Image Warping http://www.jeffrey-martin.com 15-463: Computational Photography Alexei Efros, CMU, Fall 2007 ## **Image Warping** image filtering: change range of image $$g(x) = T(f(x))$$ image warping: change domain of image ## **Image Warping** ### image filtering: change range of image $$g(x) = h(T(x))$$ ### image warping: change domain of image $$g(x) = f(T(x))$$ $$T \longrightarrow T$$ ## Parametric (global) warping ### Examples of parametric warps: translation rotation aspect affine perspective cylindrical ## Parametric (global) warping Transformation T is a coordinate-changing machine: $$p' = T(p)$$ What does it mean that *T* is global? - Is the same for any point p - can be described by just a few numbers (parameters) Let's represent *T* as a matrix: $$\begin{bmatrix} x' \\ y' \end{bmatrix} = \mathbf{M} \begin{bmatrix} x \\ y \end{bmatrix}$$ ## Scaling Scaling a coordinate means multiplying each of its components by a scalar *Uniform scaling* means this scalar is the same for all components: ## Scaling Non-uniform scaling: different scalars per component: ## Scaling Scaling operation: $$x' = ax$$ $$y' = by$$ Or, in matrix form: $$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$ scaling matrix S What's inverse of S? ## 2-D Rotation ## 2-D Rotation ``` x = r \cos(\phi) y = r \sin(\phi) x' = r \cos (\phi + \theta) y' = r \sin (\phi + \theta) Trig Identity... x' = r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta) y' = r \sin(\phi) \cos(\theta) + r \cos(\phi) \sin(\theta) Substitute... x' = x \cos(\theta) - y \sin(\theta) ``` $y' = x \sin(\theta) + y \cos(\theta)$ ### 2-D Rotation This is easy to capture in matrix form: $$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$ $$\mathbf{R}$$ Even though $sin(\theta)$ and $cos(\theta)$ are nonlinear functions of θ , - x' is a linear combination of x and y - y' is a linear combination of x and y What is the inverse transformation? - Rotation by $-\theta$ - For rotation matrices $\mathbf{R}^{-1} = \mathbf{R}^T$ What types of transformations can be represented with a 2x2 matrix? ## 2D Identity? $$x' = x$$ $$y' = y$$ $$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$ ### 2D Scale around (0,0)? $$x' = s_x * x$$ $y' = s_y * y$ $$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{x} & 0 \\ 0 & \mathbf{s}_{y} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$ What types of transformations can be represented with a 2x2 matrix? ### 2D Rotate around (0,0)? $$x' = \cos \Theta * x - \sin \Theta * y$$ $$y' = \sin \Theta * x + \cos \Theta * y$$ $$x' = \cos \Theta * x - \sin \Theta * y y' = \sin \Theta * x + \cos \Theta * y$$ $$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$ ### 2D Shear? $$x' = x + sh_x * y$$ $$y' = sh_y * x + y$$ $$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix} = \begin{bmatrix} 1 & s\mathbf{h}_x \\ s\mathbf{h}_y & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$ What types of transformations can be represented with a 2x2 matrix? ### 2D Mirror about Y axis? $$x' = -x$$ $$y' = y$$ $$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$ ### 2D Mirror over (0,0)? $$x' = -x$$ $$y' = -y$$ $$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$ What types of transformations can be represented with a 2x2 matrix? ### 2D Translation? $$x' = x + t_x$$ $y' = y + t_y$ NO! Only linear 2D transformations can be represented with a 2x2 matrix ## All 2D Linear Transformations #### Linear transformations are combinations of ... - Scale, - Rotation, - Shear, and - Mirror #### Properties of linear transformations: - Origin maps to origin - Lines map to lines - Parallel lines remain parallel - Ratios are preserved - Closed under composition $$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$ $$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} i & j \\ k & l \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$ ## Linear Transformations as Change of Basis $$\mathbf{p} = \begin{bmatrix} \mathbf{i} & \mathbf{v} & \mathbf{v} & \mathbf{v} \\ \mathbf{p} & \mathbf{p} \end{bmatrix}$$ $$\mathbf{p} = \mathbf{i} = (1,0)$$ $$\mathbf{p} = \mathbf{i} + 3\mathbf{j} = (4,3)$$ $$\mathbf{p}' = \begin{bmatrix} u_x & v_x \\ u_y & v_y \end{bmatrix} \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} u_x & v_x \\ u_y & v_y \end{bmatrix} \mathbf{p}$$ $$\mathbf{p}' = \begin{bmatrix} u_x & v_x \\ u_y & v_y \end{bmatrix} \mathbf{p}$$ ### Any linear transformation is a basis!!! - What's the inverse transform? - How can we change from any basis to any basis? - What if the basis are orthogonal? # Q: How can we represent translation as a 3x3 matrix? $$x' = x + t_x$$ $$y' = y + t_y$$ ### Homogeneous coordinates represent coordinates in 2 dimensions with a 3-vector ### Add a 3rd coordinate to every 2D point - (x, y, w) represents a point at location (x/w, y/w) - (x, y, 0) represents a point at infinity - (0, 0, 0) is not allowed # Q: How can we represent translation as a 3x3 matrix? $$x' = x + t_x$$ $$y' = y + t_y$$ A: Using the rightmost column: $$\mathbf{Translation} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$$ ## **Translation** #### Example of translation ### Homogeneous Coordinates ### **Basic 2D Transformations** #### Basic 2D transformations as 3x3 matrices $$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$ Translate $$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$ $$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & sh_x & 0 \\ sh_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$ Rotate $$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$ Scale $$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & s\mathbf{h}_x & 0 \\ s\mathbf{h}_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$ Shear ### Affine Transformations - Translations Properties of affine transformations: - Origin does not necessarily map to origin - Lines map to lines - Parallel lines remain parallel - Ratios are preserved - Closed under composition - Models change of basis ## **Projective Transformations** #### Projective transformations ... - Affine transformations, and - Projective warps $$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$ #### Properties of projective transformations: - Origin does not necessarily map to origin - Lines map to lines - Parallel lines do not necessarily remain parallel - Ratios are not preserved - Closed under composition - Models change of basis ## **Matrix Composition** Transformations can be combined by matrix multiplication $$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$ $$\mathbf{p}' = \mathbf{T}(\mathbf{t}_{\mathsf{x}}, \mathbf{t}_{\mathsf{y}}) \qquad \mathbf{R}(\Theta) \qquad \mathbf{S}(\mathbf{s}_{\mathsf{x}}, \mathbf{s}_{\mathsf{y}}) \qquad \mathbf{p}$$ ## 2D image transformations | Name | Matrix | # D.O.F. | Preserves: | Icon | |-------------------|---|----------|------------|------------| | translation | $egin{bmatrix} ig[egin{array}{c c} ig[oldsymbol{I} ig oldsymbol{t} ig]_{2 imes 3} \end{array}$ | | _ | | | rigid (Euclidean) | $egin{bmatrix} R & t \end{bmatrix}_{2 imes 3}$ | | _ | \Diamond | | similarity | $\left[\begin{array}{c c} sR & t\end{array}\right]_{2\times 3}$ | | | \Diamond | | affine | $\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$ | | | | | projective | $\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$ | | | | These transformations are a nested set of groups Closed under composition and inverse is a member