
Image Compositing and Blending

15-463: Computational Photography
Alexei Efros, CMU, Fall 2007

© NASA

Image Compositing

Compositing Procedure
1. Extract Sprites (e.g using Intelligent Scissors in Photoshop)

Composite by
David Dewey

2. Blend them into the composite (in the right order)

Just replacing pixels rarely works

Problems: boundries & transparency (shadows)

Binary
mask

Two Problems:

Semi-transparent objects

Pixels too large

Solution: alpha channel
Add one more channel:

• Image(R,G,B,alpha)

Encodes transparency (or pixel coverage):
• Alpha = 1: opaque object (complete coverage)
• Alpha = 0: transparent object (no coverage)
• 0<Alpha<1: semi-transparent (partial coverage)

Example: alpha = 0.3

Partial coverage or semi-transparency

Alpha Blending

alpha
mask

Icomp = αIfg + (1-α)Ibg

shadow

Multiple Alpha Blending
So far we assumed that one image

(background) is opaque.
If blending semi-transparent sprites (the

“A over B” operation):

Icomp = αaIa + (1-αa)αbIb
αcomp = αa + (1-αa)αb

Note: sometimes alpha is
premultiplied: im(αR,αG,αB,α):

Icomp = Ia + (1-αa)Ib
(same for alpha!)

Alpha Hacking…

No physical interpretation, but it smoothes the seams

Feathering

0
1

0
1

+

=
Encoding as transparency

Iblend = αIleft + (1-α)Iright

Setting alpha: simple averaging

Alpha = .5 in overlap region

Setting alpha: center seam

Alpha = logical(dtrans1>dtrans2)

Distance
transform

Setting alpha: blurred seam

Alpha = blurred

Distance
transform

Setting alpha: center weighting

Alpha = dtrans1 / (dtrans1+dtrans2)

Distance
transform

Ghost!

Affect of Window Size

0

1 left

right
0

1

Affect of Window Size

0

1

0

1

Good Window Size

0

1

“Optimal” Window: smooth but not ghosted

What is the Optimal Window?
To avoid seams

• window = size of largest prominent feature

To avoid ghosting
• window <= 2*size of smallest prominent feature

Natural to cast this in the Fourier domain
• largest frequency <= 2*size of smallest frequency
• image frequency content should occupy one “octave” (power of two)

FFT

What if the Frequency Spread is Wide

Idea (Burt and Adelson)
• Compute Fleft = FFT(Ileft), Fright = FFT(Iright)
• Decompose Fourier image into octaves (bands)

– Fleft = Fleft
1 + Fleft

2 + …
• Feather corresponding octaves Fleft

i with Fright
i

– Can compute inverse FFT and feather in spatial domain
• Sum feathered octave images in frequency domain

Better implemented in spatial domain

FFT

Octaves in the Spatial Domain

Bandpass Images

Lowpass Images

Pyramid Blending

0

1

0

1

0

1

Left pyramid Right pyramidblend

Pyramid Blending

laplacian
level

4

laplacian
level

2

laplacian
level

0

left pyramid right pyramid blended pyramid

Laplacian Pyramid: Blending
General Approach:

1. Build Laplacian pyramids LA and LB from images A and B
2. Build a Gaussian pyramid GR from selected region R
3. Form a combined pyramid LS from LA and LB using nodes

of GR as weights:
• LS(i,j) = GR(I,j,)*LA(I,j) + (1-GR(I,j))*LB(I,j)

4. Collapse the LS pyramid to get the final blended image

Blending Regions

Horror Photo

© david dmartin (Boston College)

Results from this class (fall 2005)

© Chris Cameron

Season Blending (St. Petersburg)

Season Blending (St. Petersburg)

Simplification: Two-band Blending
Brown & Lowe, 2003

• Only use two bands: high freq. and low freq.
• Blends low freq. smoothly
• Blend high freq. with no smoothing: use binary alpha

Low frequency (λ > 2 pixels)

High frequency (λ < 2 pixels)

2-band Blending

Linear Blending

2-band Blending

Gradient Domain
In Pyramid Blending, we decomposed our

image into 2nd derivatives (Laplacian) and a
low-res image

Let us now look at 1st derivatives (gradients):
• No need for low-res image

– captures everything (up to a constant)
• Idea:

– Differentiate
– Blend
– Reintegrate

Gradient Domain blending (1D)

Two
signals

Regular
blending

Blending
derivatives

bright

dark

Gradient Domain Blending (2D)

Trickier in 2D:
• Take partial derivatives dx and dy (the gradient field)
• Fidle around with them (smooth, blend, feather, etc)
• Reintegrate

– But now integral(dx) might not equal integral(dy)
• Find the most agreeable solution

– Equivalent to solving Poisson equation
– Can use FFT, deconvolution, multigrid solvers, etc.

Perez et al., 2003

Perez et al, 2003

Limitations:
• Can’t do contrast reversal (gray on black -> gray on white)
• Colored backgrounds “bleed through”
• Images need to be very well aligned

editing

Don’t blend, CUT!

So far we only tried to blend between two images.
What about finding an optimal seam?

Moving objects become ghosts

Davis, 1998
Segment the mosaic

• Single source image per segment
• Avoid artifacts along boundries

– Dijkstra’s algorithm

min. error boundary

Minimal error boundary

overlapping blocks vertical boundary

__ ==
22

overlap error

Graphcuts
What if we want similar “cut-where-things-

agree” idea, but for closed regions?
• Dynamic programming can’t handle loops

Graph cuts
(simple example à la Boykov&Jolly, ICCV’01)

n-links

s

t a cuthard
constraint

hard
constraint

Minimum cost cut can be computed in polynomial time
(max-flow/min-cut algorithms)

Kwatra et al, 2003

Actually, for this example, DP will work just as well…

Lazy Snapping

Interactive segmentation using graphcuts

Putting it all together
Compositing images/mosaics

• Have a clever blending function
– Feathering
– Center-weighted
– blend different frequencies differently
– Gradient based blending

• Choose the right pixels from each image
– Dynamic programming – optimal seams
– Graph-cuts

Now, let’s put it all together:
• Interactive Digital Photomontage, 2004 (video)

