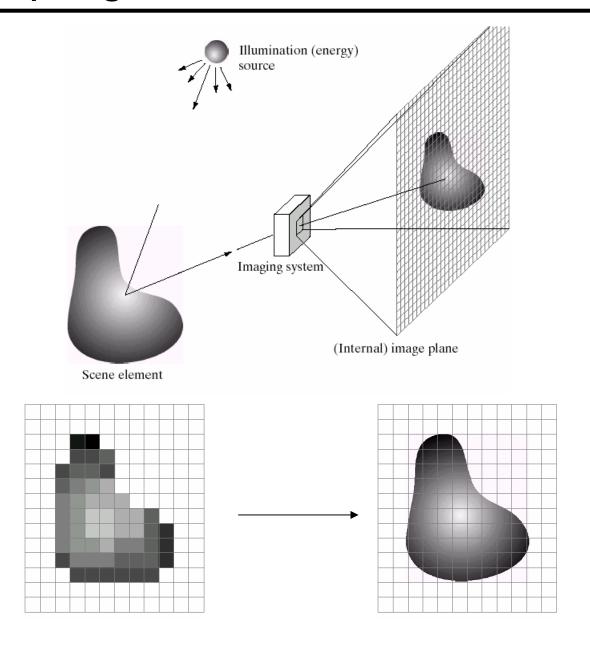
Sampling and Reconstruction

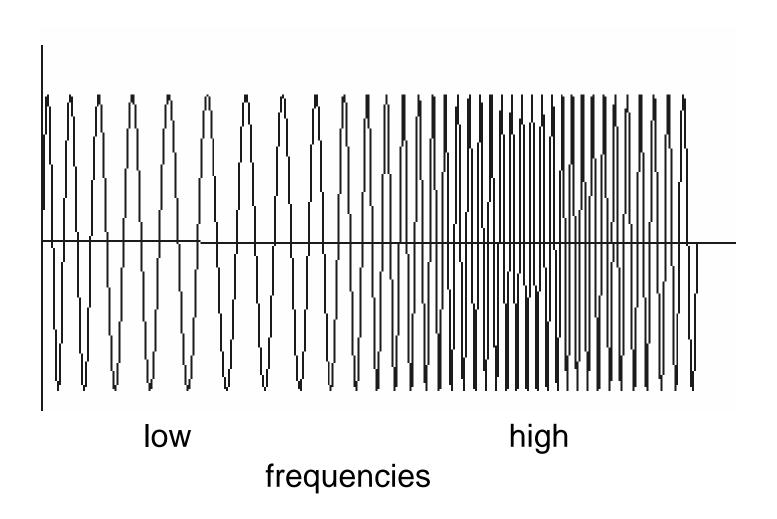
Most slides from Steve Marschner

15-463: Computational Photography Alexei Efros, CMU, Fall 2007

Sampling and Reconstruction



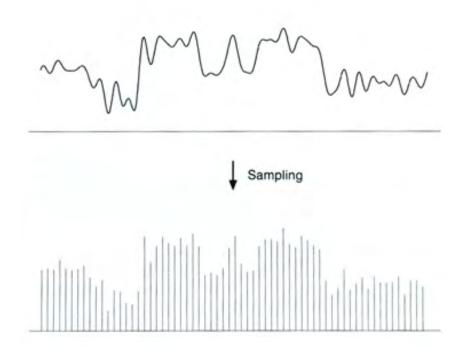
1D Example: Audio



[FvDFH fig.14.14b / Wolberg]

Sampled representations

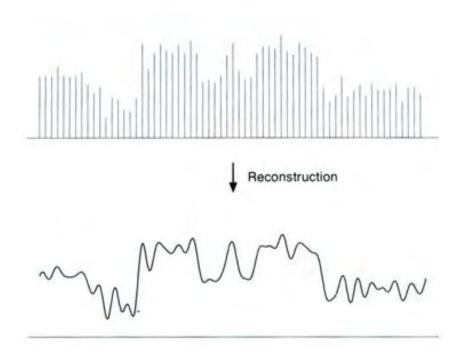
- How to store and compute with continuous functions?
- Common scheme for representation: samples
 - write down the function's values at many points



[FvDFH fig.14.14b / Wolberg]

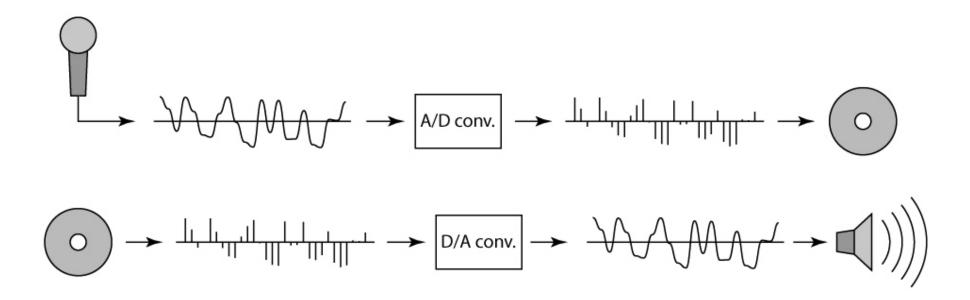
Reconstruction

- Making samples back into a continuous function
 - for output (need realizable method)
 - for analysis or processing (need mathematical method)
 - amounts to "guessing" what the function did in between



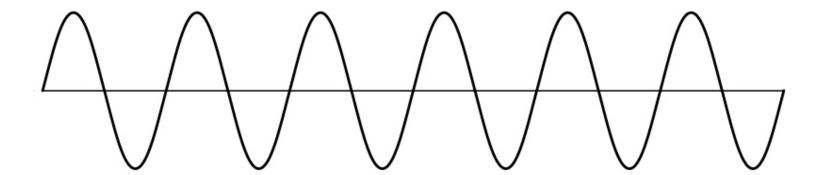
Sampling in digital audio

- Recording: sound to analog to samples to disc
- Playback: disc to samples to analog to sound again
 - how can we be sure we are filling in the gaps correctly?



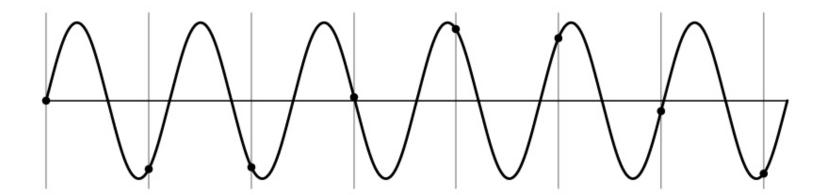
Sampling and Reconstruction

• Simple example: a sign wave



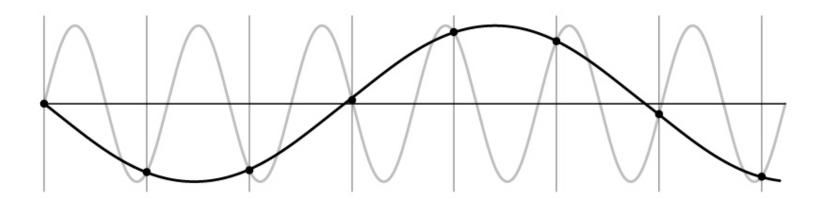
Undersampling

- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave
 - unsurprising result: information is lost



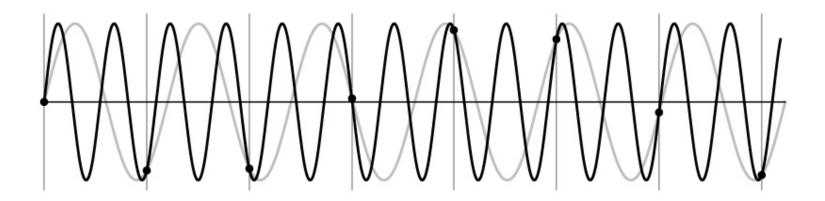
Undersampling

- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave
 - unsurprising result: information is lost
 - surprising result: indistinguishable from lower frequency



Undersampling

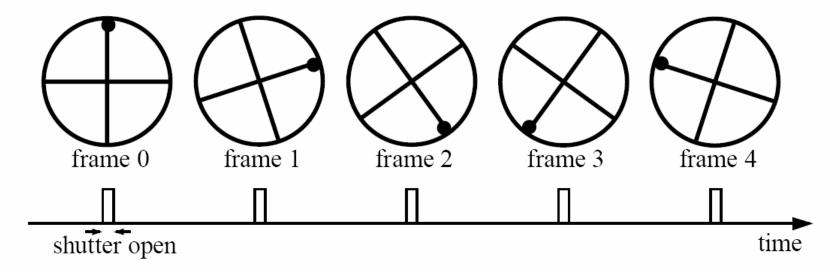
- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave
 - unsurprising result: information is lost
 - surprising result: indistinguishable from lower frequency
 - also was always indistinguishable from higher frequencies
 - <u>aliasing:</u> signals "traveling in disguise" as other frequencies



Aliasing in video

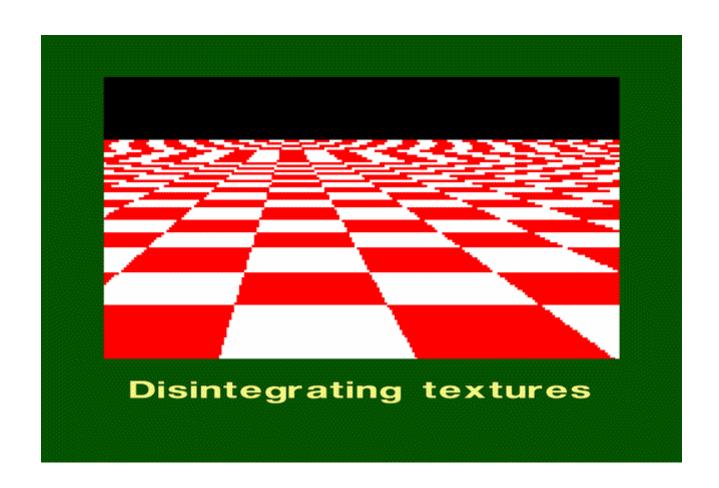
Imagine a spoked wheel moving to the right (rotating clockwise). Mark wheel with dot so we can see what's happening.

If camera shutter is only open for a fraction of a frame time (frame time = 1/30 sec. for video, 1/24 sec. for film):

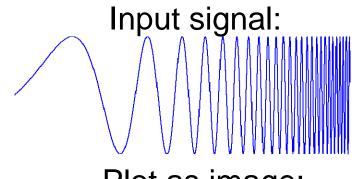


Without dot, wheel appears to be rotating slowly backwards! (counterclockwise)

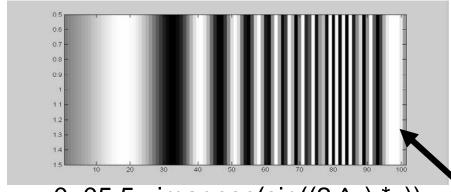
Aliasing in images



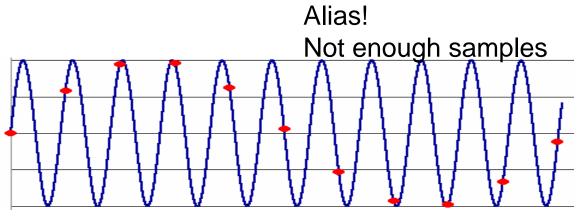
What's happening?



Plot as image:



x = 0:.05:5; imagesc(sin((2.^x).*x))



Antialiasing

What can we do about aliasing?

Sample more often

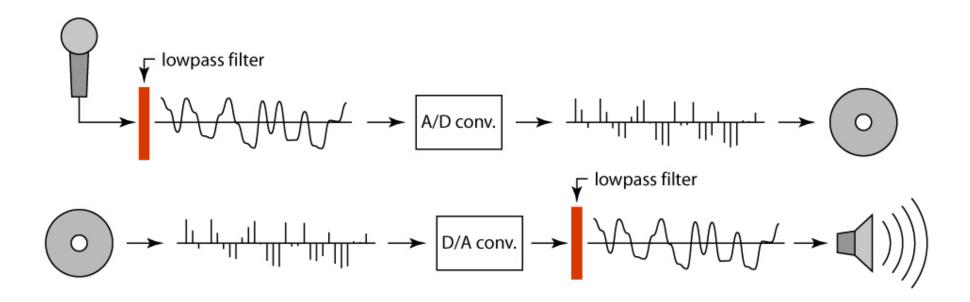
- Join the Mega-Pixel crazy of the photo industry
- But this can't go on forever

Make the signal less "wiggly"

- Get rid of some high frequencies
- Will loose information
- But it's better than aliasing

Preventing aliasing

- Introduce lowpass filters:
 - remove high frequencies leaving only safe, low frequencies
 - choose lowest frequency in reconstruction (disambiguate)

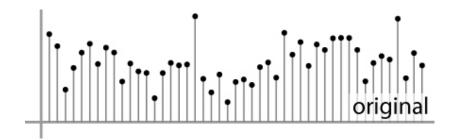


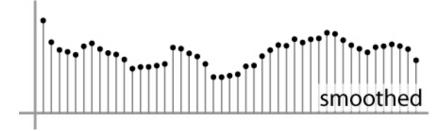
Linear filtering: a key idea

- Transformations on signals; e.g.:
 - bass/treble controls on stereo
 - blurring/sharpening operations in image editing
 - smoothing/noise reduction in tracking
- Key properties
 - linearity: filter(f + g) = filter(f) + filter(g)
 - shift invariance: behavior invariant to shifting the input
 - delaying an audio signal
 - sliding an image around
- Can be modeled mathematically by convolution

Moving Average

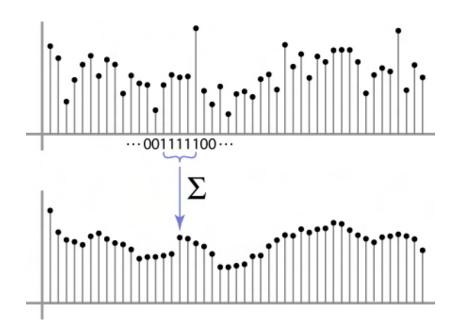
- basic idea: define a new function by averaging over a sliding window
- a simple example to start off: smoothing





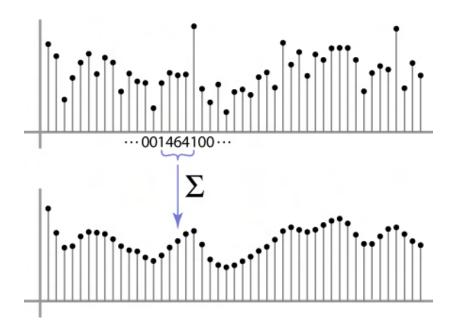
Weighted Moving Average

- Can add weights to our moving average
- Weights [..., 0, 1, 1, 1, 1, 1, 0, ...] / 5



Weighted Moving Average

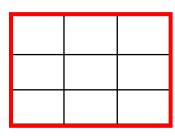
bell curve (gaussian-like) weights [..., 1, 4, 6, 4, 1, ...]



Moving Average In 2D

What are the weights H?

				<u> </u>					
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0



Cross-correlation filtering

 Let's write this down as an equation. Assume the averaging window is (2k+1)x(2k+1):

$$G[i,j] = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i+u,j+v]$$

 We can generalize this idea by allowing different weights for different neighboring pixels:

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

 This is called a cross-correlation operation and written:

$$G = H \otimes F$$

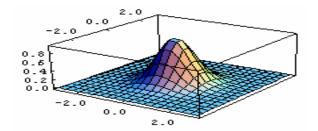
H is called the "filter," "kernel," or "mask."

Gaussian filtering

A Gaussian kernel gives less weight to pixels further from the center of the window

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

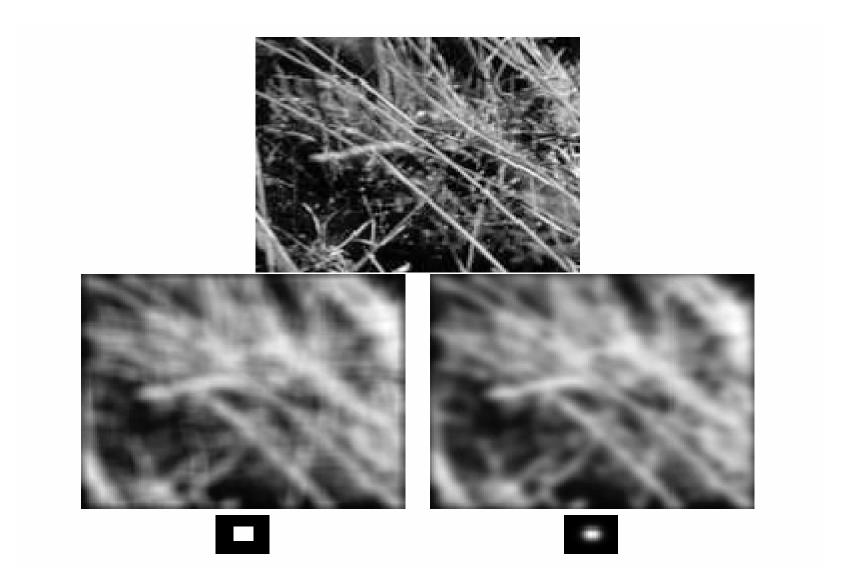
$$h(u, v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2 + v^2}{\sigma^2}}$$



Slide by Steve Seitz

22

Mean vs. Gaussian filtering



Convolution

cross-correlation: $G = H \otimes F$

$$G = H \otimes F$$

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

A **convolution** operation is a cross-correlation where the filter is flipped both horizontally and vertically before being applied to the image:

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

It is written:

$$G = H \star F$$

Suppose H is a Gaussian or mean kernel. How does convolution differ from cross-correlation?

Convolution is nice!

- Notation: $b = c \star a$
- Convolution is a multiplication-like operation
 - commutative $a \star b = b \star a$
 - associative $a \star (b \star c) = (a \star b) \star c$
 - distributes over addition $a \star (b+c) = a \star b + a \star c$
 - scalars factor out $\alpha a \star b = a \star \alpha b = \alpha (a \star b)$
 - identity: unit impulse e = [..., 0, 0, 1, 0, 0, ...]

$$a \star e = a$$

- Conceptually no distinction between filter and signal
- Usefulness of associativity
 - often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$
 - this is equivalent to applying one filter: a * $(b_1 * b_2 * b_3)$

Tricks with convolutions

CMU CMU

Image half-sizing

This image is too big to fit on the screen. How can we reduce it?

How to generate a halfsized version?

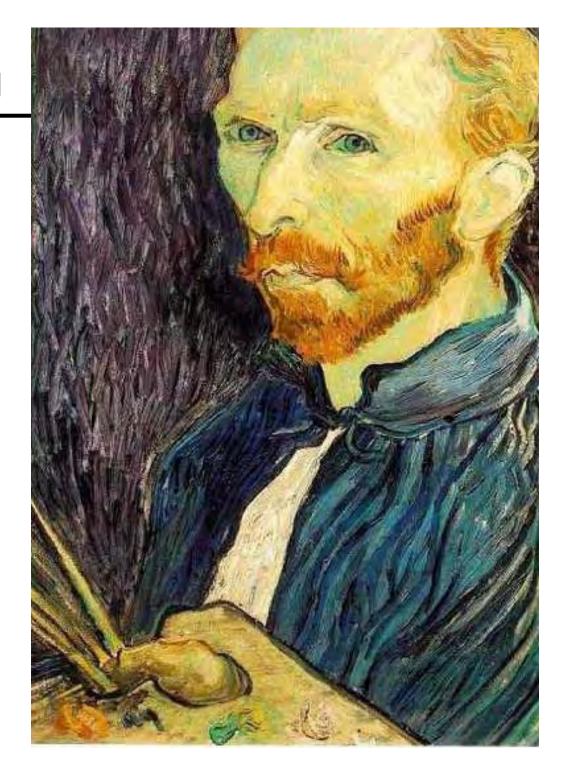
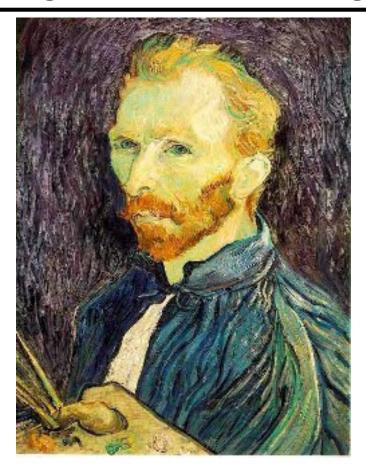


Image sub-sampling



1/8

1/4

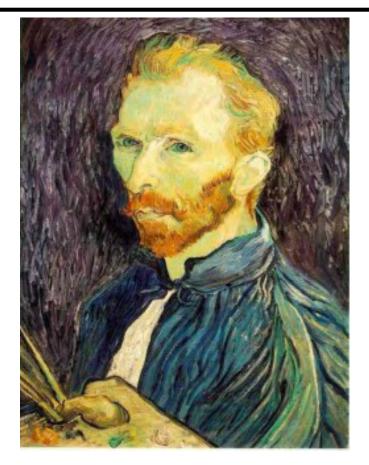
Throw away every other row and column to create a 1/2 size image - called *image sub-sampling*

Image sub-sampling



Aliasing! What do we do?

Gaussian (lowpass) pre-filtering



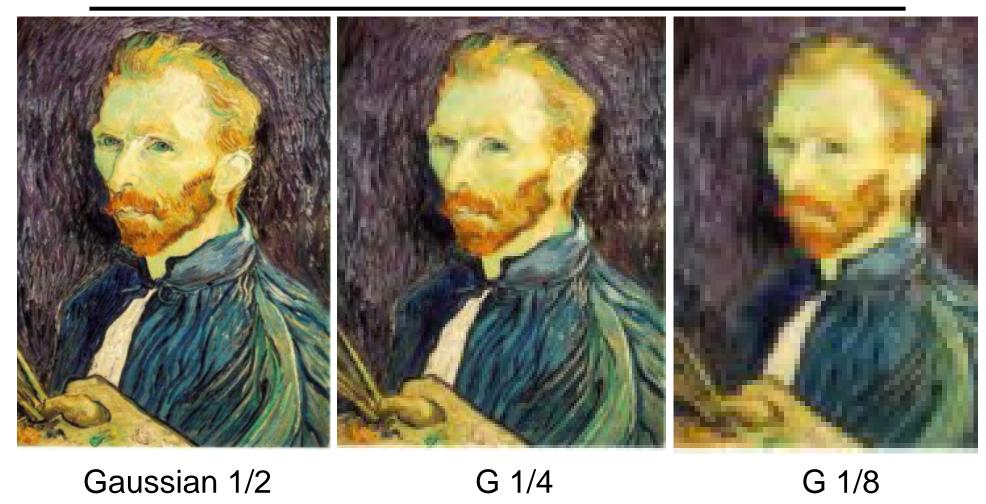
G 1/4

Gaussian 1/2

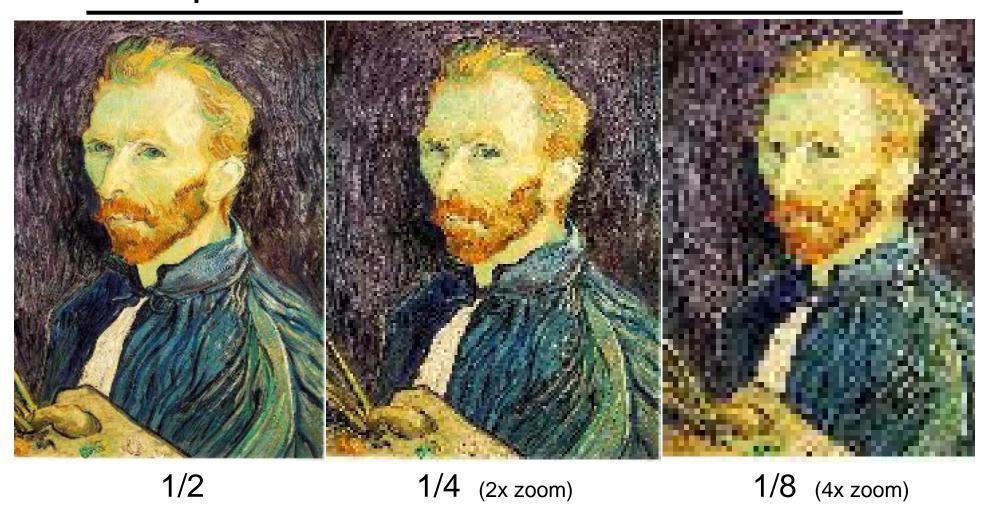
Solution: filter the image, then subsample

• Filter size should double for each ½ size reduction. Why?

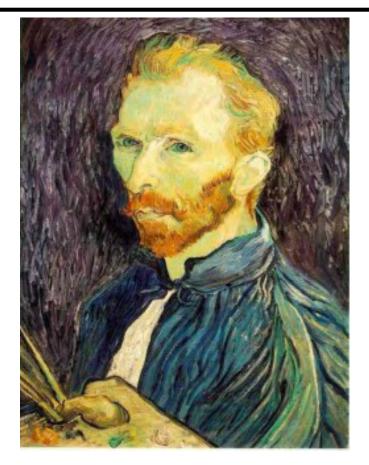
Subsampling with Gaussian pre-filtering



Compare with...



Gaussian (lowpass) pre-filtering



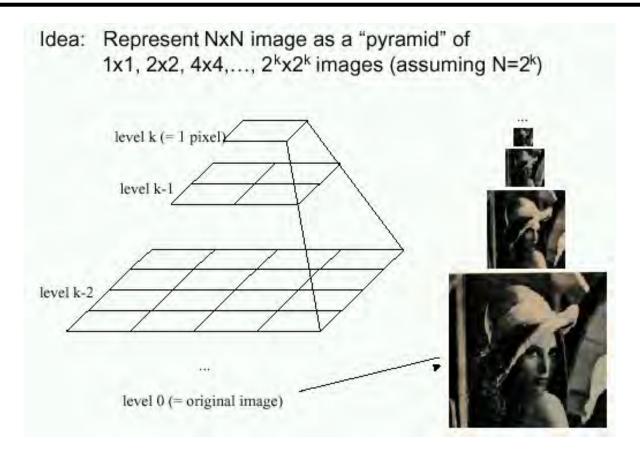
G 1/4

Gaussian 1/2

Solution: filter the image, then subsample

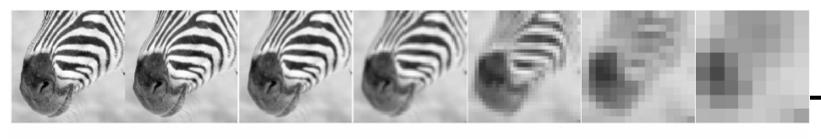
- Filter size should double for each ½ size reduction. Why?
- How can we speed this up?

Image Pyramids



Known as a Gaussian Pyramid [Burt and Adelson, 1983]

- In computer graphics, a mip map [Williams, 1983]
- A precursor to wavelet transform



256 512

128

64

32

16

8

A bar in the big images is a hair on the zebra's nose; in smaller images, a stripe; in the smallest, the animal's nose

What are they good for?

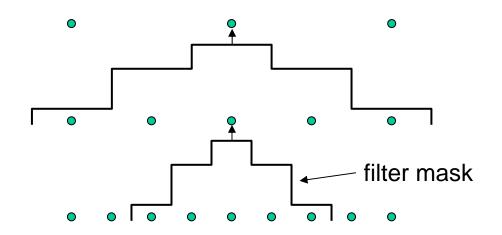
Improve Search

- Search over translations
 - Like project 1
 - Classic coarse-to-fine strategy
- Search over scale
 - Template matching
 - E.g. find a face at different scales

Pre-computation

- Need to access image at different blur levels
- Useful for texture mapping at different resolutions (called mip-mapping)

Gaussian pyramid construction



Repeat

- Filter
- Subsample

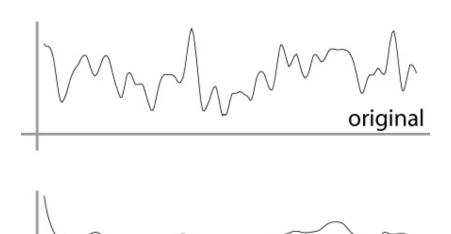
Until minimum resolution reached

can specify desired number of levels (e.g., 3-level pyramid)

The whole pyramid is only 4/3 the size of the original image!

Continuous convolution: warm-up

- Can apply sliding-window average to a continuous function just as well
 - output is continuous
 - integration replaces summation



smoothed

Continuous convolution

Sliding average expressed mathematically:

$$g_{\text{smooth}}(x) = \frac{1}{2r} \int_{x-r}^{x+r} g(t)dt$$

- note difference in normalization (only for box)
- Convolution just adds weights

$$(f \star g)(x) = \int_{-\infty}^{\infty} f(t)g(x - t)dt$$

- weighting is now by a function
- weighted integral is like weighted average
- again bounds are set by support of f(x)



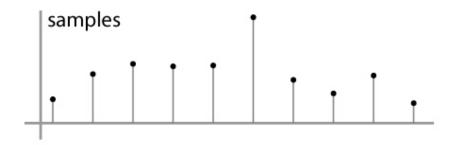
One more convolution

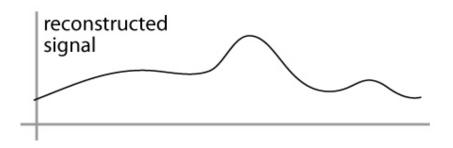
Continuous—discrete convolution

$$(a \star f)(x) = \sum_{i} a[i]f(x-i)$$
$$(a \star f)(x,y) = \sum_{i,j} a[i,j]f(x-i,y-j)$$

used for reconstruction and resampling

Reconstruction



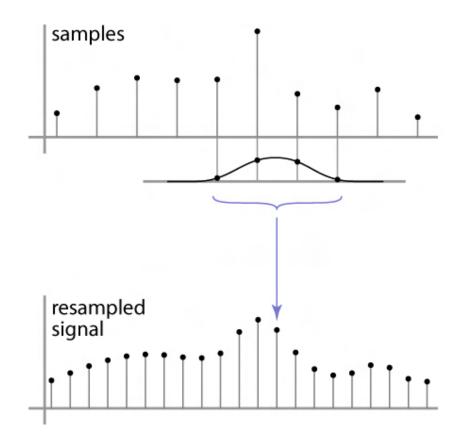


Resampling

- Changing the sample rate
 - in images, this is enlarging and reducing
- Creating more samples:
 - increasing the sample rate
 - "upsampling"
 - "enlarging"
- Ending up with fewer samples:
 - decreasing the sample rate
 - "downsampling"
 - "reducing"

Resampling

- Reconstruction creates a continuous function
 - forget its origins, go ahead and sample it

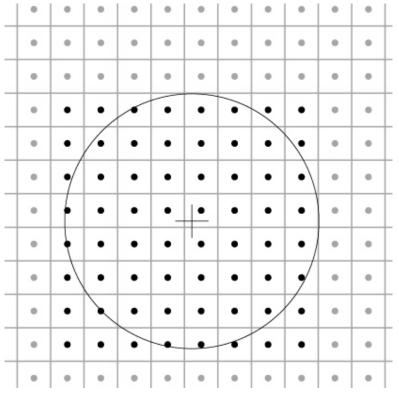


Cont.-disc. convolution in 2D

same convolution—just two variables now

$$(a \star f)(x,y) = \sum_{i,j} a[i,j]f(x-i,y-j)$$

- loop over nearby pixels, average using filter weight
- looks like discrete filter,
 but offsets are not integers
 and filter is continuous
- remember placement of filter relative to grid is variable



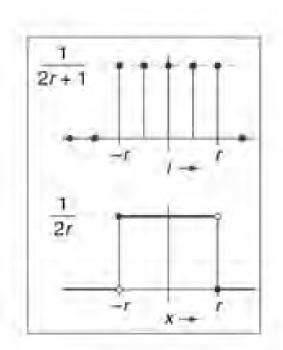
A gallery of filters

- Box filter
 - Simple and cheap
- Tent filter
 - Linear interpolation
- Gaussian filter
 - Very smooth antialiasing filter
- B-spline cubic
 - Very smooth

Box filter

$$a_{\text{bin},r}[i] = \begin{cases} 1/(2r+1) & |i| \leq r, \\ 0 & \text{otherwise.} \end{cases}$$

$$f_{\text{box},c}(x) = \begin{cases} 1/(2r) & -r \le x < r, \\ 0 & \text{otherwise.} \end{cases}$$

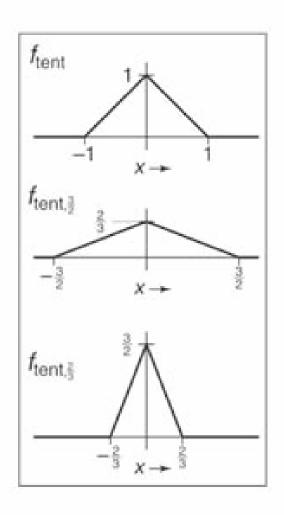


Cornell CS465 Fall 2006 . Lecture 6

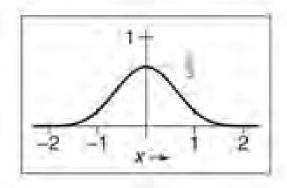
2006 Steve Marschner • 36

Tent filter

$$\begin{split} f_{\text{tent}}(x) &= \begin{cases} 1 - |x| & |x| < 1, \\ 0 & \text{otherwise}; \end{cases} \\ f_{\text{tent},r}(x) &= \frac{f_{\text{tent}}(x/r)}{r}. \end{split}$$

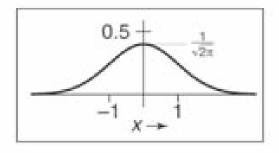


B-Spline cubic



$$I_B(x) = \frac{1}{6} \begin{cases} -3(1-|t|)^8 + 3(1-|t|)^2 + 3(1-|t|) + 1 & -1 \le t \le 1, \\ (2-|t|)^6 & 1 \le |t| \le 2, \\ 0 & \text{otherwise}. \end{cases}$$

Gaussian filter



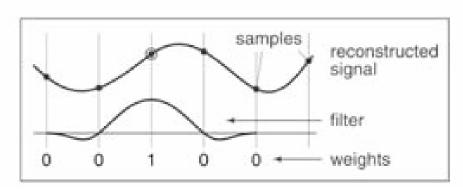
$$f_g(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$
.

Effects of reconstruction filters

- For some filters, the reconstruction process winds up implementing a simple algorithm
- Box filter (radius 0.5): nearest neighbor sampling
 - box always catches exactly one input point
 - it is the input point nearest the output point
 - so output[i, j] = input[round(x(i)), round(y(j))] x(i) computes the position of the output coordinate i on the input grid
- Tent filter (radius 1): linear interpolation
 - tent catches exactly 2 input points
 - weights are a and (1 a)
 - result is straight-line interpolation from one point to the next

Properties of filters

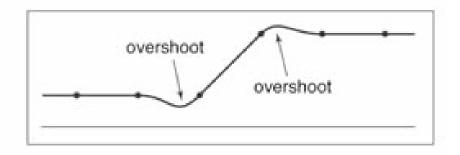
- Degree of continuity
- Impulse response
- Interpolating or no
- Ringing, or overshoot

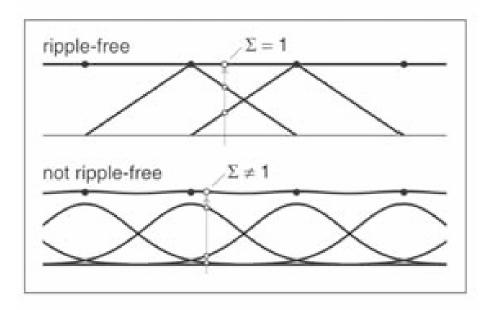


interpolating filter used for reconstruction

Ringing, overshoot, ripples

- Overshoot
 - caused by negative filter values
- Ripples
 - constant in, non-const. out
 - ripple free when:





Yucky details

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge
 - vary filter near edge

Median filters

- A Median Filter operates over a window by selecting the median intensity in the window.
- What advantage does a median filter have over a mean filter?
- Is a median filter a kind of convolution?

Comparison: salt and pepper noise

