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Image Compositing



Compositing Procedure
1. Extract Sprites (e.g using Intelligent Scissors in Photoshop)

Composite by 
David Dewey

2. Blend them into the composite (in the right order)



Just replacing pixels rarely works

Problems: boundries & transparency (shadows)

Binary 
mask



Two Problems:

Semi-transparent objects

Pixels too large



Solution: alpha channel
Add one more channel:

• Image(R,G,B,alpha)

Encodes transparency (or pixel coverage):
• Alpha = 1: opaque object (complete coverage)
• Alpha = 0: transparent object (no coverage)
• 0<Alpha<1: semi-transparent (partial coverage)

Example: alpha = 0.3

Partial coverage       or     semi-transparency



Alpha Blending

alpha
mask

Icomp = αIfg + (1-α)Ibg

shadow



Multiple Alpha Blending
So far we assumed that one image 

(background) is opaque.  
If blending semi-transparent sprites (the 

“A over B” operation):

Icomp = αaIa + (1-αa)αbIb
αcomp = αa + (1-αa)αb

Note: sometimes alpha is 
premultiplied: im(αR,αG,αB,α):

Icomp = Ia + (1-αa)Ib
(same for alpha!)



Alpha Hacking…

No physical interpretation, but it smoothes the seams



Feathering
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Encoding as transparency

Iblend = αIleft + (1-α)Iright



Setting alpha: simple averaging

Alpha = .5 in overlap region



Setting alpha: center seam

Alpha = logical(dtrans1>dtrans2)

Distance
transform



Setting alpha: blurred seam

Alpha = blurred

Distance
transform



Setting alpha: center weighting

Alpha = dtrans1 / (dtrans1+dtrans2)

Distance
transform

Ghost!



Affect of Window Size
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Affect of Window Size
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Good Window Size

0

1

“Optimal” Window:  smooth but not ghosted



What is the Optimal Window?
To avoid seams

• window = size of largest prominent feature

To avoid ghosting
• window <= 2*size of smallest prominent feature

Natural to cast this in the Fourier domain
• largest frequency <= 2*size of smallest frequency
• image frequency content should occupy one “octave” (power of two)

FFT



What if the Frequency Spread is Wide

Idea (Burt and Adelson)
• Compute Fleft = FFT(Ileft), Fright = FFT(Iright)
• Decompose Fourier image into octaves (bands)

– Fleft = Fleft
1 + Fleft

2 + …
• Feather corresponding octaves Fleft

i with Fright
i

– Can compute inverse FFT and feather in spatial domain
• Sum feathered octave images in frequency domain

Better implemented in spatial domain

FFT



Octaves in the Spatial Domain

Bandpass Images

Lowpass Images



Pyramid Blending
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Pyramid Blending



laplacian
level

4

laplacian
level

2

laplacian
level

0

left pyramid right pyramid blended pyramid



Laplacian Pyramid: Blending
General Approach:

1. Build Laplacian pyramids LA and LB from images A and B
2. Build a Gaussian pyramid GR from selected region R
3. Form a combined pyramid LS from LA and LB using nodes 

of GR as weights:
• LS(i,j) = GR(I,j,)*LA(I,j) + (1-GR(I,j))*LB(I,j)

4. Collapse the LS pyramid to get the final blended image



Blending Regions



Horror Photo

© david dmartin (Boston College)



Results from this class (fall 2005)

© Chris Cameron



Season Blending (St. Petersburg)



Season Blending (St. Petersburg)



Simplification: Two-band Blending
Brown & Lowe, 2003

• Only use two bands: high freq. and low freq.
• Blends low freq. smoothly
• Blend high freq. with no smoothing: use binary alpha



Low frequency (λ > 2 pixels)

High frequency (λ < 2 pixels)

2-band Blending



Linear Blending



2-band Blending



Gradient Domain
In Pyramid Blending, we decomposed our 

image into 2nd derivatives (Laplacian) and a 
low-res image

Let us now look at 1st derivatives (gradients):
• No need for low-res image 

– captures everything (up to a constant)
• Idea: 

– Differentiate
– Blend
– Reintegrate



Gradient Domain blending (1D)

Two
signals

Regular
blending

Blending
derivatives

bright

dark



Gradient Domain Blending (2D)

Trickier in 2D:
• Take partial derivatives dx and dy (the gradient field)
• Fidle around with them (smooth, blend, feather, etc)
• Reintegrate

– But now integral(dx) might not equal integral(dy)
• Find the most agreeable solution

– Equivalent to solving Poisson equation
– Can use FFT, deconvolution, multigrid solvers, etc.



Perez et al., 2003



Perez et al, 2003

Limitations:
• Can’t do contrast reversal (gray on black -> gray on white)
• Colored backgrounds “bleed through”
• Images need to be very well aligned

editing



Don’t blend, CUT!

So far we only tried to blend between two images.  
What about finding an optimal seam?

Moving objects become ghosts



Davis, 1998
Segment the mosaic

• Single source image per segment
• Avoid artifacts along boundries

– Dijkstra’s algorithm



min. error boundary

Minimal error boundary

overlapping blocks vertical boundary

__ ==
22

overlap error



Graphcuts
What if we want similar “cut-where-things-

agree” idea, but for closed regions?
• Dynamic programming can’t handle loops



Graph cuts 
(simple example à la Boykov&Jolly, ICCV’01)

n-links

s

t a cuthard 
constraint

hard 
constraint

Minimum cost cut can be computed in polynomial time
(max-flow/min-cut algorithms)



Kwatra et al, 2003

Actually, for this example, DP will work just as well…



Lazy Snapping

Interactive segmentation using graphcuts



Putting it all together
Compositing images/mosaics

• Have a clever blending function
– Feathering
– Center-weighted
– blend different frequencies differently
– Gradient based blending

• Choose the right pixels from each image
– Dynamic programming – optimal seams
– Graph-cuts

Now, let’s put it all together:
• Interactive Digital Photomontage, 2004 (video)




