Capturing Light... in man and machine

15-463: Computational Photography Alexei Efros, CMU, Fall 2006

Some figures from Steve Seitz, Steve Palmer, Paul Debevec, and Gonzalez et al.

Image Formation

Digital Camera

The Eye

Digital camera

A digital camera replaces film with a sensor array

- Each cell in the array is light-sensitive diode that converts photons to electrons
- Two common types
 - Charge Coupled Device (CCD)
 - CMOS
- http://electronics.howstuffworks.com/digital-camera.htm

Sensor Array

CMOS sensor

a b

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

Sampling and Quantization

FIGURE 2.16 Generating a digital image. (a) Continuous image. (b) A scan line from A to B in the continuous image, used to illustrate the concepts of sampling and quantization. (c) Sampling and quantization. (d) Digital scan line.

Interlace vs. progressive scan

1st field: Odd field

2nd field: Even field

One complete frame using interlaced scanning

One complete frame using progressive scanning

Progressive scan

http://www.axis.com/products/video/camera/progressive_scan.htm

Interlace

The Eye

The human eye is a camera!

- Iris colored annulus with radial muscles
- **Pupil** the hole (aperture) whose size is controlled by the iris
- What's the "film"?
 - photoreceptor cells (rods and cones) in the retina

The Retina

Retina up-close

Two types of light-sensitive receptors

Cones

cone-shaped less sensitive operate in high light color vision

Rods

rod-shaped highly sensitive operate at night gray-scale vision

Rod / Cone sensitivity

The famous sock-matching problem...

Distribution of Rods and Cones

Night Sky: why are there more stars off-center?

Electromagnetic Spectrum

Human Luminance Sensitivity Function

Visible Light

The Physics of Light

Any patch of light can be completely described physically by its spectrum: the number of photons (per time unit) at each wavelength 400 - 700 nm.

Photons (per ms.) $\begin{pmatrix} 400 & 500 & 600 & 700 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$ Wavelength (nm.)

The Psychophysical Correspondence There is no simple functional description for the perceived color of all lights under all viewing conditions, but A helpful constraint: Consider only physical spectra with normal distributions mean area # Photons variance

500

600

Wavelength (nm.)

400

© Stephen E. Palmer, 2002

700

More Spectra

Color Sensing in Camera (RGB)

http://www.cooldictionary.com/words/Bayer-filter.wikipedia

Practical Color Sensing: Bayer Grid

Estimate RGB at 'G' cels from neighboring values

http://www.cooldictionary.com/ words/Bayer-filter.wikipedia

RGB color space

FIGURE 6.8 RGB 24-bit color cube.

RGB cube

- Easy for devices
- But not perceptual
- Where do the grays live?
- Where is hue and saturation?

HSV

Hue, Saturation, Value (Intensity)

• RGB cube on its vertex

Decouples the three components (a bit) Use rgb2hsv() and hsv2rgb() in Matlab

Programming Assignment #1

- How to compare R,G,B channels?
- No right answer
 - Sum of Squared Differences (SSD):

$$ssd(u,v) = \sum_{(x,y)\in N} [I(u+x,v+y) - P(x,y)]^2$$

• Normalized Correlation (NCC):

$$ncc(u,v) = \frac{\sum_{(x,y)\in N} \left[I(u+x,v+y) - \overline{I}\right] \left[P(x,y) - \overline{P}\right]}{\sqrt{\sum_{(x,y)\in N} \left[I(u+x,v+y) - \overline{I}\right]^2 \sum_{(x,y)\in N} \left[P(x,y) - \overline{P}\right]^2}}$$

Image Pyramids (preview)

Known as a Gaussian Pyramid [Burt and Adelson, 1983]

- In computer graphics, a *mip map* [Williams, 1983]
- A precursor to *wavelet transform*

White Balance

White World / Gray World assumptions

Image Formation

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

f(x,y) = reflectance(x,y) * illumination(x,y)
Reflectance in [0,1], illumination in [0,inf]

Problem: Dynamic Range

Is Camera a photometer?

Long Exposure

Short Exposure

Image Acquisition Pipeline

Camera is NOT a photometer!

Varying Exposure

Figure 1: The range of luminances in the natural environment and associated visual parameters. After Hood (1986).

> The eye has a huge dynamic range Do we see a true radiance map?

Eye is not a photometer!

"Every light is a shade, compared to the higher lights, till you come to the sun; and every shade is a light, compared to the deeper shades, till you come to the night."

— John Ruskin, 1879

Cornsweet Illusion

Sine wave

Campbell-Robson contrast sensitivity curve

Metamers

Eye is sensitive to changes (more on this later...)