Multiple View Geometry

...with a lot of slides stolen from Steve Seitz and Jianbo Shi

15-463: Computational Photography

Our Goal

The Plenoptic Function

$$
P\left(\theta, \phi, \lambda, t, V_{X}, V_{Y}, V_{Z}\right)
$$

How can we compress this into something manageable?

Stereo Reconstruction

The Stereo Problem

- Shape from two (or more) images
- Biological motivation

Why do we have two eyes?

Cyclope
vS.
Odysseus

1. Two is better than one

2. Depth from Convergence

Human performance: up to 6-8 feet

3. Depth from binocular disparity

P : converging point

C: object nearer projects to the outside of the P, disparity $=+$

F: object farther projects to the inside of the P, disparity = -

Sign and magnitude of disparity

Stereo

Stereo

Basic Principle: Triangulation

- Gives reconstruction as intersection of two rays
- Requires
- calibration
- point correspondence

Stereo correspondence

Determine Pixel Correspondence

- Pairs of points that correspond to same scene point

Epipolar Constraint

- Reduces correspondence problem to 1D search along conjugate epipolar lines

Stereo image rectification

Stereo image rectification

Image Reprojection

- reproject image planes onto common plane parallel to line between optical centers
- a homography (3×3 transform) applied to both input images
- pixel motion is horizontal after this transformation

- C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision. IEEE Conf. Computer Vision and Pattern Recognition, 1999.

Stereo Rectification

$$
\sqrt{\square}
$$

Your basic stereo algorithm

For each epipolar line
For each pixel in the left image

- compare with every pixel on same epipolar line in right image
- pick pixel with minimum match cost

Improvement: match windows

- This should look familar...
- Can use Lukas-Kanade or discrete search (latter more common)

Window size

$\mathrm{W}=3$

$\mathrm{W}=20$
Effect of window size

- Smaller window
$+$
-
- Larger window

Stereo results

- Data from University of Tsukuba
- Similar results on other images without ground truth

Scene

Ground truth

Results with window search

Window-based matching
Ground truth (best window size)

Better methods exist...

State of the art method
Boykov et al., Fast Approximate Energy Minimization via Graph Cuts, International Conference on Computer Vision, September 1999.

Ground truth

Depth from disparity

input image (1 of 2)

depth map

3D rendering
[Szeliski \& Kang ‘95]

$$
\text { disparity }=x-x^{\prime}=\frac{\text { baseline } * f}{z}
$$

Stereo reconstruction pipeline

Steps

- Calibrate cameras
- Rectify images
- Compute disparity
- Estimate depth

What will cause errors?

- Camera calibration errors
- Poor image resolution
- Occlusions
- Violations of brightness constancy (specular reflections)
- Large motions
- Low-contrast image regions

Stereo matching

Need texture for matching

Julesz-style Random Dot Stereogram

Active stereo with structured light

Li Zhang's one-shot stereo

Project "structured" light patterns onto the object

- simplifies the correspondence problem

Active stereo with structured light

Laser scanning

Digital Michelangelo Project
http://graphics.stanford.edu/projects/mich/

Optical triangulation

- Project a single stripe of laser light
- Scan it across the surface of the object
- This is a very precise version of structured light scanning

Portable 3D laser scanner (this one by Minolta)

Real-time stereo

Nomad robot searches for meteorites in Antartica http://www.frc.ri.cmu.edu/projects/meteorobot/index.html

Used for robot navigation (and other tasks)

- Several software-based real-time stereo techniques have been developed (most based on simple discrete search)

Structure from Motion

Reconstruct

- Scene geometry
- Camera motion

Three approaches

(b) Hybrid Approach

(a) Geometry-Based

Outline of a simple algorithm (1)

- Based on constraints
- Input to the algorithm (1): two images

Outline of a simple algorithm (2)

- Input to the algorithm (2):

User select edges and corners

Outline of a simple algorithm (3)

- Camera Position and Orientation

Determine the position and orientation of camera

Outline of a simple algorithm (4)

- Computing projection matrix and Reconstruction

Outline of a simple algorithm (5)

- Compute 3D textured triangles

View-Dependant Texture Mapping

Figure 12: The weighting function used in view-dependent texture mapping. The pixel in the virtual view corresponding to the point on the model is assigned a weighted average of the corresponding pixels in actual views 1 and 2 . The weights w_{1} and w_{2} are inversely inversely proportional to the magnitude of angles a_{1} and a_{2}. Alternately, more sophisticated weighting functions based on expected foreshortening and image resampling can be used.

Facade

Façade (Debevec et al) inputs

Façade (Debevec et al)

