The Camera

(c) Tomasz Pluciennik

15-463: Computational Photography Alexei Efros, CMU, Fall 2006

How do we see the world?

Let's design a camera

- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?

Pinhole camera

Add a barrier to block off most of the rays

- This reduces blurring
- The opening known as the aperture
- How does this transform the image?

Pinhole camera model

Pinhole model:

- Captures pencil of rays all rays through a single point
- The point is called Center of Projection (COP)
- The image is formed on the **Image Plane**
- Effective focal length f is distance from COP to Image Plane

Dimensionality Reduction Machine (3D to 2D)

3D world

Point of observation

2D image

What have we lost?

- Angles
- Distances (lengths)

Funny things happen...

Parallel lines aren't...

Distances can't be trusted...

...but humans adopt!

Müller-Lyer Illusion

We don't make measurements in the image plane

Building a real camera

Camera Obscura

Camera Obscura, Gemma Frisius, 1558

The first camera

- Known to Aristotle
- Depth of the room is the effective focal length

Home-made pinhole camera

http://www.debevec.org/Pinhole/

Shrinking the aperture

Why not make the aperture as small as possible?

- Less light gets through
- Diffraction effects...

Shrinking the aperture

The reason for lenses

Image Formation using Lenses

Ideal Lens: Same projection as pinhole but gathers more light!

Lens Formula: $\frac{1}{i} + \frac{1}{o} = \frac{1}{f}$

- \bullet f is the focal length of the lens determines the lens's ability to bend (refract) light
- *f* different from the effective focal length *f* discussed before!

Focus

Focus and Defocus

A lens focuses light onto the film

- There is a specific distance at which objects are "in focus"
 - other points project to a "circle of confusion" in the image
- How can we change focus distance?

Varying Focus

Depth Of Field

Depth of Field

Aperture controls Depth of Field

Changing the aperture size affects depth of field

- A smaller aperture increases the range in which the object is approximately in focus
- But small aperture reduces amount of light need to increase exposure

Varying the aperture

Large apeture = small DOF

Small apeture = large DOF

Nice Depth of Field effect

Field of View (Zoom)

Field of View (Zoom)

From London and Upton

Field of View (Zoom)

FOV depends of Focal Length

Size of field of view governed by size of the camera retina:

$$\varphi = \tan^{-1}(\frac{d}{2f})$$

Smaller FOV = larger Focal Length

From Zisserman & Hartley

Field of View / Focal Length

Large FOV, small f Camera close to car

Small FOV, large f Camera far from the car

Fun with Focal Length (Jim Sherwood)

http://www.hash.com/users/jsherwood/tutes/focal/Zoomin.mov

Figure 5.2

Large Focal Length compresses depth

Lens Flaws

Lens Flaws: Chromatic Aberration

Dispersion: wavelength-dependent refractive index

(enables prism to spread white light beam into rainbow)

Modifies ray-bending and lens focal length: $f(\lambda)$

color fringes near edges of image

Corrections: add 'doublet' lens of flint glass, etc.

Chromatic Aberration

Near Lens Center

Near Lens Outer Edge

Radial Distortion (e.g. 'Barrel' and 'pin-cushion')

straight lines curve around the image center

Radial Distortion

Radial distortion of the image

- Caused by imperfect lenses
- Deviations are most noticeable for rays that pass through the edge of the lens

Radial Distortion

Modeling Projections

Modeling projection

The coordinate system

- We will use the pin-hole model as an approximation
- Put the optical center (Center Of Projection) at the origin
- Put the image plane (Projection Plane) in front of the COP
 Why?
- The camera looks down the negative z axis
 - we need this if we want right-handed-coordinates

Modeling projection

Projection equations

- Compute intersection with PP of ray from (x,y,z) to COP
- Derived using similar triangles (on board)

$$(x,y,z) \rightarrow (-d\frac{x}{z}, -d\frac{y}{z}, -d)$$

• We get the projection by throwing out the last coordinate:

$$(x, y, z) \rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

Homogeneous coordinates

Is this a linear transformation?

no—division by z is nonlinear

Trick: add one more coordinate:

$$(x,y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 $(x,y,z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$

homogeneous image coordinates

homogeneous scene coordinates

Converting from homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

Perspective Projection

Projection is a matrix multiply using homogeneous coordinates:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ -z/d \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

divide by third coordinate

This is known as perspective projection

- The matrix is the projection matrix
- Can also formulate as a 4x4

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ -z/d \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

divide by fourth coordinate
Slide by Steve Seitz

Orthographic Projection

Special case of perspective projection

Distance from the COP to the PP is infinite

- Also called "parallel projection"
- What's the projection matrix?

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \Rightarrow (x, y)$$

Spherical Projection

What if PP is spherical with center at COP? In spherical coordinates, projection is trivial:

$$(\theta, \phi) = (\theta, \phi, d)$$

Note: doesn't depend on focal length d!

Programming Assignment #1

Out tonight, due Sept. 11, 11:59pm

Easy stuff to get you started with Matlab

Matlab Tutorial

Bells and Whistles

- Deal with borders
- Play with distance functions
- Try stitching something else (areal maps, etc)

