Data-driven methods: Video

© A.A. Efros

15-463: Computational Photography Alexei Efros, CMU, Fall 2007

Weather Forecasting for Dummies[™]

Let's predict weather:

- Given today's weather only, we want to know tomorrow's
- Suppose weather can only be {Sunny, Cloudy, Raining}

The "Weather Channel" algorithm:

- Over a long period of time, record:
 - How often S followed by R
 - How often S followed by S
 - Etc.
- Compute percentages for each state:
 - P(R|S), P(S|S), etc.
- Predict the state with highest probability!
- It's a Markov Chain

Markov Chain

What if we know today and yestarday's weather?

[Shannon,'48] proposed a way to generate English-looking text using N-grams:

- Assume a generalized Markov model
- Use a large text to compute prob. distributions of each letter given N-1 previous letters
- Starting from a seed repeatedly sample this Markov chain to generate new letters
- Also works for whole words

WE NEED TO EAT CAKE

Results (using alt.singles corpus):

- "As I've commented before, really relating to someone involves standing next to impossible."
- "One morning I shot an elephant in my arms and kissed him."
- "I spent an interesting evening recently with a grain of salt"

Video Textures

Arno Schödl Richard Szeliski David Salesin Irfan Essa

Microsoft Research Georgia Tech

Still photos

Video clips

Video textures

Problem statement

video clip

video texture

Our approach

• How do we find good transitions?

Finding good transitions

• Compute L_2 distance $D_{i, j}$ between all frames \rightarrow frame *i*

Similar frames make good transitions

Markov chain representation

Similar frames make good transitions

Transition costs

 Transition from i to j if successor of i is similar to j

• Cost function:
$$C_{i \rightarrow j} = D_{i+1, j}$$

Transition probabilities

high σ

•Probability for transition $P_{i \rightarrow j}$ inversely related to cost:

•
$$P_{i \rightarrow j} \sim \exp(-C_{i \rightarrow j} / \sigma^2)$$

low σ

Preserving dynamics

Preserving dynamics

Preserving dynamics

• Cost for transition $i \rightarrow j$ • $C_{i \rightarrow j} = \sum_{k = -N}^{N-1} w_k D_{i+k+1, j+k}$

Preserving dynamics – effect

• Cost for transition $i \rightarrow j$ • $C_{i \rightarrow j} = \sum_{k = -N}^{N-1} w_k D_{i+k+1, j+k}$

Dead ends

No good transition at the end of sequence

- Propagate future transition costs backward
- Iteratively compute new cost

$$F_{i \to j} = C_{i \to j} + \alpha \min_{k} F_{j \to k}$$

- Propagate future transition costs backward
- Iteratively compute new cost

$$F_{i \rightarrow j} = C_{i \rightarrow j} + \alpha \min_{k} F_{j \rightarrow k}$$

- Propagate future transition costs backward
- Iteratively compute new cost

$$F_{i \rightarrow j} = C_{i \rightarrow j} + \alpha \min_{k} F_{j \rightarrow k}$$

- Propagate future transition costs backward
- Iteratively compute new cost

$$F_{i \to j} = C_{i \to j} + \alpha \min_{k} F_{j \to k}$$

- Propagate future transition costs backward
- Iteratively compute new cost

$$F_{i \to j} = C_{i \to j} + \alpha \min_{k} F_{j \to k}$$

Q-learning

Future cost – effect

Finding good loops

- Alternative to random transitions
- Precompute set of loops up front

Visual discontinuities

Problem: Visible "Jumps"

Crossfading

• Solution: Crossfade from one sequence to the other.

Morphing

Interpolation task:

$$\frac{2}{5}$$
 A + $\frac{2}{5}$ B + $\frac{1}{5}$ C

Morphing

Interpolation task:

$$\frac{2}{5}$$
 A + $\frac{2}{5}$ B + $\frac{1}{5}$ C

• Compute correspondence between pixels of all frames

Morphing

Interpolation task:

$$\frac{2}{5}$$
 A + $\frac{2}{5}$ B + $\frac{1}{5}$ C

- Compute correspondence between pixels of all frames
- Interpolate pixel position and color in morphed frame
- based on [Shum 2000]

Results – crossfading/morphing

Results – crossfading/morphing

Jump Cut Crossfade Morph

Crossfading

Frequent jump & crossfading

Video portrait

Useful for web pages

Video portrait – 3D

Combine with IBR techniques

Region-based analysis

Divide video up into regions

Generate a video texture for each region

Automatic region analysis

User-controlled video textures

slow

variable

fast

User selects target frame range

Video-based animation

- Like sprites computer games
- Extract sprites from real video
- Interactively control desired motion

©1985 Nintendo of America Inc.

Video sprite extraction

blue screen matting and velocity estimation

Video sprite control

Augmented transition cost:

Animation $C_{i \rightarrow j}^{\text{Animation}} = \alpha C_{i \rightarrow j} + \beta \text{ angle}$ Velocity vector Similarity term Control term

Video sprite control

- Need future cost computation
- Precompute future costs for a few angles.
- Switch between precomputed angles according to user input
- [GIT-GVU-00-11]

Interactive fish

Summary

- Video clips \rightarrow video textures
 - define Markov process
 - preserve dynamics
 - avoid dead-ends
 - disguise visual discontinuities

Discussion

Some things are relatively easy

Discussion

• Some are hard

A final example

Michel Gondry train video

http://youtube.com/watch?v=qUEs1BwVXGA