High Dynamic Range Images

© Alyosha Efros

...with a lot of slides stolen from Paul Debevec and Yuanzhen Li,

15-463: Computational Photography Alexei Efros, CMU, Fall 2007

The Grandma Problem

Problem: Dynamic Range

Image

pixel (312, 284) = 42

42 photos?

Long Exposure

Short Exposure

0 to 255

Camera Calibration

• Geometric

How pixel coordinates relate to directions in the world

- Photometric
 - How pixel values relate to radiance amounts in the world

The Image Acquisition Pipeline

Imaging system response function

log Exposure = log (Radiance $* \Delta t$) (CCD photon count)

Varying Exposure

Camera is not a photometer!

- Limited dynamic range
 ⇒ Perhaps use multiple exposures?
- Unknown, nonlinear response
 ⇒ Not possible to convert pixel values to radiance
- Solution:
 - Recover response curve from multiple exposures, then reconstruct the *radiance map*

Recovering High Dynamic Range Radiance Maps from Photographs

Paul Debevec Jitendra Malik

Computer Science Division University of California at Berkeley

August 1997

Ways to vary exposure
Shutter Speed (*)

F/stop (aperture, iris)

Neutral Density (ND) Filters

Shutter Speed

- Ranges: Canon D30: 30 to 1/4,000 sec.
 Sony VX2000: 1/4 to 1/10.00
 - Sony VX2000: ¹/₄ to 1/10,000 sec.

- Pros:
- Directly varies the exposure
- Usually accurate and repeatable
- Issues:
- Noise in long exposures

Shutter Speed

- Note: shutter times usually obey a power series each "stop" is a factor of 2
- ¹/₄, 1/8, 1/15, 1/30, 1/60, 1/125, 1/250, 1/500, 1/1000 sec
- Usually really is:
- ¹/₄, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, 1/1024 sec

The Algorithm

Image series

Pixel Value Z = f(Exposure) Exposure = Radiance $\times \Delta t$ log Exposure = log Radiance + log Δt

Response Curve

Assuming unit radiance for each pixel

After adjusting radiances to obtain a smooth response

The Math

- Let g(z) be the *discrete* inverse response function
- For each pixel site *i* in each image *j*, want:

$$\ln Radiance + \ln \Delta t_j = g(Z_{ij})$$

• Solve the overdetermined linear system:

Matlab Code

function [g,lE]=gsolve(Z,B,l,w)

```
x = A\b; %% Solve the system using SVD
```

g = x(1:n); lE = x(n+1:size(x,1));

Results: Digital Camera

Kodak DCS460 1/30 to 30 sec

Recovered response curve

log Exposure

Reconstructed radiance map

Results: Color Film

• Kodak Gold ASA 100, PhotoCD

Recovered Response Curves

The Radiance Map

W/sr/m2 121.741 28.869 6.846 1.623 0.384 0.091 0.021 0.005

<section-header><section-header>

Linearly scaled to display device

Portable FloatMap (.pfm)

• 12 bytes per pixel, 4 for each channel

sign exponent

mantissa

Text header similar to Jeff Poskanzer's .ppm image format:

768 512 1 <binary image data>

Floating Point TIFF similar

Radiance Format (.pic, .hdr)

(145, 215, 87, 149) = $(145, 215, 87) * 2^{(149-128)} =$ (1190000, 1760000, 713000) (145, 215, 87, 103) = $(145, 215, 87) * 2^{(103-128)} =$ (0.00000432, 0.00000641, 0.00000259)

Ward, Greg. "Real Pixels," in Graphics Gems IV, edited by James Arvo, Academic Press, 1994

ILM's OpenEXR (.exr)

• 6 bytes per pixel, 2 for each channel, compressed

sign exponent mantissa

- Several lossless compression options, 2:1 typical
- Compatible with the "half" datatype in NVidia's Cg
- Supported natively on GeForce FX and Quadro FX
- Available at <u>http://www.openexr.net/</u>

Now What?

W/sr/m2 121.741 28.869 6.846 1.623 0.384 0.091 0.021 0.005

Tone Mapping

• How can we do this?

Linear scaling?, thresholding? Suggestions?

Simple Global Operator

- Compression curve needs to
 - Bring everything within rangeLeave dark areas alone
- In other words
 - Asymptote at 255Derivative of 1 at 0

Global Operator (Reinhart et al)

$$L_{display} = \frac{L_{world}}{1 + L_{world}}$$

Global Operator Results

Reinhart Operator

Darkest 0.1% scaled to display device

What do we see?

Vs.

What does the eye sees?

Figure 1: The range of luminances in the natural environment and associated visual parameters. After Hood (1986).

> The eye has a huge dynamic range Do we see a true radiance map?

Metamores

Can we use this for range compression?

Compressing Dynamic Range

Compressing and Companding High Dynamic Range Images with Subband Architectures

Yuanzhen Li, Lavanya Sharan, Edward Adelson Massachusetts Institute of Technology

Dynamic Range Problem

Range Compression

Method: Gamma or log on intensities. Problem: loss of detail.

Solution: filtering. Problem: halos.

Multiscale Subband Decomposition

lowpass residue

Choice of filters: Wavelets, QMFs, Laplacian, etc. They all worked.

Point Nonlinearity on Subbands

Problem: Nonlinear distortion.

Smooth Gain Control

Smooth Gain Control Reduces Distortion

Smooth Gain Control on Subbands

Ours

Reinhard et al. 2002

Fattal et al. 2002

Reinhard et al. 2002

Ours

Fattal et al. 2002

Reinhard et al. 2002

Reinhard et al. 2002

Fattal et al. 2002

Ours

Reinhard et al. 2002

Fattal et al. 2002

