Image-Based Lighting II

© Clément Poline

...with a lot of slides donated by Paul Debevec

15-463: Computational Photography Alexei Efros, CMU, Fall 2006

We can now illuminate synthetic objects with real light.

How do we add synthetic objects to a real scene?

Real Scene Example

Goal: place synthetic objects on table

Light Probe / Calibration Grid

Modeling the Scene

The Light-Based Room Model

Modeling the Scene

The Lighting Computation

local scene (estimated BRDF)

Rendering into the Scene

Background Plate

Rendering into the Scene

Objects and Local Scene matched to Scene

Differential Rendering

Local scene w/o objects, illuminated by model

Differential Rendering (2) Difference in local scene

IMAGE-BASED LIGHTING IN FIAT LUX

Paul Debevec, Tim Hawkins, Westley Sarokin, H. P. Duiker, Christine Cheng, Tal Garfinkel, Jenny Huang SIGGRAPH 99 Electronic Theater

HDR Image Series

1/4 sec

1/30 sec

1/250 sec

1/2000 sec

1/8000 sec

Stp1 Panorama

Assembled Panorama

Light Probe Images

Capturing a Spatially-Varying Lighting Environment

The Movie

Simulating the Glare in the

Human Eye

• Greg Spencer, Peter Shirley, Kurt Zimmerman, and Donald Greenberg.
Physically-based glare effects for digital images. SIGGRAPH 95.

Scattering in the eye SIGGRAPH 2004

What's the scattering model?

Frame Postprocessing in Rendering with Natural Light

Real objects under new lighting H2004

Rendering Light Probes as Light Sources

A Lighting Reproduction Approach

Composited Results

Environment Map from Single Image?2004

Eye as Light Probe! (Nayar et al) 12004

Cornea is an ellipsoid SIGGRAPH 2004

Figure 2: (a) An external view of the human eye. (b) A normal adult cornea can be modeled as an ellipsoid whose outer limit corresponds to the limbus. The eccentricity and radius of curvature at the apex can be assumed to be known.

Ellipsoid fitting

Putting it all together!

Reach for the sky

 How can we capture the whole sky as an environment map?

What happens with the sun?

Direct HDR Capture of the Sun and Sky

- Use Sigma 8mm
 fisheye lens and
 Canon EOS 1Ds to
 cover entire sky
- Use 3.0 ND filter on lens back to cover full range of light
 - Only 0.1% of light gets through!

Stumpfel, Jones, Wenger, Tchou, Hawkins, and Debevec. "Direct HDR Capture of the Sun and Sky". To appear in Afrigraph 2004.

Extreme HDR Image Series SIGGRAPH2004

1 sec f/4

1/4 sec f/4

1/30 sec f/4

1/30 sec f/16

1/250 sec f/16

1/1000 sec f/16

1/8000 sec f/16

Extreme HDR Image Series

SIGGRAPH2004

- sun closeup

Spectral Calibration - ND filters are NOT Necessarily Neutral!

Before correction

After correction based on MacBeth ColorChecker chart appearance

Two Complete days of HDR Lighting (see video)

(day averages at 1 min. intervals)

Feb 22, 2004

Feb 23, 2004

Lit by sun and sky

9 samples per pixel, 17 min.

16 samples per pixel, 46 min.

100 samples per pixel, 189 min.

A sunlit sample point

A shadowed sample point

HDRI Sky Probe

Clipped Sky + Sun Source

Lit by sun only, 21 min.

