interpolation)
Image Warping – non-parametric

Move control points to specify a spline warp
Splines produce a smooth vector field
Warp specification - dense

How can we specify the warp?

Specify corresponding \textit{spline control points}

- \textit{interpolate} to a complete warping function

But we want to specify only a few points, not a grid
Warp specification - sparse

How can we specify the warp?

Specify corresponding *points*

- *interpolate* to a complete warping function
- How do we do it?

How do we go from feature points to pixels?
1. Input correspondences at key feature points
2. Define a triangular mesh over the points
 - Same mesh in both images!
 - Now we have triangle-to-triangle correspondences
3. Warp each triangle separately from source to destination
 - How do we warp a triangle?
 - 3 points = affine warp!
 - Just like texture mapping
Triangulations

A *triangulation* of set of points in the plane is a *partition* of the convex hull to triangles whose vertices are the points, and do not contain other points.

There are an exponential number of triangulations of a point set.
An $O(n^3)$ Triangulation Algorithm

Repeat until impossible:

- Select two sites.
- If the edge connecting them does not intersect previous edges, keep it.
“Quality” Triangulations

Let $\alpha(T) = (\alpha_1, \alpha_2, \ldots, \alpha_{3t})$ be the vector of angles in the triangulation T in increasing order.

A triangulation T_1 will be “better” than T_2 if $\alpha(T_1) > \alpha(T_2)$ lexicographically.

The Delaunay triangulation is the “best”

- Maximizes smallest angles

![Diagram showing good and bad triangulations](image-url)
Improving a Triangulation

In any convex quadrangle, an *edge flip* is possible. If this flip *improves* the triangulation locally, it also improves the global triangulation.

If an edge flip improves the triangulation, the first edge is called *illegal*.
Illegal Edges

Lemma: An edge pq is illegal iff one of its opposite vertices is inside the circle defined by the other three vertices.

Proof: By Thales’ theorem.

Theorem: A Delaunay triangulation does not contain illegal edges.

Corollary: A triangle is Delaunay iff the circle through its vertices is empty of other sites.

Corollary: The Delaunay triangulation is not unique if more than three sites are co-circular.
Naïve Delaunay Algorithm

Start with an arbitrary triangulation. Flip any illegal edge until no more exist.
Could take a long time to terminate.
Delaunay Triangulation by Duality

General position assumption: There are no four co-circular points.

Draw the dual to the Voronoi diagram by connecting each two neighboring sites in the Voronoi diagram.

Corollary: The DT may be constructed in $O(n \log n)$ time.

This is what Matlab’s `delaunay` function uses.
Image Morphing

We know how to warp one image into the other, but how do we create a morphing sequence?

1. Create an intermediate shape (by interpolation)
2. Warp both images towards it
3. Cross-dissolve the colors in the newly warped images
Warp interpolation

How do we create an intermediate warp at time t?

- Assume $t = [0,1]$
- Simple linear interpolation of each feature pair
- $(1-t)p_1 + tp_0$ for corresponding features p_0 and p_1
Morphing & matting

Extract foreground first to avoid artifacts in the background

Slide by Durand and Freeman
Other Issues

Beware of folding
 • You are probably trying to do something 3D-ish

Morphing can be generalized into 3D
 • If you have 3D data, that is!

Extrapolation can sometimes produce interesting effects
 • Caricatures
Dynamic Scene
Project #3

- Given two photos, produce a 60-frame morph animation
 - Use triangulation-based morphing (lots of helpful Matlab tools)
 - Need to write triangle-to-triangle warp (can’t use Matlab tools)
- We put all animations together into a movie!

See last year’s movie!