Video Texture

© A.A. Efros

15-463: Computational Photography Alexei Efros, CMU, Fall 2005

Weather Forecasting for Dummies[™]

Let's predict weather:

- Given today's weather only, we want to know tomorrow's
- Suppose weather can only be {Sunny, Cloudy, Raining}
- The "Weather Channel" algorithm:
 - Over a long period of time, record:
 - How often S followed by R
 - How often S followed by S
 - Etc.
 - Compute percentages for each state:
 - P(R|S), P(S|S), etc.
 - Predict the state with highest probability!
 - It's a Markov Chain

Markov Chain

What if we know today and yestarday's weather?

[Shannon,'48] proposed a way to generate English-looking text using N-grams:

- Assume a generalized Markov model
- Use a large text to compute prob. distributions of each letter given N-1 previous letters
- Starting from a seed repeatedly sample this Markov chain to generate new letters
- Also works for whole words

WE NEED TO EAT CAKE

Results (using alt.singles corpus):

- "As I've commented before, really relating to someone involves standing next to impossible."
- "One morning I shot an elephant in my arms and kissed him."
- "I spent an interesting evening recently with a grain of salt"

Video Textures

Arno Schödl Richard Szeliski David Salesin Irfan Essa

Microsoft Research, Georgia Tech

Still photos

Video clips

Video textures

Problem statement

video texture

Our approach

• How do we find good transitions?

Finding good transitions

• Compute L_2 distance $D_{i, j}$ between all frames frames frame iframe j

Similar frames make good transitions

Markov chain representation

Similar frames make good transitions

Transition costs

 Transition from i to j if successor of i is similar to j

• Cost function:
$$C_{i \rightarrow j} = D_{i+1, j}$$

Transition probabilities

high σ

•Probability for transition $P_{i \rightarrow j}$ inversely related to cost:

•
$$P_{i \rightarrow j} \sim \exp\left(-C_{i \rightarrow j} / \sigma^2\right)$$

IOW σ

Preserving dynamics

Preserving dynamics

Preserving dynamics

• Cost for transition $i \rightarrow j$ • $C_{i \rightarrow j} = \sum_{k = -N}^{N-1} w_k D_{i+k+1, j+k}$

Preserving dynamics – effect

• Cost for transition $i \rightarrow j$ • $C_{i \rightarrow j} = \sum_{k = -N}^{N-1} w_k D_{i+k+1, j+k}$

Dead ends

No good transition at the end of sequence

- Propagate future transition costs backward
- Iteratively compute new cost

$$F_{i \to j} = C_{i \to j} + \alpha \min_{k} F_{j \to k}$$

- Propagate future transition costs backward
- Iteratively compute new cost

$$F_{i \to j} = C_{i \to j} + \alpha \min_{k} F_{j \to k}$$

- Propagate future transition costs backward
- Iteratively compute new cost

$$F_{i \to j} = C_{i \to j} + \alpha \min_{k} F_{j \to k}$$

- Propagate future transition costs backward
- Iteratively compute new cost

$$F_{i \to j} = C_{i \to j} + \alpha \min_{k} F_{j \to k}$$

- Propagate future transition costs backward
- Iteratively compute new cost

•
$$F_{i \to j} = C_{i \to j} + \alpha \min_k F_{j \to k}$$

FND

3

Q-learning

Future cost – effect

Finding good loops

- Alternative to random transitions
- Precompute set of loops up front

Visual discontinuities

• Problem: Visible "Jumps"

Crossfading

• Solution: Crossfade from one sequence to the other.

Morphing

Interpolation task:

$$\frac{2}{5}$$
 A + $\frac{2}{5}$ B + $\frac{1}{5}$ C

Morphing

Interpolation task:

$$\frac{2}{5}$$
 A + $\frac{2}{5}$ B + $\frac{1}{5}$ C

• Compute correspondence between pixels of all frames

Morphing

Interpolation task:

$$\frac{2}{5}$$
 A + $\frac{2}{5}$ B + $\frac{1}{5}$ C

- Compute correspondence between pixels of all frames
- Interpolate pixel position and color in morphed frame
- based on [Shum 2000]

Results – crossfading/morphing

Results – crossfading/morphing

Jump Cut Crossfade Morph

Crossfading

Frequent jump & crossfading

Video portrait

Useful for web pages

Region-based analysis

Divide video up into regions

Generate a video texture for each region

Automatic region analysis

Video-based animation

- Like sprites computer games
- Extract sprites from real video
- Interactively control desired motion

©1985 Nintendo of America Inc.

Video sprite extraction

blue screen matting and velocity estimation

Video sprite control

Augmented transition cost:

Interactive fish

1.

Lord of the Flies

Summary

- Video clips \rightarrow video textures
 - define Markov process
 - preserve dynamics
 - avoid dead-ends
 - disguise visual discontinuities

Motion Analysis & Synthesis [Efros '03]

- What are they doing?
 - Activity recognition, surveillance, anti-terrorism
- Can we do the same?
 - Motion retargeting, movies, video games, etc.

Gathering action data

- Low resolution, noisy data
- Moving camera
- Occlusions

Figure-centric Representation

- Stabilized spatio-temporal volume
 - No translation information
 - All motion caused by person's limbs
 - Good news: indifferent to camera motion
 - Bad news: hard!
- Good test to see if <u>actions</u>, not just translation, are being captured

•		•	?		-		-	-	1	-	-	-
?	-	9	ş	ę	-	ę	2	-	1	-	1	1
?	*	-	\$	ę	-	ę	9	-	-	-	1	-
;	-	-		•	-	ę	9	-	-	1		-
9	-	-	-	ę	-	-	9	0.0	-	2	\$	and the
	\$		-	•	-	-	-	-	-	-	-	100
	\$		-	9	?	-	ę	-	-	?	-	200
	2	.00	9	\$	-	-	ġ	-	Ŷ	7	-	-

Remembrance of Things Past

• "Explain" novel motion sequence with bits and pieces of previously seen video clips

<u>Challenge:</u> how to compare motions?

How to describe motion?

- Appearance
 - Not preserved across different clothing
- Gradients (spatial, temporal)
 - same (e.g. contrast reversal)
- Edges
 - Too unreliable
- Optical flow
 - Explicitly encodes motion
 - Least affected by appearance
 - ...but too noisy

Motion Descriptor

Image frame

Optical flow $F_{x,y}$

Comparing motion descriptors

frame-to-frame similarity matrix I matrix

blurry I

motion-to-motion similarity matrix

Recognizing Tennis

• Red bars show classification results

"Do as I Do" Motion Synthesis

- Matching two things:
 - Motion similarity across sequences
 - Appearance similarity within sequence
- Dynamic Programming

Smoothness for Synthesis

- W_{act} is similarity between source and target frames
- W_{app} is appearance similarity within target frames
- For every source frame *i*, find best target frame π_i
- by maximizing following cost function:

$$\sum_{i=1}^{n} \alpha_{act} W_{act}(i,\pi_{i}) + \sum_{i=2}^{n} \alpha_{app} W_{app}(\pi_{i},\pi_{i-1}+1)$$

• Optimize using dynamic programming

"Do as I Do"

Source Motion

Source Appearance

3400 Frames

Result

"Do as I Say" Synthesis

Synthesize given action labels
– e.g. video game control

• Red box shows when constraint is applied

Application: Motion Retargeting

- Rendering new character into existing footage
- Algorithm
 - Track original character
 - Find matches from new character
 - Erase original character
 - Render in new character
 - Need to worry about occlusions

Context-based Image Correction

Input sequence

3 closest frames

Actor Replacement

SHOW VIDEO