## Image Blending and Compositing



© NASA

15-463: Computational Photography Alexei Efros, CMU, Fall 2010

# Image Compositing









# **Compositing Procedure**

#### 1. Extract Sprites (e.g using Intelligent Scissors in Photoshop)







2. Blend them into the composite (in the right order)



Composite by David Dewey

## Need blending



### Alpha Blending / Feathering



### Affect of Window Size









### Affect of Window Size









### Good Window Size



"Optimal" Window: smooth but not ghosted

# What is the Optimal Window?

### To avoid seams

• window = size of largest prominent feature

### To avoid ghosting

window <= 2\*size of smallest prominent feature</li>

### Natural to cast this in the Fourier domain

- largest frequency <= 2\*size of smallest frequency</li>
- image frequency content should occupy one "octave" (power of two)



# What if the Frequency Spread is Wide



### Idea (Burt and Adelson)

- Compute  $F_{left} = FFT(I_{left}), F_{right} = FFT(I_{right})$
- Decompose Fourier image into octaves (bands)
  - $F_{\text{left}} = F_{\text{left}}^{1} + F_{\text{left}}^{2} + \dots$
- Feather corresponding octaves F<sub>left</sub><sup>i</sup> with F<sub>right</sub><sup>i</sup>
  - Can compute inverse FFT and feather in spatial domain
- Sum feathered octave images in frequency domain

Better implemented in spatial domain

### Octaves in the Spatial Domain

#### Lowpass Images



Bandpass Images

## **Pyramid Blending**







Left pyramid

blend

#### Right pyramid

# **Pyramid Blending**









# Laplacian Pyramid: Blending

### General Approach:

- 1. Build Laplacian pyramids *LA* and *LB* from images *A* and *B*
- 2. Build a Gaussian pyramid *GR* from selected region *R*
- 3. Form a combined pyramid *LS* from *LA* and *LB* using nodes of *GR* as weights:
  - LS(i,j) = GR(I,j,)\*LA(I,j) + (1-GR(I,j))\*LB(I,j)
- 4. Collapse the LS pyramid to get the final blended image

## **Blending Regions**



### Horror Photo



#### © david dmartin (Boston College)

### Results from this class (fall 2005)



#### © Chris Cameron

## Season Blending (St. Petersburg)



## Season Blending (St. Petersburg)



# Simplification: Two-band Blending

### Brown & Lowe, 2003

- Only use two bands: high freq. and low freq.
- Blends low freq. smoothly
- Blend high freq. with no smoothing: use binary alpha



### 2-band Blending



#### Low frequency ( $\lambda > 2$ pixels)



#### High frequency ( $\lambda$ < 2 pixels)

# **Linear Blending**

# 2-band Blending

P

## Don't blend, CUT!



Moving objects become ghosts

So far we only tried to blend between two images. What about finding an optimal seam?

# Davis, 1998

### Segment the mosaic

- Single source image per segment
- Avoid artifacts along boundries
  - Dijkstra's algorithm



## Minimal error boundary

#### overlapping blocks





#### vertical boundary







overlap error

min. error boundary

### Seam Carving for Content-Aware Image Resizing

Shai Avidan Mitsubishi Electric Research Labs Ariel Shamir The Interdisciplinary Center & MERL



http://www.youtube.com/watch?v=6NcIJXTlugc

# Graphcuts

What if we want similar "cut-where-thingsagree" idea, but for closed regions?

Dynamic programming can't handle loops

### Graph cuts – a more general solution



#### Minimum cost cut can be computed in polynomial time (max-flow/min-cut algorithms)

### Kwatra et al, 2003



#### Actually, for this example, DP will work just as well...

# Lazy Snapping



(a) Girl (4/2/12)

(b) Ballet (4/7/14)

(c) Boy (6/2/13)



(c) Grandpa  $\left(4/2/11\right)$ 







(d) Twins (4/4/12)

#### Interactive segmentation using graphcuts

## **Gradient Domain**

In Pyramid Blending, we decomposed our image into 2<sup>nd</sup> derivatives (Laplacian) and a low-res image

Let us now look at 1<sup>st</sup> derivatives (gradients):

- No need for low-res image
  - captures everything (up to a constant)
- Idea:
  - Differentiate
  - Blend / edit / whatever
  - Reintegrate

### Gradient Domain blending (1D)



## Gradient Domain Blending (2D)



#### Trickier in 2D:

- Take partial derivatives dx and dy (the gradient field)
- Fidle around with them (smooth, blend, feather, etc)
- Reintegrate
  - But now integral(dx) might not equal integral(dy)
- Find the most agreeable solution
  - Equivalent to solving Poisson equation
  - Can be done using least-squares

### Perez et al., 2003



sources

destinations

cloning

seamless cloning



sources/destinations

cloning

seamless cloning
#### Perez et al, 2003





editing

#### source/destination

cloning

seamless cloning

#### Limitations:

- Can't do contrast reversal (gray on black -> gray on white)
- Colored backgrounds "bleed through"
- Images need to be very well aligned

#### Gradients vs. Pixels





#### Can we use this for range compression?

#### Thinking in Gradient Domain

#### **Real-Time Gradient-Domain Painting**

James McCann\* Carnegie Mellon University Nancy S. Pollard<sup>†</sup> Carnegie Mellon University



#### Our very own Jim McCann::

#### James McCann Real-Time Gradient-Domain Painting, SIGGRAPH 2009

#### Gradient Domain as Image Representation

See GradientShop paper as good example:

#### GradientShop: A Gradient-Domain Optimization Framework for Image and Video Filtering

Pravin Bhat<sup>1</sup> C. Lawrence Zitnick<sup>2</sup> Michael Cohen<sup>1,2</sup> Brian Curless<sup>1</sup> <sup>1</sup>University of Washington <sup>2</sup>Microsoft Research

http://www.gradientshop.com/

 Can be used to exert high-level control over images

Can be used to exert high-level control over images
gradients – low level image-features

Can be used to exert high-level control over images
gradients – low level image-features

> pixel gradient +100

Can be used to exert high-level control over images
gradients – low level image-features

• gradients – give rise to high level image-features

pixel gradient +100

Can be used to exert high-level control over images
gradients – low level image-features
gradients – give rise to high level image-features



Can be used to exert high-level control over images
gradients – low level image-features
gradients – give rise to high level image-features



- Can be used to exert high-level control over images
  - gradients low level image-features
  - gradients give rise to high level image-features
  - manipulate local gradients to manipulate global image interpretation



- Can be used to exert high-level control over images
  - gradients low level image-features
  - gradients give rise to high level image-features
  - manipulate local gradients to manipulate global image interpretation



- Can be used to exert high-level control over images
  - gradients low level image-features
  - gradients give rise to high level image-features
  - manipulate local gradients to manipulate global image interpretation



- Can be used to exert high-level control over images
  - gradients low level image-features
  - gradients give rise to high level image-features
  - manipulate local gradients to manipulate global image interpretation



- Can be used to exert high-level control over images
  - gradients low level image-features
  - gradients give rise to high level image-features
  - manipulate local gradients to manipulate global image interpretation



Can be used to exert high-level control over images
gradients – give rise to high level image-features

Can be used to exert high-level control over images
gradients – give rise to high level image-features
Edges

- Can be used to exert high-level control over images
  - gradients give rise to high level image-features
    - Edges
      - object boundaries
      - depth discontinuities
      - shadows

- Can be used to exert high-level control over images
  - gradients give rise to high level image-features
    - Edges
    - Texture

- Can be used to exert high-level control over images
  - gradients give rise to high level image
    - Edges
    - Texture
      - visual richness
      - surface properties

- Can be used to exert high-level control over images
  - gradients give rise to high level image-features
    - Edges
    - Texture
    - Shading

- Can be used to exert high-level control over images
  - gradients give rise to high level image-features
    - Edges
    - Texture
    - Shading
      - lighting



- Can be used to exert high-level control over images
  - gradients give rise to high level image-features
    - Edges
    - Texture
    - Shading
      - lighting
      - shape



- Can be used to exert high-level control over images
  - gradients give rise to high level image-features
    - Edges
    - Texture
    - Shading
      - lighting
      - shape





- Can be used to exert high-level control over images
  - gradients give rise to high level image-features
    - Edges
    - Texture
    - Shading
      - lighting
      - shape



- Can be used to exert high-level control over images
  - gradients give rise to high level image-features
    - Edges
    - Texture
    - Shading
      - lighting
      - shape

- Can be used to exert high-level control over images
  - gradients give rise to high level image-features
    - Edges
    - Texture
    - Shading

- Can be used to exert high-level control over images
  - gradients give rise to high level image-features
    - Edges
    - Texture
    - Shading
    - Artifacts

- Can be used to exert high-level control over images
  - gradients give rise to high level image-features
    - Edges
    - Texture
    - Shading
    - Artifacts
      - noise



noise

- Can be used to exert high-level control over images
  - gradients give rise to high level image-features
    - Edges
    - Texture
    - Shading
    - Artifacts
      - noise
      - seams



seams in composite images

- Can be used to exert high-level control over images
  - gradients give rise to high level image-features
    - Edges
    - Texture
    - Shading
    - Artifacts
      - noise
      - seams
      - compression artifacts

blocking in compressed images

- Can be used to exert high-level control over images
  - gradients give rise to high level image-features
    - Edges
    - Texture
    - Shading
    - Artifacts
      - noise
      - seams
      - compression artifacts



ringing in compressed images

- Can be used to exert high-level control over images
  - gradients give rise to high level image-features
    - Edges
    - Texture
    - Shading
    - Artifacts
      - noise
      - seams
      - compression artifacts
      - flicker



flicker from exposure changes & film degradation

 Can be used to exert high-level control over images

#### GradientShop

• Optimization framework

#### Pravin Bhat et al

#### GradientShop

Optimization framework
Input unfiltered image – u
Optimization framework
Input unfiltered image - u
Output filtered image - f

Optimization framework
Input unfiltered image - u
Output filtered image - f
Specify desired pixel-differences - (g<sup>x</sup>, g<sup>y</sup>)

**Energy function** 

$$\min_{f} \quad (f_x - g^x)^2 + \quad (f_y - g^y)^2$$

Optimization framework
Input unfiltered image - u
Output filtered image - f
Specify desired pixel-differences - (g<sup>x</sup>, g<sup>y</sup>)
Specify desired pixel-values - d

**Energy function** 

$$\min_{f} \quad (f_x - g^x)^2 + (f_y - g^y)^2 + (f - d)^2$$

Optimization framework
Input unfiltered image – u
Output filtered image – f
Specify desired pixel-differences – (g<sup>x</sup>, g<sup>y</sup>)
Specify desired pixel-values – d
Specify constraints weights – (w<sup>x</sup>, w<sup>y</sup>, w<sup>d</sup>)

#### **Energy function**

$$\min_{f} w^{x}(f_{x} - g^{x})^{2} + w^{y}(f_{y} - g^{y})^{2} + w^{d}(f - d)^{2}$$

# $\begin{tabular}{|c|c|c|c|} Inputs \\ \hline & & & \\ \hline & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$





#### Least Squares Example

Say we have a set of data points (X1,X1'), (X2,X2'), (X3,X3'), etc. (e.g. person's height vs. weight) We want a nice compact formula (a line) to predict X's from Xs: Xa + b = X'

We want to find a and b

How many (X,X') pairs do we need?

$$\begin{array}{c} X_{1}a+b=X_{1}^{'}\\ X_{2}a+b=X_{2}^{'} \end{array} \qquad \begin{bmatrix} X_{1} & 1\\ X_{2} & 1 \end{bmatrix} \begin{bmatrix} a\\ b \end{bmatrix} = \begin{bmatrix} X_{1}^{'}\\ X_{2}^{'} \end{bmatrix} \qquad \mathsf{Ax=B}$$

What if the data is noisy?

$$\begin{bmatrix} X_{1} & 1 \\ X_{2} & 1 \\ X_{3} & 1 \\ \dots & \dots \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} X_{1}^{'} \\ X_{2}^{'} \\ X_{3}^{'} \\ \dots \end{bmatrix}$$

overconstrained

$$\min \|Ax - B\|^2$$



#### Putting it all together

#### Compositing images

- Have a clever blending function
  - Feathering
  - Center-weighted
  - blend different frequencies differently
  - Gradient based blending
- Choose the right pixels from each image
  - Dynamic programming optimal seams
  - Graph-cuts

#### Now, let's put it all together:

• Interactive Digital Photomontage, 2004 (video)

#### **Interactive Digital Photomontage**

Aseem Agarwala, Mira Dontcheva Maneesh Agrawala, Steven Drucker, Alex Colburn Brian Curless, David Salesin, Michael Cohen

