# **Point Processing**



Pat Di Fruscia - DiFrusciaPhotography.com

## 15-463: Computational Photography Alexei Efros, CMU, Fall 2008

Some figures from Steve Seitz, and Gonzalez et al.

# image filtering: change range of image g(x) = h(f(x))



image warping: change domain of image



image filtering: change range of image

f



g(x) = h(f(x))



image warping: change domain of image



$$g(x) = f(h(x))$$



# **Point Processing**

The simplest kind of range transformations are these independent of position x,y:

$$g = t(f)$$

This is called point processing.

What can they do? What's the form of *t*?

**Important:** every pixel for himself – spatial information completely lost!

# **Basic Point Processing**



# Negative



a b FIGURE 3.4 (a) Original digital mammogram. (b) Negative image obtained using the negative transformation in Eq. (3.2-1). (Courtesy of G.E. Medical Systems.)

# Log

### a b

FIGURE 3.5 (a) Fourier spectrum. (b) Result of applying the log transformation given in Eq. (3.2-2) with c = 1.



## **Power-law transformations**



**FIGURE 3.6** Plots of the equation  $s = cr^{\gamma}$  for various values of  $\gamma$  (c = 1 in all cases).

# Image Enhancement



#### FIGURE 3.9

(a) Aerial image. (b)–(d) Results of applying the transformation in Eq. (3.2-3) with c = 1 and  $\gamma = 3.0, 4.0$ , and 5.0, respectively. (Original image for this example courtesy of NASA.)



# **Contrast Stretching**







a b c d FIGURE 3.10 Contrast

stretching. (a) Form of transformation function. (b) A low-contrast image. (c) Result of contrast stretching. (d) Result of thresholding. (Original image courtesy of Dr. Roger Heady, Research School of Biological Sciences, Australian National University, Canberra, Australia.)

# Image Histograms





#### a b

FIGURE 3.15 Four basic image types: dark, light, low contrast, high contrast, and their corresponding histograms. (Original image courtesy of Dr. Roger Heady, Research School of Biological Sciences, Australian National University, Canberra, Australia.)

# Histogram Equalization



FIGURE 3.17 (a) Images from Fig. 3.15. (b) Results of histogram equalization. (c) Corresponding histograms

# Limitations of Point Processing

Q: What happens if I reshuffle all pixels within the image?





A: It's histogram won't change. No point processing will be affected...