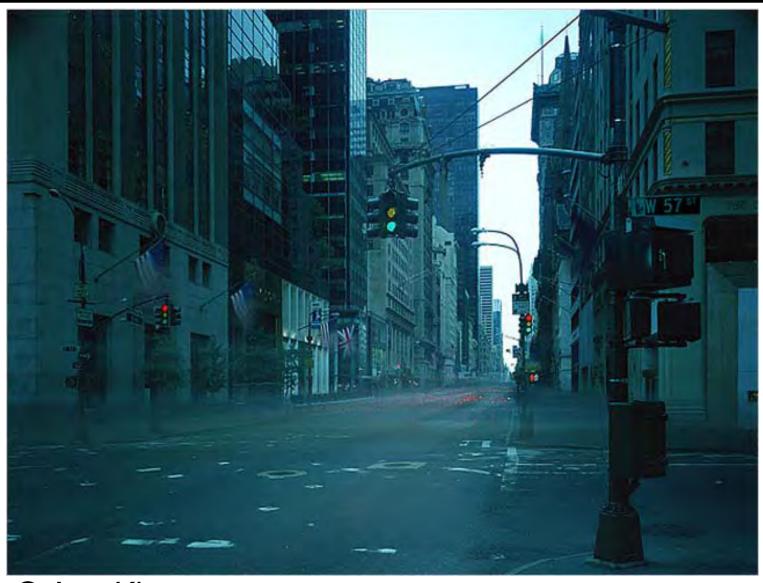
Data-driven Methods: Faces

Portrait of Piotr Gibas © Joaquin Rosales Gomez

15-463: Computational Photography Alexei Efros, CMU, Fall 2008

The Power of Averaging

8-hour exposure



© Atta Kim

Figure-centric averages

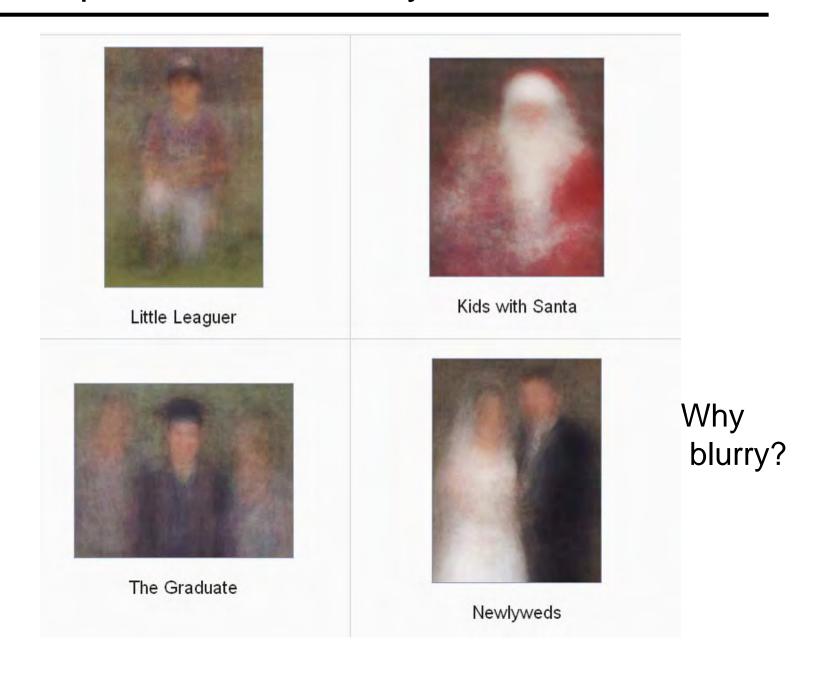
Antonio Torralba & Aude Oliva (2002)

Averages: Hundreds of images containing a person are averaged to reveal regularities in the intensity patterns across all the images.

More by Jason Salavon

More at: http://www.salavon.com/

"100 Special Moments" by Jason Salavon



Computing Means

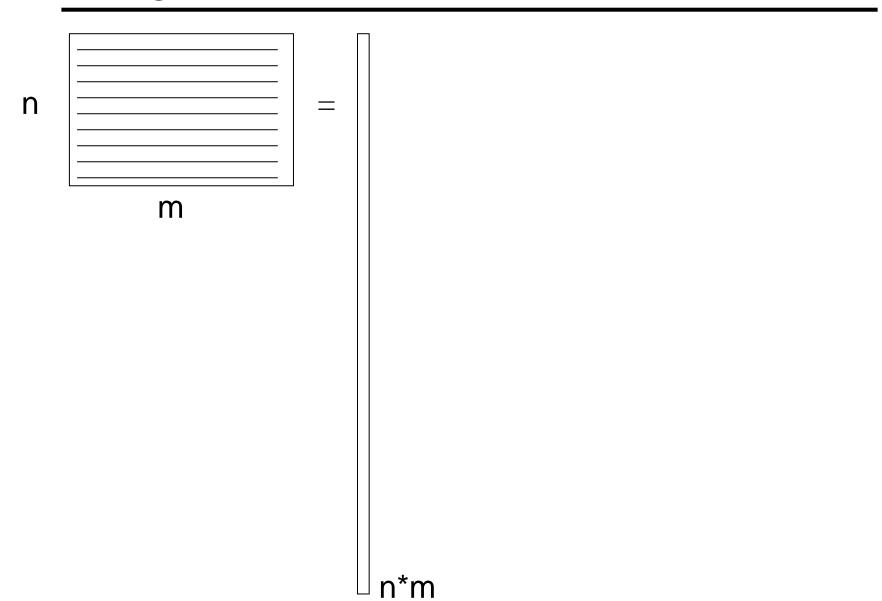
Two Requirements:

- Alignment of objects
- Objects must span a subspace

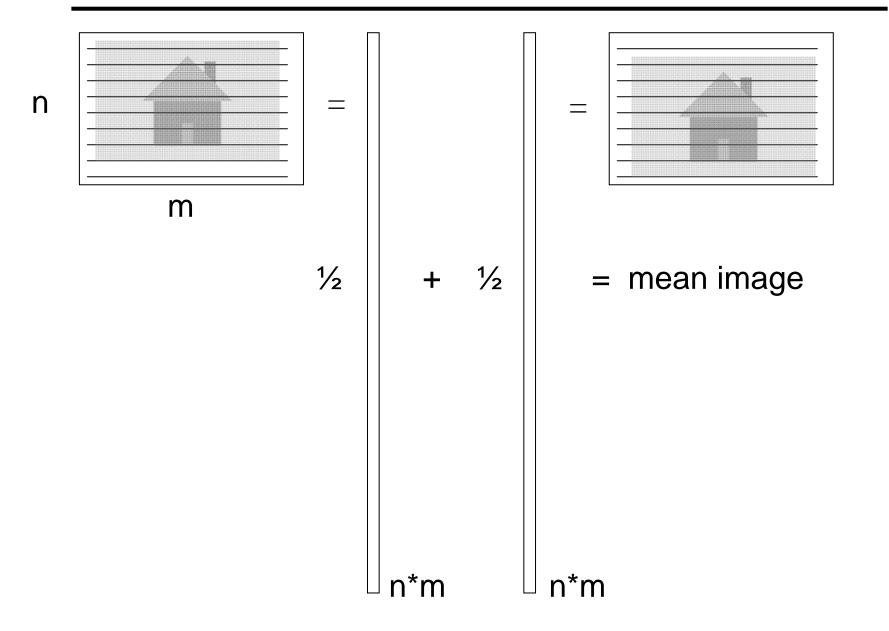
Useful concepts:

- Subpopulation means
- Deviations from the mean

Images as Vectors

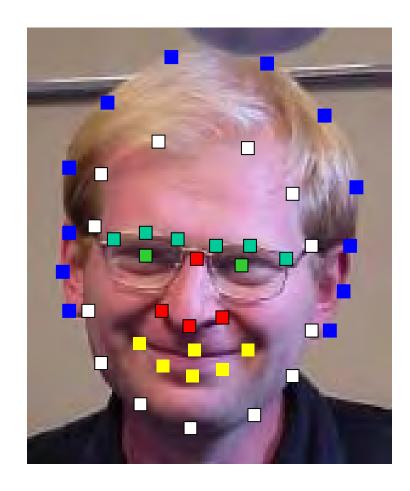


Vector Mean: Importance of Alignment



How to align faces?

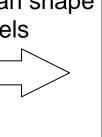
Shape Vector



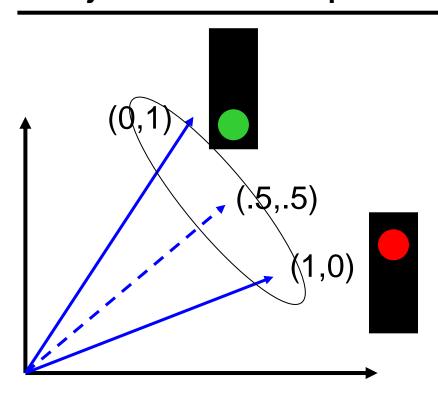
Provides alignment!

Average Face

- 1. Warp to mean shape
- 2. Average pixels



Objects must span a subspace



Example

mean

Does not span a subspace

Subpopulation means

Examples:

- Happy faces
- Young faces
- Asian faces
- Etc.
- Sunny days
- Rainy days
- Etc.
- Etc.

Average female

Average male

Deviations from the mean

Image X Mean X

$$\Delta X = X - \underline{X}$$

Deviations from the mean



Manipulating Facial Appearance through Shape and Color

Duncan A. Rowland and David I. Perrett

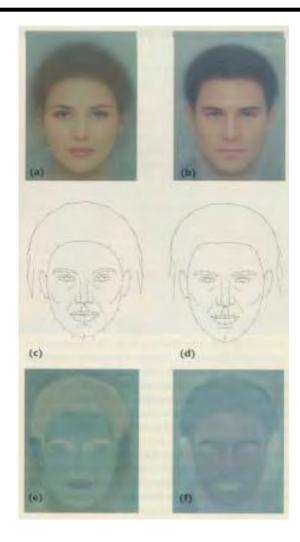
St Andrews University

IEEE CG&A, September 1995

Face Modeling

Compute average faces (color and shape)

Compute deviations
between male and
female (vector and color
differences)



Changing gender

Deform shape and/or color of an input face in the direction of "more female"

original

shape

both

color

Enhancing gender

more same original androgynous more opposite

Changing age

Face becomes "rounder" and "more textured" and "grayer"

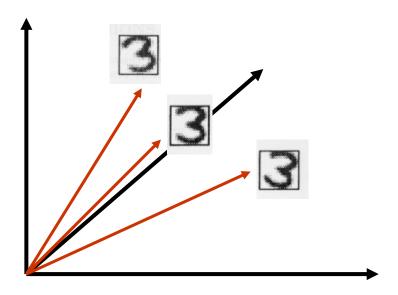
original

color

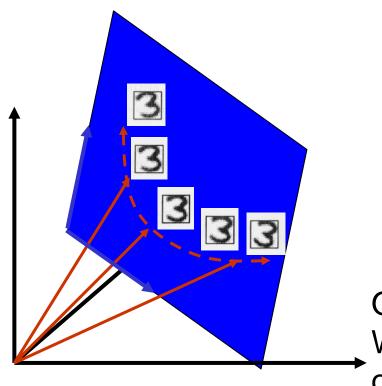
shape

both

Back to the Subspace



Linear Subspace: convex combinations



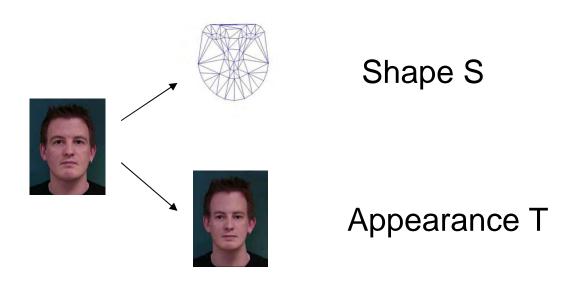
Any new image X can be obtained as weighted sum of stored "basis" images.

$$X = \sum_{i=1}^{m} a_i X_i$$

Our old friend, change of basis! What are the new coordinates of X?

The Morphable Face Model

The actual structure of a face is captured in the shape vector $\mathbf{S} = (x_1, y_1, x_2, ..., y_n)^T$, containing the (x, y) coordinates of the n vertices of a face, and the appearance (texture) vector $\mathbf{T} = (R_1, G_1, B_1, R_2, ..., G_n, B_n)^T$, containing the color values of the mean-warped face image.



The Morphable face model

Again, assuming that we have m such vector pairs in full correspondence, we can form new shapes \mathbf{S}_{model} and new appearances \mathbf{T}_{model} as:

$$\mathbf{S}_{model} = \sum_{i=1}^{m} a_i \mathbf{S}_i \qquad \mathbf{T}_{model} = \sum_{i=1}^{m} b_i \mathbf{T}_i$$

$$s = \alpha_1 \cdot \mathbf{P} + \alpha_2 \cdot \mathbf{P} + \alpha_3 \cdot \mathbf{P} + \alpha_4 \cdot \mathbf{P} + \dots = \mathbf{S} \cdot \mathbf{A}$$

$$t = \beta_1 \cdot \mathbf{P} + \beta_2 \cdot \mathbf{P} + \beta_3 \cdot \mathbf{P} + \beta_4 \cdot \mathbf{P} + \dots = \mathbf{T} \cdot \mathbf{B}$$

If number of basis faces m is large enough to span the face subspace then: Any new face can be represented as a pair of vectors $(\alpha_1, \alpha_2, ..., \alpha_m)^T$ and $(\beta_1, \beta_2, ..., \beta_m)^T$!

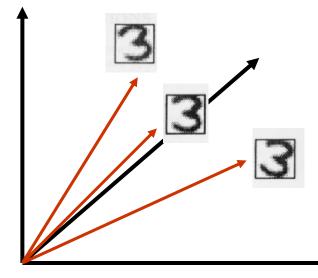
Issues:

- 1. How many basis images is enough?
- 2. Which ones should they be?
- 3. What if some variations are more important than others?
 - E.g. corners of mouth carry much more information than haircut

Need a way to obtain basis images automatically, in

order of importance!

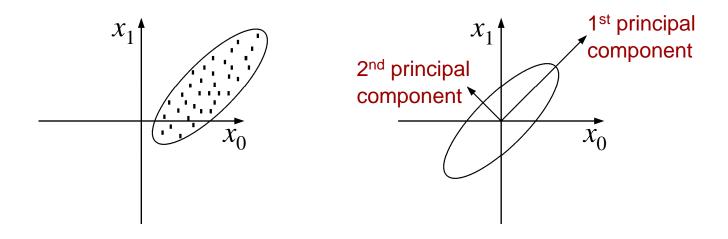
But what's important?



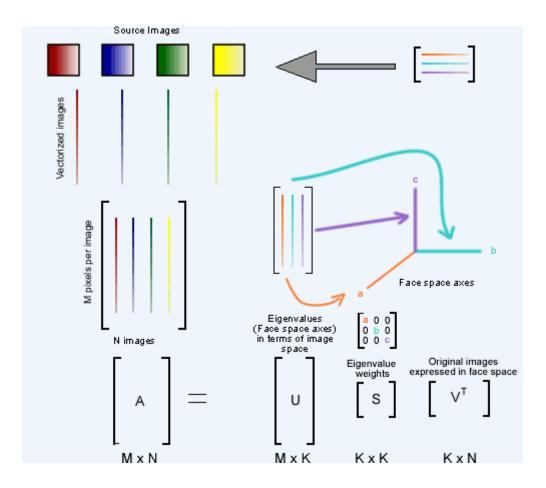
Principal Component Analysis

Given a point set $\{\vec{\mathbf{p}}_j\}_{j=1...P}$, in an M-dim space, PCA finds a basis such that

- coefficients of the point set in that basis are uncorrelated
- first r < M basis vectors provide an approximate basis that minimizes the mean-squared-error (MSE) in the approximation (over all bases with dimension r)



PCA via Singular Value Decomposition



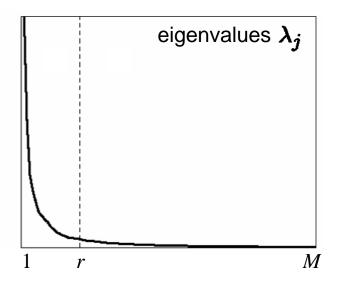
[u,s,v] = svd(A);

Principal Component Analysis

Choosing subspace dimension

r:

- look at decay of the eigenvalues as a function of r
- Larger r means lower expected error in the subspace data approximation



EigenFaces

First popular use of PCA on images was for modeling and recognition of faces [Kirby and Sirovich, 1990, Turk and Pentland, 1991]

lighting variation

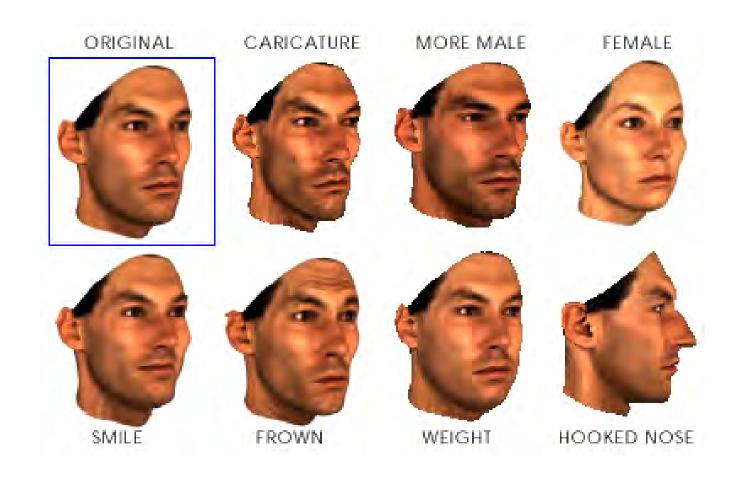
- Collect a face ensemble
- Normalize for contrast, scale, & orientation.
- Remove backgrounds
- Apply PCA & choose the first N eigen-images that account for most of the variance of the data.
 mean
 face

First 3 Shape Basis

Mean appearance

http://graphics.cs.cmu.edu/courses/15-463/2004_fall/www/handins/brh/final/

Using 3D Geometry: Blinz & Vetter, 1999



show SIGGRAPH video