Convolution and Edge Detection

15-463: Computational Photography Alexei Efros, CMU, Fall 2005

Some slides from Steve Seitz

Fourier spectrum

Fun and games with spectra

Gaussian filtering

A Gaussian kernel gives less weight to pixels further from the center of the window

1	1	2	1
$\frac{-}{16}$	2	4	2
гU	1	2	1

H[u, v]

This kernel is an approximation of a Gaussian function:

Mean vs. Gaussian filtering

Convolution

Remember cross-correlation: $G = H \otimes F$

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

A **convolution** operation is a cross-correlation where the filter is flipped both horizontally and vertically before being applied to the image:

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

It is written:

$$G = H \star F$$

Suppose H is a Gaussian or mean kernel. How does convolution differ from cross-correlation?

The Convolution Theorem

The greatest thing since sliced (banana) bread!

• The Fourier transform of the convolution of two functions is the product of their Fourier transforms

$$\mathbf{F}[g * h] = \mathbf{F}[g]\mathbf{F}[h]$$

• The inverse Fourier transform of the product of two Fourier transforms is the convolution of the two inverse Fourier transforms

$$F^{-1}[gh] = F^{-1}[g] * F^{-1}[h]$$

• **Convolution** in spatial domain is equivalent to **multiplication** in frequency domain!

Fourier Transform pairs

2D convolution theorem example

 $|F(s_x, s_y)|$

h(x,y)

g(x,y)

 $|H(s_x, s_y)|$

Edges in images

Image gradient

The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

The gradient points in the direction of most rapid change in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The gradient direction is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

how does this relate to the direction of the edge?
 The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Effects of noise

Consider a single row or column of the image

• Plotting intensity as a function of position gives a signal

Where is the edge?

Solution: smooth first

Derivative theorem of convolution

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$

This saves us one operation:

Laplacian of Gaussian

Where is the edge?

Zero-crossings of bottom graph

2D edge detection filters

 ∇^2 is the **Laplacian** operator:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

```
q = fspecial('qaussian',15,2);
imagesc(q)
surfl(q)
gclown = conv2(clown,g,'same');
imagesc(conv2(clown, [-1 1], 'same'));
imagesc(conv2(gclown, [-1 1], 'same'));
dx = conv2(q, [-1 \ 1], 'same');
imagesc(conv2(clown,dx,'same');
lg = fspecial('log', 15, 2);
lclown = conv2(clown,lg,'same');
imagesc(lclown)
imagesc(clown + .2*lclown)
```

What does blurring take away?

original

What does blurring take away?

smoothed (5x5 Gaussian)

Edge detection by subtraction

Why does this work?

smoothed - original

Gaussian - image filter

What is happening?

Unsharp Masking

 $+ \alpha$

