High Dynamic Range Images

© Alyosha Efros

...with a lot of slides stolen from Paul Debevec

15-463: Computational Photography Alexei Efros, CMU, Fall 2008

The Grandma Problem

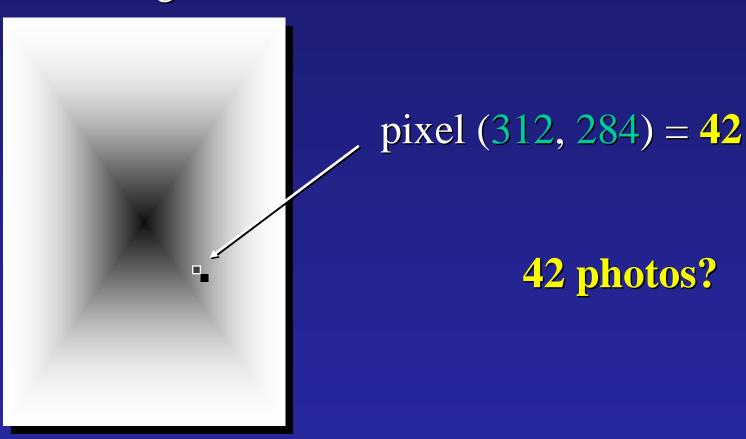
Problem: Dynamic Range

The real world is high dynamic range.

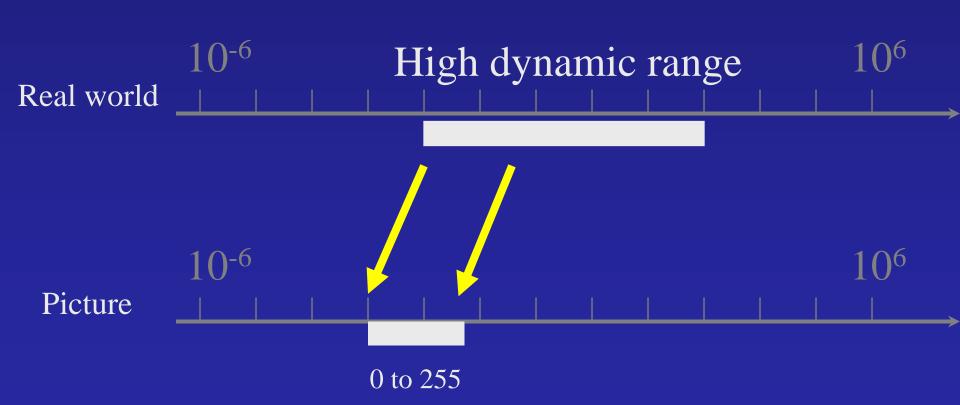
400,000

2,000,000,000

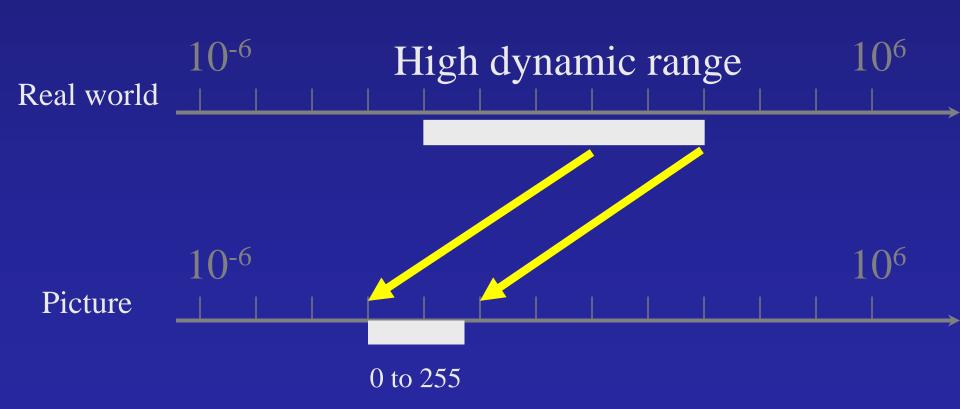
Image



Long Exposure



Short Exposure



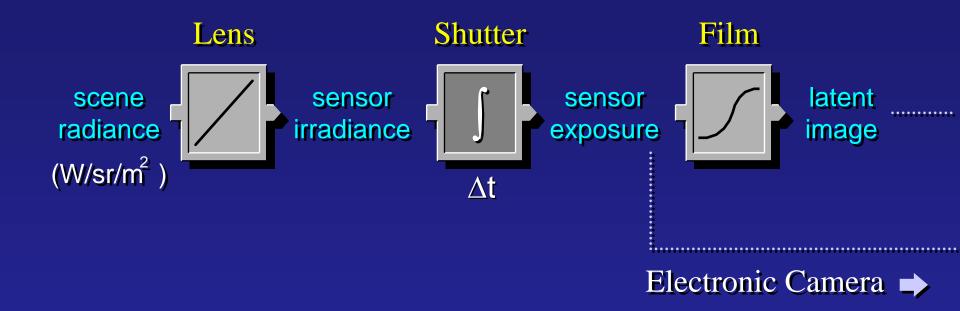
Camera Calibration

Geometric

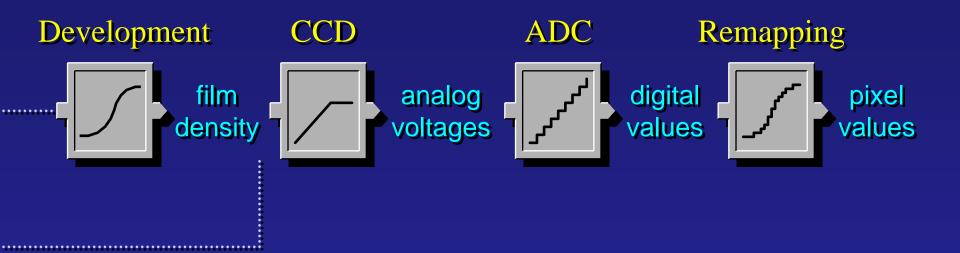
How pixel coordinates relate to directions in the world

Photometric

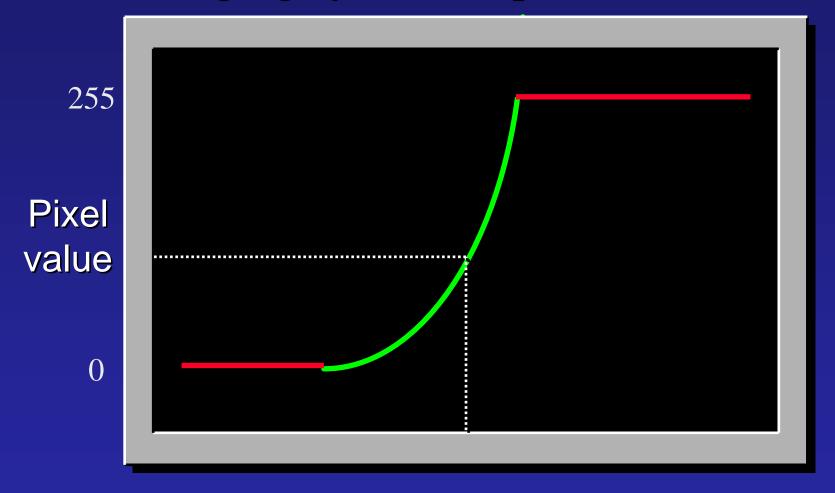
 How pixel values relate to radiance amounts in the world



The Image Acquisition Pipeline



Imaging system response function



log Exposure = log (Radiance * Δt) (CCD photon count)

Varying Exposure

Camera is not a photometer!

- Limited dynamic range
 - ⇒ Perhaps use multiple exposures?
- Unknown, nonlinear response
 - ⇒ Not possible to convert pixel values to radiance
- Solution:
 - Recover response curve from multiple
 exposures, then reconstruct the *radiance map*

Recovering High Dynamic Range Radiance Maps from Photographs

Paul Debevec Jitendra Malik

Computer Science Division
University of California at Berkeley

August 1997

Ways to vary exposure

Shutter Speed (*)

F/stop (aperture, iris)

Neutral Density (ND) Filters

Shutter Speed

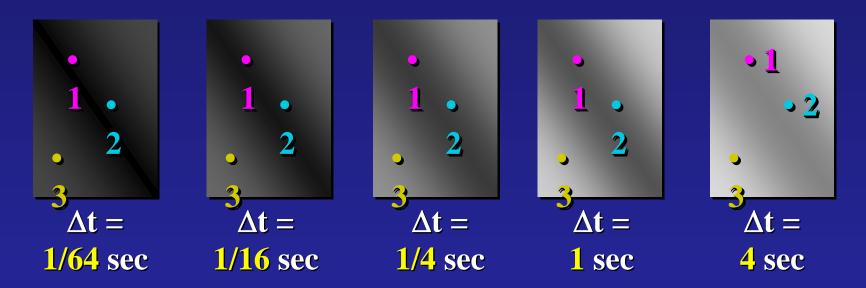
- Ranges: Canon D30: 30 to 1/4,000 sec.
- Sony VX2000: 1/4 to 1/10,000 sec.
- Pros:
- Directly varies the exposure
- Usually accurate and repeatable
- Issues:
- Noise in long exposures

Shutter Speed

- Note: shutter times usually obey a power series each "stop" is a factor of 2
- 1/4, 1/8, 1/15, 1/30, 1/60, 1/125, 1/250, 1/500, 1/1000 sec
- Usually really is:
- 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, 1/1024 sec

The Algorithm

Image series

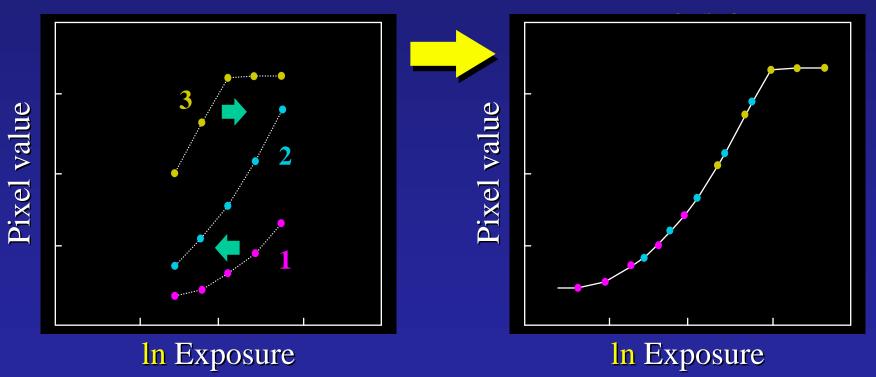


Pixel Value Z = f(Exposure) $Exposure = Radiance \times \Delta t$ $log Exposure = log Radiance + log \Delta t$

Response Curve

Assuming unit radiance for each pixel

After adjusting radiances to obtain a smooth response



The Math

- Let g(z) be the *discrete* inverse response function
- For each pixel site *i* in each image *j*, want:

$$\ln Radiance + \ln \Delta t_j = g(Z_{ij})$$

Solve the overdetermined linear system:

$$\sum_{i=1}^{N} \sum_{j=1}^{P} \left[\ln Radiance + \ln \Delta t_j - g(Z_{ij}) \right]^2 + \lambda \sum_{z=Z_{min}}^{Z_{max}} g''(z)^2$$

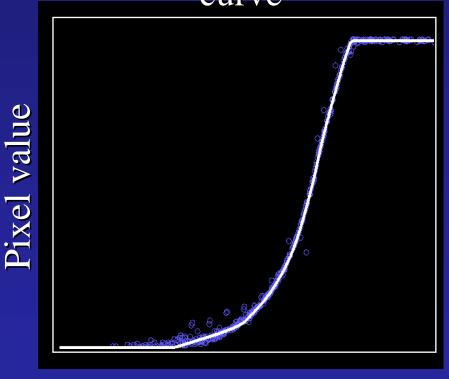
Matlab Code

```
function [g,lE]=gsolve(Z,B,l,w)
n = 256;
A = zeros(size(Z,1)*size(Z,2)+n+1,n+size(Z,1));
b = zeros(size(A,1),1);
k = 1;
                      %% Include the data-fitting equations
for i=1:size(Z,1)
  for j=1:size(Z,2)
    wij = w(Z(i,j)+1);
    A(k,Z(i,j)+1) = wij; A(k,n+i) = -wij; b(k,1) = wij * B(i,j);
   k=k+1;
  end
end
                   %% Fix the curve by setting its middle value to
A(k, 129) = 1;
k=k+1;
for i=1:n-2
                    %% Include the smoothness equations
 A(k,i)=1*w(i+1); A(k,i+1)=-2*1*w(i+1); A(k,i+2)=1*w(i+1);
 k=k+1;
end
x = A b;
                     %% Solve the system using SVD
g = x(1:n);
lE = x(n+1:size(x,1));
```

Results: Digital Camera

Kodak DCS460 1/30 to 30 sec

Recovered response curve



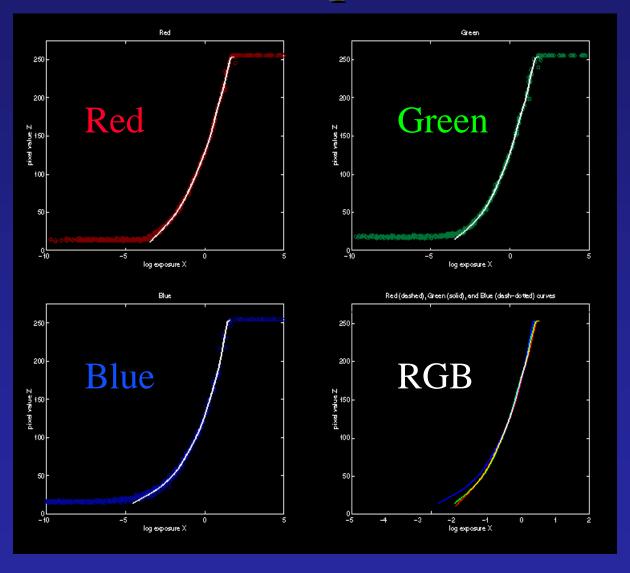
log Exposure

Reconstructed radiance map

Results: Color Film

• Kodak Gold ASA 100, PhotoCD

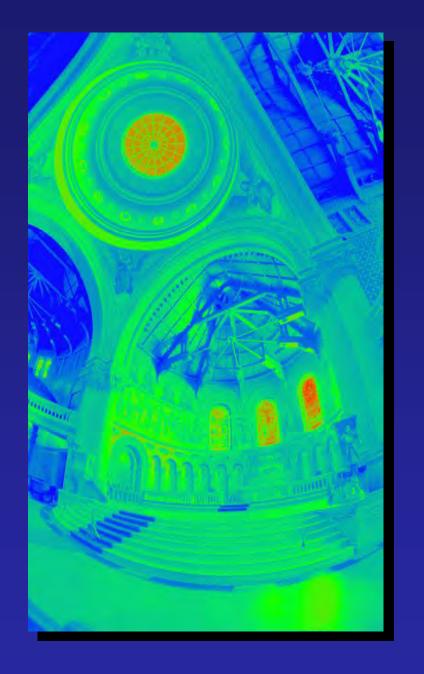
Recovered Response Curves



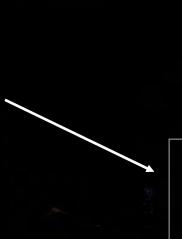
The Radiance Map

W/sr/m2 121.741 28.869 6.846 1.623 0.384 0.091 0.021

0.005



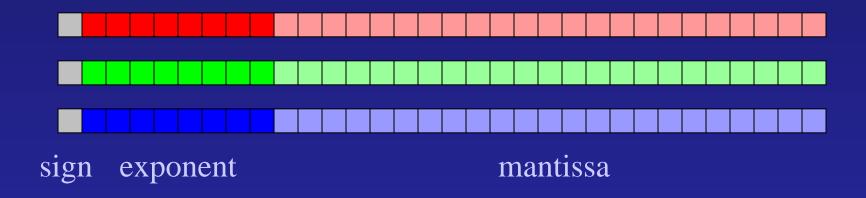
The Radiance Map



Linearly scaled to display device

Portable FloatMap (.pfm)

• 12 bytes per pixel, 4 for each channel



Text header similar to Jeff Poskanzer's .ppm image format:

768 512 1 <binary image data>

Floating Point TIFF similar

Radiance Format (.pic, .hdr)

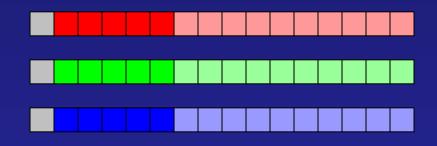

```
(145, 215, 87, 149) =
(145, 215, 87) * 2^(149-128) =
(1190000, 1760000, 713000)
```

```
(145, 215, 87, 103) =
(145, 215, 87) * 2^{(103-128)} =
(0.00000432, 0.00000641, 0.00000259)
```

Ward, Greg. "Real Pixels," in Graphics Gems IV, edited by James Arvo, Academic Press, 1994

ILM's OpenEXR (.exr)

• 6 bytes per pixel, 2 for each channel, compressed

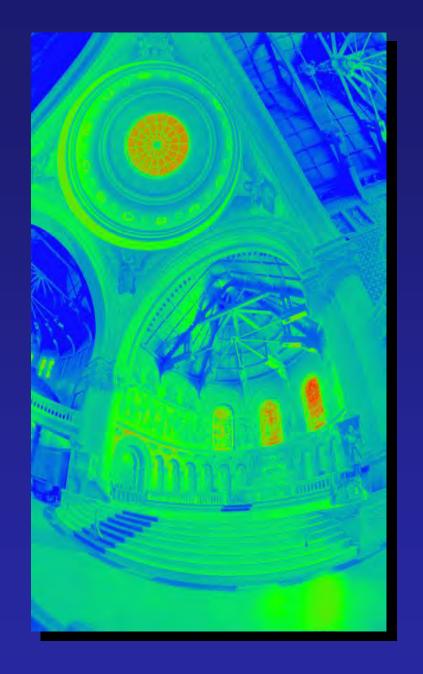


sign exponent mantissa

- Several lossless compression options, 2:1 typical
- Compatible with the "half" datatype in NVidia's Cg
- Supported natively on GeForce FX and Quadro FX
- Available at http://www.openexr.net/

Now What?

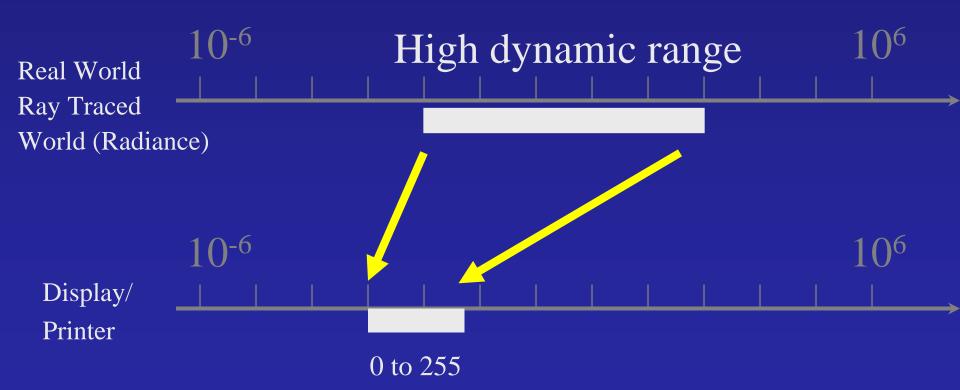
W/sr/m2 121.741 28.869 6.846 1.623 0.384 0.091 0.021 0.005



Tone Mapping

• How can we do this?

Linear scaling?, thresholding? Suggestions?

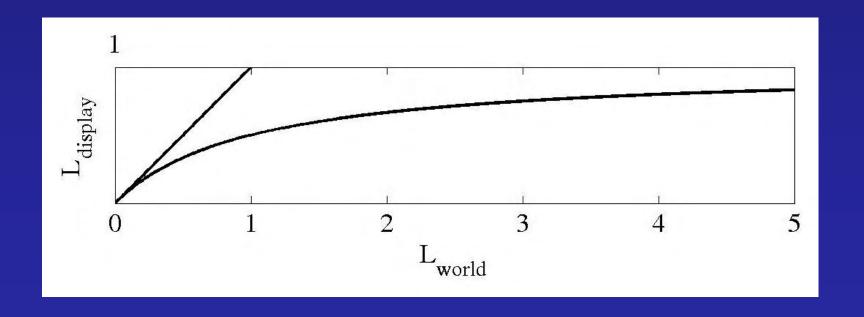


Simple Global Operator

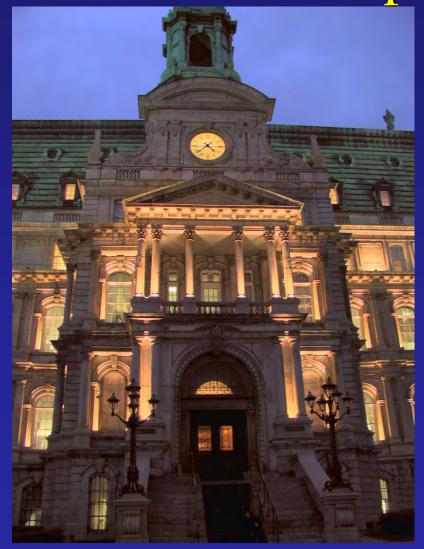
- Compression curve needs to
 - Bring everything within range
 - Leave dark areas alone
- In other words
 - Asymptote at 255
 - Derivative of 1 at 0

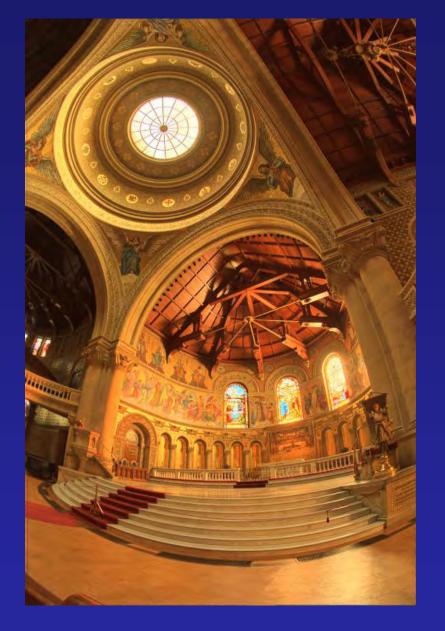
Global Operator (Reinhart et al)

$$L_{display} = \frac{L_{world}}{1 + L_{world}}$$



Global Operator Results





Reinhart Operator

Darkest 0.1% scaled to display device

What do we see?

Vs.



What does the eye sees?

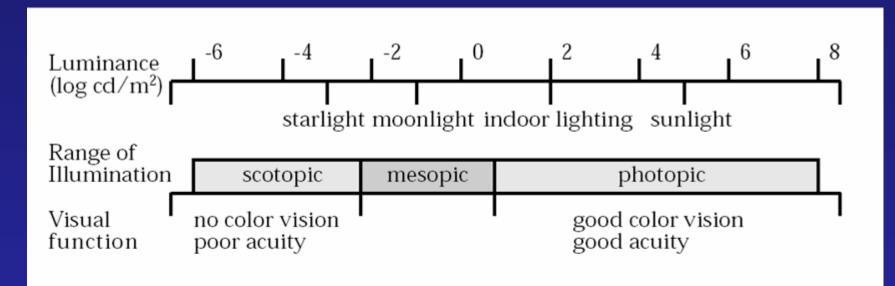
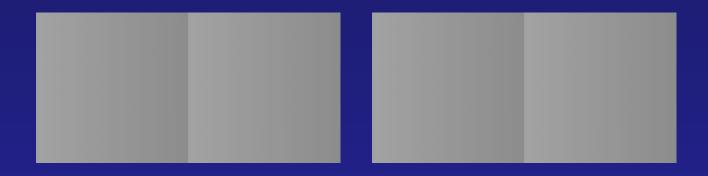
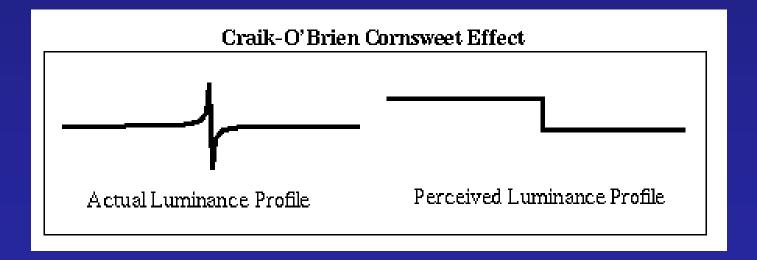


Figure 1: The range of luminances in the natural environment and associated visual parameters. After Hood (1986).

The eye has a huge dynamic range Do we see a true radiance map?

Metamores





Can we use this for range compression?

Compressing Dynamic Range

range