Visual Data on the Internet

http://www.boingboing.net/2009/07/30/bbvideo-send-me-a-l.html (starts at 2:40 min)

With slides from James Hays, Antonio Torralba, and Frederic Heger 15-463: Computational Photography Alexei Efros, CMU, Fall 2010

Big issues

- What is out there on the Internet? How do we get it? What can we do with it?
- How do we compute distances between images?

Subject-specific Data

Photos of Coliseum

Portraits of Bill Clinton

Much of Captured World is "generic"

Generic Data

Food plates

pedestrians

faces

street scenes

The Internet as a Data Source

- Social Networking Sites (e.g. Facebook, MySpace)
- Image Search Engines (e.g. Google, Bing)
- Photo Sharing Sites (e.g Flickr, Picasa, Panoramio, photo.net, dpchallenge.com)
- Computer Vision Databases (e.g. CalTech 256, PASCAL VOC, LabelMe, Tiny Images, imagenet.org, ESP game, Squigl, Matchin)

How Big is Flickr?

- As of June 19th, 2009
- Total content:
 - 3.6 billion photographs
 - 100+ million geotagged images
- *Public* content:
 - 1.3 billion photographs
 - 74 million geotagged images

How Annotated is Flickr? (tag search)

- Party 7,355,998
- Paris 4,139,927
- Chair 232,885
- Violin 55,015
- Trashcan 9,818

Trashcan Results

From PoPPaP

From howlinhill

From Jennay Jazz

From Norma Tub

From ianjacobs

From ella novak

From bertboerland

From m1l4dy

From ccharland

From wallyq

From Patrik Moen

From dakota.morri...

From Jimmy...

From PavelsDog

From ilovecoffeey...

From Daquella...

Is Generic Data useful?

A motivating example...

[Hays and Efros. Scene Completion Using Millions of Photographs. SIGGRAPH 2007 and CACM October 2008.]

Diffusion Result

Efros and Leung result

Scene Matching for Image Completion

Scene Completion Result

The Algorithm

Scene Matching

Scene Descriptor

Scene Descriptor

Scene Gist Descriptor (Oliva and Torralba 2001)

Scene Descriptor

Scene Gist Descriptor (Oliva and Torralba 2001)

2 Million Flickr Images

... 200 total

Context Matching

Graph cut + Poisson blending

Result Ranking

We assign each of the 200 results a score which is the sum of:

The scene matching distance

The context matching distance (color + texture)

The graph cut cost

Why does it work?

Nearest neighbors from a collection of 20 thousand images

Nearest neighbors from a collection of 2 million images

"Unreasonable Effectiveness of Data"

- [Halevy, Norvig, Pereira 2009]
- Parts of our world can be explained by elegant mathematics
 - physics, chemistry, astronomy, etc.
- But much cannot
 - psychology, economics, genetics, etc.
- Enter <u>The Data!</u>
 - Great advances in several fields:
 - e.g. speech recognition, machine translation
 - Case study: Google

- A.I. for the postmodern world:
 - all questions have already been answered...many times, in many ways
 - Google is dumb, the "intelligence" is in the data

💥 Google Search: clime stairs - Netscape																
File	Edit Vie	Vie 💥 Google Search: clime punishment - Netscape														
1	- 🎸 -	File	Edit	View	Go	Communic	ator H	elp								
	Back	T	4	1	Ň	 3 	1	-	1	Mu	4	e£.	<u></u>			N
×	🌿 🕻 Boo		Back	Fo	rward	Reloa	H H	ome	Search	Netscape	Print	Security	Shop	Stop		
F uur	🖳 WebN	oM 👔 🛛 🜿 🕻 Bookmarks 🛛 🦺 Location: http://www.google.com/search?hl=en&lr=&ie=ISO-8859-1&q=clime+punishment 💿 🗖 🏹 🕻 What's Relate														
		ě I	🖳 We	ebMail		Calendar	🖳 Ra	idio	🖳 People	🖳 Yellov	v Pages	🖳 Downloa	d 🖳 Cus	stomize		
	G					1		Adv	anced S	<u>Search</u>	Prefe	rences	Langua	age Tools	Search Tips	
		1 (-	0	\cap	σI	2 ¹	clir	ne pu	nishme	ent					
		1		-	~	0	• i		Google	Search						
Web																
S	earche	Web Images Groups Directory News														
Searched the web for clime punishment. Results 1 - 10 of about 4,250. Search took 0.06 s														h took 0.06 sec	ond	
D	id you															
l.		l Di	d v	ou n	nea	n: cr	ime	pu	nishm	ent						and the second
														·····		

How about visual data?

- text is simple:
 - clean, segmented, compact, 1D
- Visual data is much harder:
 - Noisy, unsegmented, high entropy, 2D/3D

Quick Overview

Comparing Images Uses of Visual Data

The Dangers of Data

Distance Metrics

= Grayvalue distance of 50 values

SSD says these are not similar

Tiny Images

 80 million tiny images: a large dataset for nonparametric object and scene recognition Antonio Torralba, Rob Fergus and William T. Freeman. PAMI 2008.

256x256

office

drawers

desk

windows

32x32

wall-space

waiting area

table

plant

reception desk

wndow

dining room

window

chars

light

plant

table

dining room ceiling light picture doors wall center piece door table chair chair floor

c) Segmentation of 32x32 images

Cauche

chairs

Human Scene Recognition

Tiny Images Project Page

http://groups.csail.mit.edu/vision/TinyImages/

Powers of 10

Scenes are unique

But not all scenes are so original

But not all scenes are so original

Lots Of

Images

A. Torralba, R. Fergus, W.T.Freeman. PAMI 2008

Of Images

Lots

Lots Of

Images

79,000,000

790,000

Target

7,900

Automatic Colorization Result

Grayscale input High resolution

Colorization of input using average

Automatic Orientation

- Many images have ambiguous orientation
- Look at top 25% by confidence:

• Examples of high and low confidence images:

Automatic Orientation Examples

A. Torralba, R. Fergus, W.T.Freeman. 2008

Tiny Images Discussion

- Why SSD?
- Can we build a better image descriptor?

Images from Dave Kauchak

global histogram

- Represent distribution of features
 - Color, texture, depth, ...

Joint histogram

- Requires lots of data
- Loss of resolution to avoid empty bins

Marginal histogram

- Requires independent features
- More data/bin than joint histogram

Adaptive binning

- Better data/bin distribution, fewer empty bins
- Can adapt available resolution to relative feature importance

Clusters / Signatures

- "super-adaptive" binning
- Does not require discretization along any fixed axis

Issue: How to Compare Histograms?

Bin-by-bin comparison Sensitive to bin size. Could use wider bins but at a loss of resolution

Cross-bin comparison

How much cross-bin influence is necessary/sufficient?

Red Car Retrievals (Color histograms)

 $\chi^{2}(h_{i},h_{j}) = \frac{1}{2} \sum_{m=1}^{K} \frac{[h_{i}(m) - h_{j}(m)]^{2}}{h_{i}(m) + h_{j}(m)}$

Histogram matching distance

Capturing the "essence" of texture

...for real images

We don t want an actual texture realization, we want a texture invariant

What are the tools for capturing <u>statistical</u> properties of some signal?
Multi-scale filter decomposition

Filter response histograms

Heeger & Bergen '95

Start with a noise image as output Main loop:

- Match pixel histogram of output image to input
- Decompose input and output images using multi-scale filter bank (Steerable Pyramid)
- Match subband histograms of input and output pyramids
- Reconstruct input and output images (collapse the pyramids)

Image Descriptors

- Blur + SSD
- Color / Texture histograms
- Gradients + Histogram (GIST, SIFT, HOG, etc)
- "Bag of Visual Words"

Gist scene descriptor (Oliva and Torralba 2001)

Gist scene descriptor (Oliva and Torralba 2001)

Gist scene descriptor (Oliva and Torralba 2001)

im2gps (Hays & Efros, CVPR 2008)

6 million geo-tagged Flickr images

How much can an image tell about its geographic location?

Paris

Rome

Paris

Paris

Paris

Paris

Poland

Paris

Cuba

Paris

Paris

Madrid

Paris

Paris

Im2gps

Example Scene Matches

Cairo

heidelberg

europe

Macau

Barcelona

Paris

Malta

Austria

Voting Scheme

im2gps

Brazil

Thailand

Hawaii

Houston

Bermuda

Mendoza

USA

Utah

Arizona

Utah

Utah

Utah

Kenya

Utah

Utah

LosAngeles

NewMexico

Mendoza

Utah

California

Oklahoma

SouthAfrica

Kenya

Hyderabad

Zambia

SouthAfrica

Kenya

Kenya

Ethiopia

Nevada

africa

Morocco

Tennessee

Ohio

Philadelphia

NewYorkCity

Boston

Data-driven categories

Elevation gradient = 112 m / km

Elevation gradient magnitude ranking

Figure 2. Global population density map.

Population density ranking

Figure 4. Global land cover classification map.

Barren or sparsely populated

Urban and built up

Snow and Ice

Savannah

Water

Where is This?

[Olga Vesselova, Vangelis Kalogerakis, Aaron Hertzmann, James Hays, Alexei A. Efros. Image Sequence Geolocation. ICCV'09]

Where is This?

Where are These?

15:14, June 18th, 2006 16:31, June 18th, 2006

Where are These?

15:14, June 18th, 2006 16:31, 17:24, June 18th, 2006 June 19th, 2006

Problem Statement

 $\Delta T2$

ΔT1

 $\Delta T3$

 $\Delta T4$

Time-Series Model

Hidden Markov Model

Spatially Varying Human Mobility Model

Derived directly from Flickr photographer movements Locations and timesteps are quantized

2 Beijing

Results

- im2gps 10% (geo-loc within 400 km)
- temporal im2gps 56%

Scene matching with camera transformations

Image representation

Original image

GIST [Oliva and Torralba'01]

Color layout

Scene matching with camera view transformations: Translation

1. Move camera

2. View from the virtual camera

- 4. Locally align images
- 5. Find a seam
- 6. Blend in the gradient domain

3. Find a match to fill the missing pixels

Scene matching with camera view transformations: Camera rotation

1. Rotate camera

4. Stitched rotation

5. Display on a cylinder

2. View from the virtual camera

3. Find a match to fill-in the missing pixels

Scene matching with camera view transformations: Forward motion

1. Move camera

2. View from the virtual camera

3. Find a match to replace pixels

Tour from a single image

Navigate the virtual space using intuitive motion controls

Video

http://www.youtube.com/watch?v=E0rboU10rPo

Using Data for Graphics...

Semantic Photo Synthesis [EG'06]

Johnson, Brostow, Shotton, Arandjelovic, Kwatra, and Cipolla. Eurographics 2006.

Photo Clip Art [SG'07]

Inserting a single object -- still very hard!

Lalonde et al, SIGGRAPH 2007

Photo Clip Art [SG'07]

Use database to find well-fitting object

Lalonde et al, SIGGRAPH 2007

SkyFinder [SG'09]

(a) blue + normal-sky + horizon + R3 (b) cloudy + normal-sky + horizon + R5 (c) sunset + landscape + horizon + sun

(f) blue + object-in-sky + R1

(g) cloudy + full-sky + R5

Tao, Yuan, Sun, SIGGRAPH 2009

Webcam Clip Art [SG Asia'09]

(a) source webcam Object transfer

(b) target webcam

(c) transfer results

illuminant transfer

Lalonde et al, SIGGRAPH Asia 2009

CG2Real

Input

Image Database

Similar images Cosegmentation Local style transfer CG2Real: Improving the Realism of Computer Generated Images using a Large Collection of Photographs, Johnson, Dale, Avidan, Pfister, Freeman, Matusik, Tech. Rep. MIT-CSAIL-TR-2009-034

Image Restoration using Online Photo Collections [ICCV'09]

Dale, Johnson, Sunkavalli, Matusik, Pfister, ICCV'09

The Dangers of Data

Bias

- Internet is a tremendous repository of visual data (Flickr, YouTube, Picassa, etc)
- But it's <u>not</u> random samples of visual world
- Many sources of bias:
 - Sampling bias
 - Photographer bias
 - Social bias

Flickr Paris

Real Paris

Real Notre Dame

Sampling Bias

People like to take pictures on vacation

Photographer Bias

 People want their pictures to be recognizable and/or interesting

VS.

Photographer Bias

People follow photographic conventions

VS.

Social Bias

"100 Special Moments" by Jason Salavon
Social Bias

Source: U.S. Social Security Administration

Mildred and Lisa

Gallagher et al CVPR 2008

Social Bias

Gallagher et al CVPR 2008

Gallagher et al, CVPR 2009

Reducing / Changing Bias

Street side Google StreetView

Satellite google.com

Webcams

- Autonomous capture methods can reduce / change bias
 - But it won't go away completely
- Sometimes you can just pick your data to suit your problem, but not always...