Image Warping

http://www.jeffrey-martin.com

15-463: Computational Photography Alexei Efros, CMU, Fall 2005

Image Warping

image filtering: change range of image

$$g(x) = T(f(x))$$

image warping: change domain of image

Image Warping

image filtering: change range of image

$$g(x) = h(T(x))$$

image warping: change domain of image

$$g(x) = f(T(x))$$

Parametric (global) warping

Examples of parametric warps:

translation

rotation

aspect

affine

perspective

cylindrical

Parametric (global) warping

Transformation T is a coordinate-changing machine:

$$p' = T(p)$$

What does it mean that *T* is global?

- Is the same for any point p
- can be described by just a few numbers (parameters)

Let's represent *T* as a matrix:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \mathbf{M} \begin{bmatrix} x \\ y \end{bmatrix}$$

Scaling

Scaling a coordinate means multiplying each of its components by a scalar

Uniform scaling means this scalar is the same for all components:

Scaling

Non-uniform scaling: different scalars per component:

Scaling

Scaling operation:

$$x' = ax$$

$$y' = by$$

Or, in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
scaling matrix S

What's inverse of S?

2-D Rotation

2-D Rotation


```
x = r \cos (\phi)
y = r \sin (\phi)
x' = r \cos (\phi + \theta)
y' = r \sin (\phi + \theta)
Trig Identity...
x' = r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta)
y' = r \sin(\phi) \sin(\theta) + r \cos(\phi) \cos(\theta)
```

Substitute...

$$x' = x \cos(\theta) - y \sin(\theta)$$

 $y' = x \sin(\theta) + y \cos(\theta)$

2-D Rotation

This is easy to capture in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\mathbf{R}$$

Even though $sin(\theta)$ and $cos(\theta)$ are nonlinear functions of θ ,

- x' is a linear combination of x and y
- y' is a linear combination of x and y

What is the inverse transformation?

- Rotation by $-\theta$
- For rotation matrices, det(R) = 1 so $\mathbf{R}^{-1} = \mathbf{R}^{T}$

What types of transformations can be represented with a 2x2 matrix?

2D Identity?

$$x' = x$$
$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Scale around (0,0)?

$$x' = s_x * x$$
 $y' = s_y * y$

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix} = \begin{bmatrix} \mathbf{s}_x & 0 \\ 0 & \mathbf{s}_y \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

What types of transformations can be represented with a 2x2 matrix?

2D Rotate around (0,0)?

$$x' = \cos \Theta * x - \sin \Theta * y$$

$$y' = \sin \Theta * x + \cos \Theta * y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Shear?

$$x' = x + sh_x * y$$
$$y' = sh_y * x + y$$

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix} = \begin{bmatrix} 1 & s\mathbf{h}_x \\ s\mathbf{h}_y & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

What types of transformations can be represented with a 2x2 matrix?

2D Mirror about Y axis?

$$x' = -x$$
$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Mirror over (0,0)?

$$x' = -x$$
$$y' = -y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

What types of transformations can be represented with a 2x2 matrix?

2D Translation?

$$x' = x + t_x$$
 $y' = y + t_y$
NO!

Only linear 2D transformations can be represented with a 2x2 matrix

All 2D Linear Transformations

Linear transformations are combinations of ...

- Scale,
- Rotation,
- · Shear, and
- Mirror

$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

Properties of linear transformations:

- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} i & j \\ k & l \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Linear Transformations as Change of Basis

$$\mathbf{p} = \begin{bmatrix} \mathbf{i} & \mathbf{v} & \mathbf{i} & \mathbf{v} & \mathbf{v} \\ \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \mathbf{i} & \mathbf{j} & \mathbf{k} \end{bmatrix} \begin{bmatrix} \mathbf{i} & \mathbf{i} & \mathbf{i} \\ \mathbf{i} & \mathbf{i} & \mathbf{j} \\ \mathbf{i} & \mathbf{j} & \mathbf{k} \end{bmatrix} \begin{bmatrix} \mathbf{i} & \mathbf{j} \\ \mathbf{i} & \mathbf{j} \\ \mathbf{i} & \mathbf{j} \end{bmatrix} = \begin{bmatrix} \mathbf{i} & \mathbf{i} & \mathbf{j} \\ \mathbf{i} & \mathbf{j} & \mathbf{j} \\ \mathbf{i} & \mathbf{j} & \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{i} & \mathbf{j} \\ \mathbf{i} & \mathbf{j} \\ \mathbf{i} & \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{i} & \mathbf{j} \\ \mathbf{i} & \mathbf{j} \\ \mathbf{i} & \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{i} & \mathbf{j} \\ \mathbf{i} & \mathbf{j} \\ \mathbf{i} & \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} \\ \mathbf{j} \\ \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} \\ \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} \\ \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} \\ \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} \\ \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} \\ \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} \\ \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} \\ \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} \\ \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} \\ \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} \\ \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} \\ \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} \\ \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} \\ \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j} \\ \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{j} & \mathbf{j} \\ \mathbf{j$$

Any linear transformation is a basis!!!

- What's the inverse transform?
- How can we change from any basis to any basis?
- What if the basis are orthogonal?

Q: How can we represent translation as a 3x3 matrix?

$$x' = x + t_x$$

$$y' = y + t_y$$

Homogeneous coordinates

 represent coordinates in 2 dimensions with a 3-vector

Q: How can we represent translation as a 3x3 matrix?

$$x' = x + t_x$$
$$y' = y + t_y$$

A: Using the rightmost column:

$$\mathbf{Translation} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

Translation

Example of translation

Homogeneous Coordinates

Add a 3rd coordinate to every 2D point

- (x, y, w) represents a point at location (x/w, y/w)
- (x, y, 0) represents a point at infinity
- (0, 0, 0) is not allowed

Convenient coordinate system to represent many useful transformations

Basic 2D Transformations

Basic 2D transformations as 3x3 matrices

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Translate

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & sh_x & 0 \\ sh_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Rotate

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{s}_x & 0 & 0 \\ 0 & \mathbf{s}_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Scale

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & s\mathbf{h}_x & 0 \\ s\mathbf{h}_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Shear

Affine Transformations

- **Translations**

Affine transformations are combinations of ...

• Linear transformations, and

• Translations

$$\begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Properties of affine transformations:

- Origin does not necessarily map to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition
- Models change of basis

Projective Transformations

Projective transformations ...

- Affine transformations, and
- Projective warps

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Properties of projective transformations:

- Origin does not necessarily map to origin
- Lines map to lines
- Parallel lines do not necessarily remain parallel
- Ratios are not preserved
- Closed under composition
- Models change of basis

Matrix Composition

Transformations can be combined by matrix multiplication

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

$$\mathbf{p}' = \mathbf{T}(\mathbf{t}_{\mathsf{x}}, \mathbf{t}_{\mathsf{y}}) \qquad \mathbf{R}(\Theta) \qquad \mathbf{S}(\mathbf{s}_{\mathsf{x}}, \mathbf{s}_{\mathsf{y}}) \qquad \mathbf{p}$$

2D image transformations

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$egin{bmatrix} egin{bmatrix} oldsymbol{I} oldsymbol{t} oldsymbol{t} oldsymbol{t} \end{bmatrix}_{2 imes 3}$			
rigid (Euclidean)	$igg[egin{array}{c c} igg[oldsymbol{R} & oldsymbol{t} \end{array}igg]_{2 imes 3}$			\Diamond
similarity	$\left[\begin{array}{c c} sR & t\end{array}\right]_{2\times 3}$			\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$			
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$			

These transformations are a nested set of groups

Closed under composition and inverse is a member

Image warping

Given a coordinate transform (x',y') = h(x,y) and a source image f(x,y), how do we compute a transformed image g(x',y') = f(T(x,y))?

Forward warping

Send each pixel f(x,y) to its corresponding location (x',y') = T(x,y) in the second image

Q: what if pixel lands "between" two pixels?

Forward warping

Send each pixel f(x,y) to its corresponding location (x',y') = T(x,y) in the second image

Q: what if pixel lands "between" two pixels?

A: distribute color among neighboring pixels (x',y')

Known as "splatting"

Inverse warping

Get each pixel g(x',y') from its corresponding location $(x,y) = T^{-1}(x',y')$ in the first image

Q: what if pixel comes from "between" two pixels?

Inverse warping

Get each pixel g(x',y') from its corresponding location $(x,y) = T^{-1}(x',y')$ in the first image

Q: what if pixel comes from "between" two pixels?

A: Interpolate color value from neighbors

nearest neighbor, bilinear, Gaussian, bicubic

Bilinear interpolation

Sampling at f(x,y):

$$f(x,y) = (1-a)(1-b) f[i,j] +a(1-b) f[i+1,j] +ab f[i+1,j+1] +(1-a)b f[i,j+1]$$

Forward vs. inverse warping

Q: which is better?

A: usually inverse—eliminates holes

however, it requires an invertible warp function—not always possible...