Video Texture

15-463: Computational Photography Alexei Efros, CMU, Fall 2005

Weather Forecasting for Dummies ${ }^{\text {TM }}$

Let's predict weather:

- Given today's weather only, we want to know tomorrow's
- Suppose weather can only be \{Sunny, Cloudy, Raining\}

The "Weather Channel" algorithm:

- Over a long period of time, record:
- How often S followed by R
- How often S followed by S
- Etc.
- Compute percentages for each state:
- P(R|S), P(S|S), etc.
- Predict the state with highest probability!
- It's a Markov Chain

Markov Chain

$$
\left(\begin{array}{lll}
0.3 & 0.6 & 0.1 \\
0.4 & 0.3 & 0.3 \\
0.2 & 0.4 & 0.4
\end{array}\right)
$$

What if we know today and yestarday's weather?

Text Synthesis

[Shannon,'48] proposed a way to generate English-looking text using N-grams:

- Assume a generalized Markov model
- Use a large text to compute prob. distributions of each letter given N-1 previous letters
- Starting from a seed repeatedly sample this Markov chain to generate new letters
- Also works for whole words

WE NEED TO EAT CAKE

Mark V. Shaney (Bell Labs)

Results (using alt.singles corpus):

- "As I've commented before, really relating to someone involves standing next to impossible."
- "One morning I shot an elephant in my arms and kissed him."
- "I spent an interesting evening recently with a grain of salt"

Video Textures

Arno Schödl
 Richard Szeliski David Salesin Irfan Essa

Microsoft Research, Georgia Tech

Still photos

Video clips

Video textures

Problem statement

video clip

video texture

Our approach

Finding good transitions

- Compute L_{2} distance $D_{i, j}$ between all frames. \qquad

Similar frames make good transitions

Markov chain representation

Similar frames make good transitions

Transition costs

- Transition from i to j if successor of i is similar to j
- Cost function: $C_{i \rightarrow j}=D_{i+1, j}$

Transition probabilities

-Probability for transition $\mathrm{P}_{\mathrm{i} \rightarrow j}$ inversely related to cost:

$$
\text { - } P_{i \rightarrow j} \sim \exp \left(-C_{i \rightarrow j} / \sigma^{2}\right)
$$

high σ
low σ

Preserving dynamics

Preserving dynamics

Preserving dynamics

- Cost for transition $i \rightarrow j$

$$
\text { - } C_{i \rightarrow j}=\sum_{k=-N}^{N-1} w_{k} D_{i+k+1, j+k}
$$

Preserving dynamics - effect

- Cost for transition $i \rightarrow j$

$$
\text { - } C_{i \rightarrow j}=\sum_{k=-N}^{N-1} w_{k} D_{i+k+1, j+k}
$$

Dead ends

- No good transition at the end of sequence

Future cost

- Propagate future transition costs backward
- Iteratively compute new cost
- $F_{i \rightarrow j}=C_{i \rightarrow j}+\alpha \min _{k} F_{j \rightarrow k}$

Future cost

- Propagate future transition costs backward
- Iteratively compute new cost
- $F_{i \rightarrow j}=C_{i \rightarrow j}+\alpha \min _{k} F_{j \rightarrow k}$

Future cost

- Propagate future transition costs backward
- Iteratively compute new cost
- $F_{i \rightarrow j}=C_{i \rightarrow j}+\alpha \min _{k} F_{j \rightarrow k}$

Future cost

- Propagate future transition costs backward
- Iteratively compute new cost
- $F_{i \rightarrow j}=C_{i \rightarrow j}+\alpha \min _{k} F_{j \rightarrow k}$

Future cost

- Propagate future transition costs backward
- Iteratively compute new cost
- $F_{i \rightarrow j}=C_{i \rightarrow j}+\alpha \min _{k} F_{j \rightarrow k}$
- Q-learning

Future cost - effect

Finding good loops

- Alternative to random transitions
- Precompute set of loops up front

Visual discontinuities

- Problem: Visible "Jumps"

Crossfading

- Solution: Crossfade from one sequence to the other.

Morphing

- Interpolation task:
${ }_{5}^{2}\left[A+\frac{2}{5}\left[B++\frac{1}{5}\right]\right.$

Morphing

- Interpolation task:

$$
\frac{2}{5}\left[A+\frac{2}{5} B+\frac{1}{5} \square\right.
$$

- Compute correspondence between pixels of all frames

Morphing

- Interpolation task:

$$
\frac{2}{5} \mathrm{~A}+\frac{2}{5} \mathrm{~B}+\frac{1}{5} \mathrm{C}
$$

- Compute correspondence between pixels of all frames

- Interpolate pixel position and color in morphed frame
- based on [Shum 2000]

Results - crossfading/morphing

Results - crossfading/morphing

Crossfading

Frequent jump \& crossfading

Video portrait

- Useful for web pages

Region-based analysis

- Divide video up into regions

- Generate a video texture for each region

Automatic region analysis

Video-based animation

- Like sprites computer games

Video sprite extraction

blue screen matting and velocity estimation

Video sprite control

- Augmented transition cost:
$C_{i \rightarrow j}^{\text {Animation }}=\alpha \underbrace{C_{i \rightarrow j}}+\beta$ angle velocity vector
Similarity term Control term

Interactive fish

Lord of the Flies

Summary

- Video clips \rightarrow video textures
- define Markov process
- preserve dynamics
- avoid dead-ends
- disguise visual discontinuities

Motion Analysis \& Synthesis [Efros '03]

- What are they doing?
- Activity recognition, surveillance, anti-terrorism
- Can we do the same?
- Motion retargeting, movies, video games, etc.

Gathering action data

- Low resolution, noisy data
- Moving camera
- Occlusions

Figure-centric Representation

- Stabilized spatio-temporal volume
- No translation information
- All motion caused by person's limbs
- Good news: indifferent to camera motion
- Bad news: hard!
- Good test to see if actions, not just translation, are being captured

Remembrance of Things Past

- "Explain" novel motion sequence with bits and pieces of previously seen video clips

Challenge: how to compare motions?

How to describe motion?

- Appearance
- Not preserved across different clothing
- Gradients (spatial, temporal)
- same (e.g. contrast reversal)
- Edges
- Too unreliable
- Optical flow
- Explicitly encodes motion
- Least affected by appearance
- ...but too noisy

Motion Descriptor

Image frame

F_{x}, F_{y}

$F_{x}^{-}, F_{x}^{+}, F_{y}^{-}, F_{y}^{+}$

Optical flow $F_{x, y}$

blurred $F_{x}^{-}, F_{x}^{+}, F_{y}^{-}, F_{y}^{+}$

Comparing motion descriptors

frame-to-frame similarity matrix

I matrix

blurry I

motion-to-motion similarity matrix

Recognizing Tennis

- Red bars show classification results

"Do as I Do" Motion Synthesis

ㄷாாாாாாாா

- Matching two things:
- Motion similarity across sequences
- Appearance similarity within sequence
- Dynamic Programming

Smoothness for Synthesis

- $W_{\text {act }}$ is similarity between source and target frames
- $W_{\text {opp }}$ is appearance similarity within target frames
- For every source frame i, find best target frame π_{i}
- by maximizing following cost function:

$$
\sum_{i=1}^{n} \alpha_{a c t} W_{a c t}\left(i, \pi_{i}\right)+\sum_{i=2}^{n} \alpha_{a p p} W_{a p p}\left(\pi_{i}, \pi_{i-1}+1\right)
$$

- Optimize using dynamic programming

"Do as I Do"

Source Motion
Source Appearance

Result

"Do as I Say" Synthesis

- Synthesize given action labels
- e.g. video game control

"Do as I Say"

- Red box shows when constraint is applied

Application: Motion Retargeting

- Rendering new character into existing footage
- Algorithm
- Track original character
- Find matches from new character
- Erase original character
- Render in new character
- Need to worry about occlusions

Context-based Image Correction

 Input sequence

3 closest frames

median images

Actor Replacement

SHOW VIDEO

