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Camera CalibrationCamera Calibration

• Geometric
– How pixel coordinates relate to directions in the 

world 
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loglog Exposure = Exposure = loglog (Radiance(Radiance * * ΔΔtt))
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Varying ExposureVarying Exposure



Camera is not  a photometer!Camera is not  a photometer!

• Limited dynamic range
⇒ Perhaps use multiple exposures?

• Unknown, nonlinear response
⇒ Not possible to convert pixel values to 

radiance 
• Solution:

– Recover response curve from multiple 
exposures, then reconstruct the radiance map 
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Ways to vary exposureWays to vary exposure
Shutter Speed (*)

F/stop (aperture, iris)

Neutral Density (ND) Filters
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Shutter SpeedShutter Speed

• Ranges: Canon D30: 30 to 1/4,000 sec.
• Sony VX2000: ¼ to 1/10,000 sec.
• Pros:
• Directly varies the exposure
• Usually accurate and repeatable
• Issues:
• Noise in long exposures
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Shutter SpeedShutter Speed

• Note: shutter times usually obey a power 
series – each “stop” is a factor of 2 

• ¼, 1/8, 1/15, 1/30, 1/60, 1/125, 1/250, 1/500, 1/1000 
sec 

• Usually really is:

• ¼, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, 1/1024 
sec 
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The AlgorithmThe Algorithm
Image seriesImage seriesImage series
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Exposure = Radiance × ΔtExposure = Radiance ×
 

Δt
log Exposure = log Radiance +

 
log Δtlog Exposure = log Radiance +
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Pixel Value Z = f(Exposure)Pixel Value Z = f(Exposure)



Response CurveResponse Curve
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The MathThe Math
• Let g(z) be the discrete inverse response function
• For each pixel site i in each image j, want:

• Solve the overdetermined linear system:
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• Solve the overdetermined linear system:

fitting term smoothness term

ln Radiancei + lnΔtj − g(Zij )[ ]2

j=1

P

∑
i=1

N

∑ +λ ′ ′ g (z)2

z =Zmin

Zmax

∑

ln Radiancei +ln Δt j = g(Zij )



Matlab 
Code 

Matlab 
Code

function [g,lE]=gsolve(Z,B,l,w)

n = 256;
A = zeros(size(Z,1)*size(Z,2)+n+1,n+size(Z,1));
b = zeros(size(A,1),1);

k = 1;                %% Include the data-fitting equations
for i=1:size(Z,1)

for j=1:size(Z,2)
wij = w(Z(i,j)+1);
A(k,Z(i,j)+1) = wij; A(k,n+i) = -wij; b(k,1) = wij * B(i,j);
k=k+1;

end
end

A(k,129) = 1;         %% Fix the curve by setting its middle value to
k=k+1;

for i=1:n-2           %% Include the smoothness equations
A(k,i)=l*w(i+1); A(k,i+1)=-2*l*w(i+1); A(k,i+2)=l*w(i+1);
k=k+1;

end

x = A\b;              %% Solve the system using SVD

g = x(1:n);
lE = x(n+1:size(x,1));



Results: Digital CameraResults: Digital Camera
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Reconstructed radiance mapReconstructed radiance map



Results: Color FilmResults: Color Film
• Kodak Gold ASA 100, PhotoCD• Kodak Gold ASA 100, PhotoCD



Recovered Response CurvesRecovered Response Curves
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Linearly scaled toLinearly scaled to
display devicedisplay device



Portable FloatMap (.pfm)Portable FloatMap (.pfm)
• 12 bytes per pixel, 4 for each channel

sign exponent mantissa

PF
768 512
1
<binary image data>

Floating Point TIFF similarFloating Point TIFF similar

Text header similar to Jeff Poskanzer’s .ppm 
image format:



(145, 215, 87, 149)  =

(145, 215, 87) * 2^(149-128)  =

(1190000, 1760000, 713000)

(145, 215, 87, 149)  =

(145, 215, 87) * 2^(149-128)  =

(1190000, 1760000, 713000)

Red               Green               Blue             ExponentRed               Green               Blue             Exponent

32 bits / pixel32 bits / pixel

(145, 215, 87, 103)  =

(145, 215, 87) * 2^(103-128)  =

(0.00000432, 0.00000641, 0.00000259)  

(145, 215, 87, 103)  =

(145, 215, 87) * 2^(103-128)  =

(0.00000432, 0.00000641, 0.00000259)  

Ward, Greg. "Real Pixels," in Graphics Gems IV, edited by James Arvo, Academic Press, 1994

Radiance Format 
(.pic, .hdr) 

Radiance Format 
(.pic, .hdr)



ILM’s OpenEXR (.exr)ILM’s OpenEXR (.exr)
• 6 bytes per pixel, 2 for each channel, compressed

sign exponent mantissa

• Several lossless compression options, 2:1 typical
• Compatible with the “half” datatype in NVidia's Cg
• Supported natively on GeForce FX and Quadro FX

• Available at http://www.openexr.net/

http://www.openexr.net/


Now 
What? 
Now 

What?



Tone MappingTone Mapping
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• How can we do this?
Linear scaling?, thresholding?  Suggestions?
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Simple Global OperatorSimple Global Operator

• Compression curve needs to

– Bring everything within range
– Leave dark areas alone

• In other words

– Asymptote at 255
– Derivative of 1 at 0
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Global Operator (Reinhart et al)Global Operator (Reinhart et al)
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Global Operator ResultsGlobal Operator Results



Darkest Darkest 0.1%0.1% scaledscaled
to display deviceto display device

Reinhart OperatorReinhart Operator



What do we see?What do we see?

Vs.



What does the eye sees?What does the eye sees?

The eye has a huge dynamic range
Do we see a true radiance map?



MetamoresMetamores

Can we use this for range compression?
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Compressing and Companding 
High Dynamic Range Images with 

Subband Architectures 

Compressing and Companding 
High Dynamic Range Images with 
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Dynamic Range ProblemDynamic Range Problem

Source: Shree Nayar



Range CompressionRange Compression

Method: Gamma or log on intensities. 
Problem: loss of detail.

Solution: filtering.
Problem: halos.

+

+

compresslowpass

highpass

Halos!!



Multiscale Subband DecompositionMultiscale Subband Decomposition
spatial frequency

orientation

lowpass 
residue

Choice of filters: 
Wavelets, QMFs, Laplacian, etc.
They all worked.



Point Nonlinearity on SubbandsPoint Nonlinearity on Subbands
point nonlinearity

limits range

Original subband Modified subband

Problem: Nonlinear distortion.

flattened peak



smooth

gain(x) = b’(x) / b(x) =                      =  

Smooth Gain ControlSmooth Gain Control

x =



Smooth Gain Control Reduces 
Distortion 
Smooth Gain Control Reduces 
Distortion

Smooth gain controlPoint nonlinearity

Distorted. Distortion reduced.



Smooth Gain Control on SubbandsSmooth Gain Control on Subbands

rectify

blur

activity map gain map
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