Data-driven methods: Video

© A.A. Efros
15-463: Computational Photography Alexei Efros, CMU, Fall 2007

Weather Forecasting for Dummies ${ }^{\text {TM }}$

Let's predict weather:

- Given today's weather only, we want to know tomorrow's
- Suppose weather can only be \{Sunny, Cloudy, Raining\}

The "Weather Channel" algorithm:

- Over a long period of time, record:
- How often S followed by R
- How often S followed by S
- Etc.
- Compute percentages for each state:
- $P(R \mid S), P(S \mid S)$, etc.
- Predict the state with highest probability!
- It's a Markov Chain

Markov Chain

$$
\left(\begin{array}{lll}
0.3 & 0.6 & 0.1 \\
0.4 & 0.3 & 0.3 \\
0.2 & 0.4 & 0.4
\end{array}\right)
$$

What if we know today and yestarday's weather?

Text Synthesis

[Shannon,'48] proposed a way to generate English-looking text using N-grams:

- Assume a generalized Markov model
- Use a large text to compute prob. distributions of each letter given N-1 previous letters
- Starting from a seed repeatedly sample this Markov chain to generate new letters
- Also works for whole words

WE NEED TO EAT CAKE

Mark V. Shaney (Bell Labs)

Results (using alt. singles corpus):

- "As I've commented before, really relating to someone involves standing next to impossible."
- "One morning I shot ${ }^{\text {Non }}$ elephant in my arms and kissed him."
- "I spent an interesting evening recently with a grain of salt"

Video Textures

Arno Schödl
Richard Szeliski
David Salesin
Irfan Essa
Microsoft Research Geornia Tech

Still photos

Video clips

Video textures

Problem statement

video clip

video texture

Our approach

- How do we find good transitions?

Finding good transitions

- Compute L_{2} distance $D_{i, j}$ between all framess. \longrightarrow frame i

Similar frames make good transitions

Markov chain representation

Similar frames make good transitions

Transition costs

- Transition from i to j if successor of i is similar to j
- Cost function: $C_{i \rightarrow j}=D_{i+1, j}$

Transition probabilities

-Probability for transition $\mathrm{P}_{\mathrm{i} \rightarrow \mathrm{j}}$ inversely related to cost:

$$
\text { - } P_{i \rightarrow j} \sim \exp \left(-C_{i \rightarrow j} / \sigma^{2}\right)
$$

high σ
low σ

Preserving dynamics

Preserving dynamics

Preserving dynamics

- Cost for transition $i \rightarrow j$

$$
C_{i \rightarrow j}=\sum_{k=-\mathrm{N}}^{\mathrm{N}-1} w_{k} D_{i+k+1, j+k}
$$

Preserving dynamics - effect

- Cost for transition $i \rightarrow j$

$$
\text { - } C_{i \rightarrow j}=\sum_{k=-N}^{N-1} w_{k} D_{i+k+1, j+k}
$$

Dead ends

- No good transition at the end of sequence

Future cost

- Propagate future transition costs backward
- Iteratively compute new cost

$$
\text { - } F_{i \rightarrow j}=C_{i \rightarrow j}+\alpha \min _{k} F_{j \rightarrow k}
$$

Future cost

- Propagate future transition costs backward
- Iteratively compute new cost

$$
\text { - } F_{i \rightarrow j}=C_{i \rightarrow j}+\alpha \min _{k} F_{j \rightarrow k}
$$

Future cost

- Propagate future transition costs backward
- Iteratively compute new cost

$$
\text { - } F_{i \rightarrow j}=C_{i \rightarrow j}+\alpha \min _{k} F_{j \rightarrow k}
$$

Future cost

- Propagate future transition costs backward
- Iteratively compute new cost

$$
\text { - } F_{i \rightarrow j}=C_{i \rightarrow j}+\alpha \min _{k} F_{j \rightarrow k}
$$

Future cost

- Propagate future transition costs backward
- Iteratively compute new cost
- $F_{i \rightarrow j}=C_{i \rightarrow j}+\alpha \min _{k} F_{j \rightarrow k}$
- Q-learning

Future cost - effect

Finding good loops

- Alternative to random transitions
- Precompute set of loops up front

Visual discontinuities

- Problem: Visible "Jumps"

Crossfading

- Solution: Crossfade from one sequence to the other.

Morphing

- Interpolation task:
$\frac{2}{5} \triangle \mathrm{~A}+\frac{2}{5} \square \mathrm{~B}+\frac{1}{5} \square \mathrm{C}$

Morphing

- Interpolation task:

$$
\frac{2}{5} \mathrm{~A}+\frac{2}{5} \mathrm{~B}+\frac{1}{5} \square
$$

- Compute correspondence between pixels of all frames

Morphing

- Interpolation task:

$$
\frac{2}{5} \mathrm{~A}+\frac{2}{5} \mathrm{~B}+\frac{1}{5}, \mathrm{C}
$$

- Compute correspondence between pixels of all frames

- Interpolate pixel position and color in morphed frame
- based on [Shum 2000]

Results - crossfading/morphing

Results - crossfading/morphing

Crossfading

Frequent jump \& crossfading

Video portrait

- Useful for web pages

Video portrait - 3D

- Combine with IBR techniques

Region-based analysis

- Divide video up into regions

- Generate a video texture for each region

Automatic region analysis

User-controlled video textures

slow

variable

fast

User selects target frame range

Video-based animation

- Like sprites computer games
- Extract sprites from real video
- Interactively control desired motion

Video sprite extraction

> blue screen matting and velocity estimation

Video sprite control

- Augmented transition cost:

Similarity term Control term

Video sprite control

- Need future cost computation
- Precompute future costs for a few angles.
- Switch between precomputed angles according to user input
- [GIT-GVU-00-11]

Interactive fish

Summary

- Video clips \rightarrow video textures
- define Markov process
- preserve dynamics
- avoid dead-ends
- disguise visual discontinuities

Discussion

- Some things are relatively easy

Discussion

- Some are hard

A final example

[^0]
Michel Gondry train video

http://youtube.com/watch?v=qUEs1BwVXGA

[^0]:

