
Automatic Image Alignment (direct)

15-463: Computational Photography
Alexei Efros, CMU, Fall 2006with a lot of slides stolen from

Steve Seitz and Rick Szeliski

Image Alignment

How do we align two images automatically?
Two broad approaches:

• Feature-based alignment
– Find a few matching features in both images
– compute alignment

• Direct (pixel-based) alignment
– Search for alignment where most pixels agree

Direct Alignment
The simplest approach is a brute force search (hw1)

• Need to define image matching function
– SSD, Normalized Correlation, edge matching, etc.

• Search over all parameters within a reasonable range:

e.g. for translation:
for tx=x0:step:x1,

for ty=y0:step:y1,
compare image1(x,y) to image2(x+tx,y+ty)

end;
end;

Need to pick correct x0,x1 and step
• What happens if step is too large?

Direct Alignment (brute force)
What if we want to search for more complicated
transformation, e.g. homography?

for a=a0:astep:a1,
for b=b0:bstep:b1,

for c=c0:cstep:c1,
for d=d0:dstep:d1,

for e=e0:estep:e1,
for f=f0:fstep:f1,

for g=g0:gstep:g1,
for h=h0:hstep:h1,

compare image1 to H(image2)
end; end; end; end; end; end; end; end;

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
y
x

ihg
fed
cba

w
wy'
wx'

Problems with brute force
Not realistic

• Search in O(N8) is problematic
• Not clear how to set starting/stopping value and step

What can we do?
• Use pyramid search to limit starting/stopping/step values
• For special cases (rotational panoramas), can reduce search

slightly to O(N4):
– H = K1R1R2

-1K2
-1 (4 DOF: f and rotation)

Alternative: gradient decent on the error function
• i.e. how do I tweak my current estimate to make the SSD

error go down?
• Can do sub-pixel accuracy
• BIG assumption?

– Images are already almost aligned (<2 pixels difference!)
– Can improve with pyramid

• Same tool as in motion estimation

Motion estimation: Optical flow

Will start by estimating motion of each pixel separately
Then will consider motion of entire image

Why estimate motion?
Lots of uses

• Track object behavior
• Correct for camera jitter (stabilization)
• Align images (mosaics)
• 3D shape reconstruction
• Special effects

Problem definition: optical flow

How to estimate pixel motion from image H to image I?
• Solve pixel correspondence problem

– given a pixel in H, look for nearby pixels of the same color in I

Key assumptions
• color constancy: a point in H looks the same in I

– For grayscale images, this is brightness constancy
• small motion: points do not move very far

This is called the optical flow problem

Optical flow constraints (grayscale images)

Let’s look at these constraints more closely
• brightness constancy: Q: what’s the equation?

• small motion: (u and v are less than 1 pixel)
– suppose we take the Taylor series expansion of I:

Optical flow equation
Combining these two equations

In the limit as u and v go to zero, this becomes exact

Optical flow equation

Q: how many unknowns and equations per pixel?

Intuitively, what does this constraint mean?
• The component of the flow in the gradient direction is determined
• The component of the flow parallel to an edge is unknown

This explains the Barber Pole illusion
http://www.sandlotscience.com/Ambiguous/barberpole.htm

Aperture problem

Aperture problem

Solving the aperture problem
How to get more equations for a pixel?

• Basic idea: impose additional constraints
– most common is to assume that the flow field is smooth locally
– one method: pretend the pixel’s neighbors have the same (u,v)

» If we use a 5x5 window, that gives us 25 equations per pixel!

RGB version
How to get more equations for a pixel?

• Basic idea: impose additional constraints
– most common is to assume that the flow field is smooth locally
– one method: pretend the pixel’s neighbors have the same (u,v)

» If we use a 5x5 window, that gives us 25*3 equations per pixel!

Lukas-Kanade flow
Prob: we have more equations than unknowns

• The summations are over all pixels in the K x K window
• This technique was first proposed by Lukas & Kanade (1981)

Solution: solve least squares problem
• minimum least squares solution given by solution (in d) of:

Conditions for solvability
• Optimal (u, v) satisfies Lucas-Kanade equation

When is This Solvable?
• ATA should be invertible
• ATA should not be too small due to noise

– eigenvalues λ1 and λ2 of ATA should not be too small
• ATA should be well-conditioned

– λ1/ λ2 should not be too large (λ1 = larger eigenvalue)
ATA is solvable when there is no aperture problem

Local Patch Analysis

Edge

– large gradients, all the same
– large λ1, small λ2

Low texture region

– gradients have small magnitude
– small λ1, small λ2

High textured region

– gradients are different, large magnitudes
– large λ1, large λ2

Observation
This is a two image problem BUT

• Can measure sensitivity by just looking at one of the images!
• This tells us which pixels are easy to track, which are hard

– very useful later on when we do feature tracking...

Errors in Lukas-Kanade
What are the potential causes of errors in this procedure?

• Suppose ATA is easily invertible
• Suppose there is not much noise in the image

When our assumptions are violated
• Brightness constancy is not satisfied
• The motion is not small
• A point does not move like its neighbors

– window size is too large
– what is the ideal window size?

Iterative Refinement
Iterative Lukas-Kanade Algorithm

1. Estimate velocity at each pixel by solving Lucas-Kanade equations
2. Warp H towards I using the estimated flow field

- use image warping techniques
3. Repeat until convergence

Revisiting the small motion assumption

Is this motion small enough?
• Probably not—it’s much larger than one pixel (2nd order terms dominate)
• How might we solve this problem?

Reduce the resolution!

image Iimage H

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine optical flow estimation

image Iimage J

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

Coarse-to-fine optical flow estimation

run iterative L-K

run iterative L-K

warp & upsample

.

.

.

Beyond Translation
So far, our patch can only translate in (u,v)
What about other motion models?

• rotation, affine, perspective

Same thing but need to add an appropriate Jacobian (see
Table 2 in Szeliski handout):

∑

∑
∇−=

∇∇=

i
t

i

I TTT

TTT

I)(JbA

JI)I(JAA

Image alignment

Goal: estimate single (u,v) translation for entire image
• Easier subcase: solvable by pyramid-based Lukas-Kanade

Lucas-Kanade for image alignment
Pros:

• All pixels get used in matching
• Can get sub-pixel accuracy (important for good mosaicing!)
• Relatively fast and simple

Cons:
• Prone to local minima
• Images need to be already well-aligned ☺

What if, instead, we extract important “features” from
the image and just align these?

Feature-based alignment
1. Find a few important features (aka Interest Points)
2. Match them across two images
3. Compute image transformation as per Project #3

How do we choose good features?
• They must prominent in both images
• Easy to localize
• Think how you did that by hand in Project #3
• Corners!

Feature Detection

Feature Matching
How do we match the features between the images?

• Need a way to describe a region around each feature
– e.g. image patch around each feature

• Use successful matches to estimate homography
– Need to do something to get rid of outliers

Issues:
• What if the image patches for several interest points look

similar?
– Make patch size bigger

• What if the image patches for the same feature look different due
to scale, rotation, etc.

– Need an invariant descriptor

Invariant Feature Descriptors
Schmid & Mohr 1997, Lowe 1999, Baumberg 2000, Tuytelaars & Van Gool

2000, Mikolajczyk & Schmid 2001, Brown & Lowe 2002, Matas et. al.
2002, Schaffalitzky & Zisserman 2002

