## Image Processing



Pat Di Fruscia - DiFrusciaPhotography:com
15-463: Computational Photography

## What is an image?

We can think of an image as a function, $f$,
from $\mathrm{R}^{2}$ to R :

- $f(x, y)$ gives the intensity at position ( $x, y$ )
- Realistically, we expect the image only to be defined over a rectangle, with a finite range:
$-f:[a, b] \times[c, d] \rightarrow[0,1]$

A color image is just three functions pasted together. We can write this as a "vector-valued" function:

$$
f(x, y)=\left[\begin{array}{l}
r(x, y) \\
g(x, y) \\
b(x, y)
\end{array}\right]
$$

## Images as functions



## What is a digital image?

## We usually operate on digital (discrete)

 images:- Sample the 2D space on a regular grid
- Quantize each sample (round to nearest integer)

If our samples are $\Delta$ apart, we can write this as:
$f[i, j]=$ Quantize $\{f(i \Delta, j \Delta)\}$
The image can now be represented as a matrix of inteaer values

| 62 | 79 | 23 | 119 | 120 | 105 | 4 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 10 | 9 | 62 | 12 | 78 | 34 | 0 |
| 10 | 58 | 197 | 46 | 46 | 0 | 0 | 48 |
| 176 | 135 | 5 | 188 | 191 | 68 | 0 | 49 |
| 2 | 1 | 1 | 29 | 26 | 37 | 0 | 77 |
| 0 | 89 | 144 | 147 | 187 | 102 | 62 | 208 |
| 255 | 252 | 0 | 166 | 123 | 62 | 0 | 31 |
| 166 | 63 | 127 | 17 | 1 | 0 | 99 | 30 |

## Image Processing

An image processing operation typically defines a new image $g$ in terms of an existing image $f$. We can transform either the range of $f$.

$$
g(x, y)=t(f(x, y))
$$

Or the domain of $f$ :

$$
g(x, y)=f\left(t_{x}(x, y), t_{y}(x, y)\right)
$$

What kinds of operations can each perform?

## Image Processing

image filtering: change range of image

$$
g(x)=h(f(x))
$$


image warping: change domain of image


## Image Processing

image filtering: change range of image

$$
g(x)=h(f(x))
$$


image warping: change domain of image


$$
g(x)=f(h(x))
$$



## Point Processing

The simplest kind of range transformations are these independent of position $x, y$ :

$$
g=t(f)
$$

This is called point processing.

What can they do?
What's the form of $t$ ?

Important: every pixel for himself - spatial information completely lost!

## Basic Point Processing

FIGURE 3.3 Some basic gray-level transformation functions used for image enhancement.


## Negative


a b
FIGURE 3.4
(a) Original
digital
mammogram.
(b) Negative
image obtained using the negative transformation in
Eq. (3.2-1).
(Courtesy of G.E.
Medical Systems.)

## Log



## Power-law transformations



FIGURE 3.6 Plots of the equation $s=c r^{\gamma}$ for various values of $\gamma(c=1$ in all cases).
$s=c r^{\gamma}$

## Image Enhancement

## a b <br> c d

FIGURE 3.9
(a) Aerial image. (b)-(d) Results of applying the transformation in Eq. (3.2-3) with $c=1$ and
$\gamma=3.0,4.0$, and 5.0 , respectively. (Original image for this example courtesy of NASA.)


## Example: Gamma Correction



$$
\begin{gathered}
s=r^{\gamma} \\
\text { e.g. } 0.25=0.5^{2.0}
\end{gathered}
$$

http://www.cs.cmu.edu/~efros/java/gamma/gamma.html

## Contrast Stretching



a b c d
FIGURE 3.10
Contrast stretching. (a) Form of transformation function. (b) A low-contrast image. (c) Result of contrast stretching. (d) Result of thresholding. (Original image courtesy of
Dr. Roger Heady, Research School of Biological
Sciences,
Australian National University,
Canberra,
Australia.)

## Image Histograms




$$
s=T(r)
$$

a b
FIGURE 3.15 Four basic image types: dark, light, low contrast, high contrast, and their corresponding histograms. (Original image courtesy of Dr. Roger Heady, Research School of Biological Sciences, Australian National University, Canberra, Australia.)

## Histogram Equalization



FIGURE 3.17 (a) Images from Fig. 3.15. (b) Results of histogram equalization. (c) Cor-

## Neighborhood Processing (filtering)

Q: What happens if I reshuffle all pixels within the image?


A: It's histogram won't change. No point processing will be affected...

Need spatial information to capture this...
...switch slides

