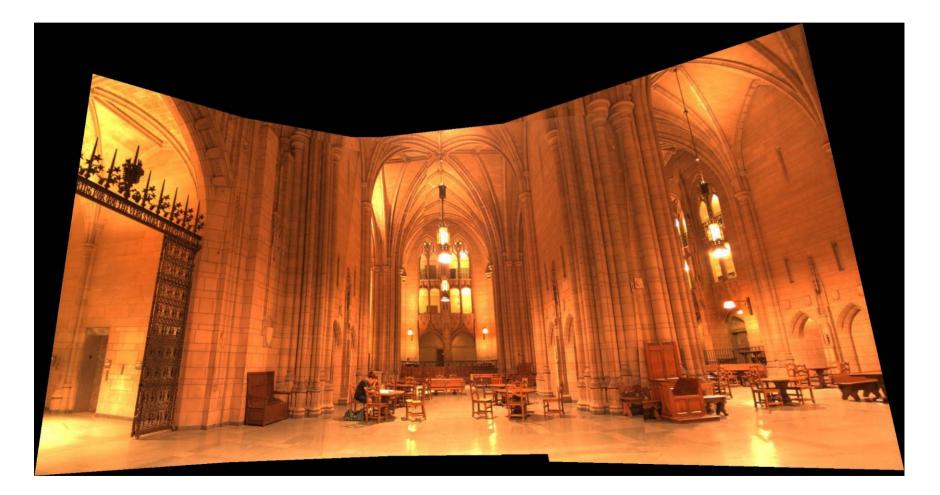
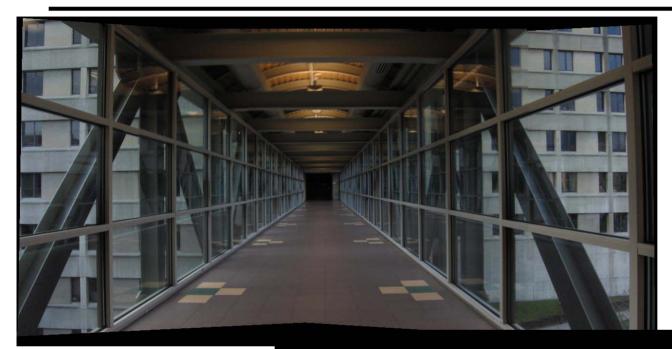
Feature Matching and RANSAC

© Krister Parmstrand

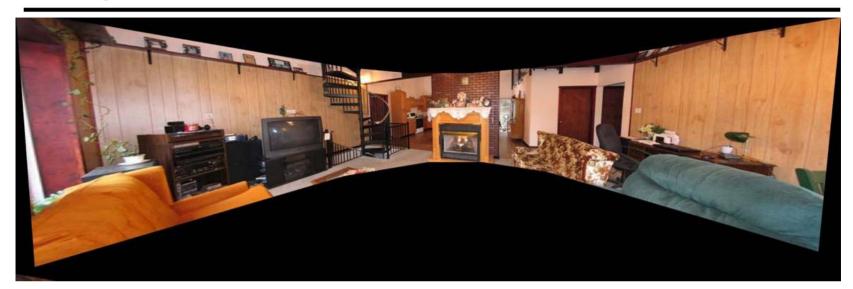
with a lot of slides stolen from Steve Seitz and Rick Szeliski 15-463: Computational Photography Alexei Efros, CMU, Fall 2005



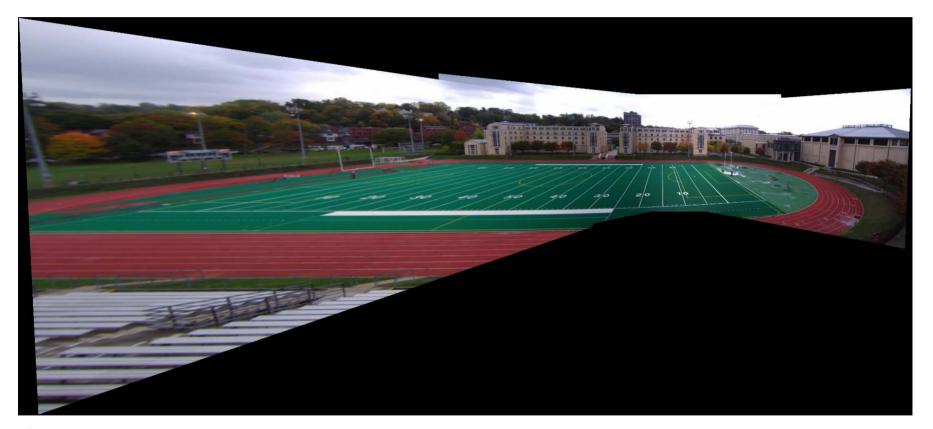
mrom



heegunl



jmacalli



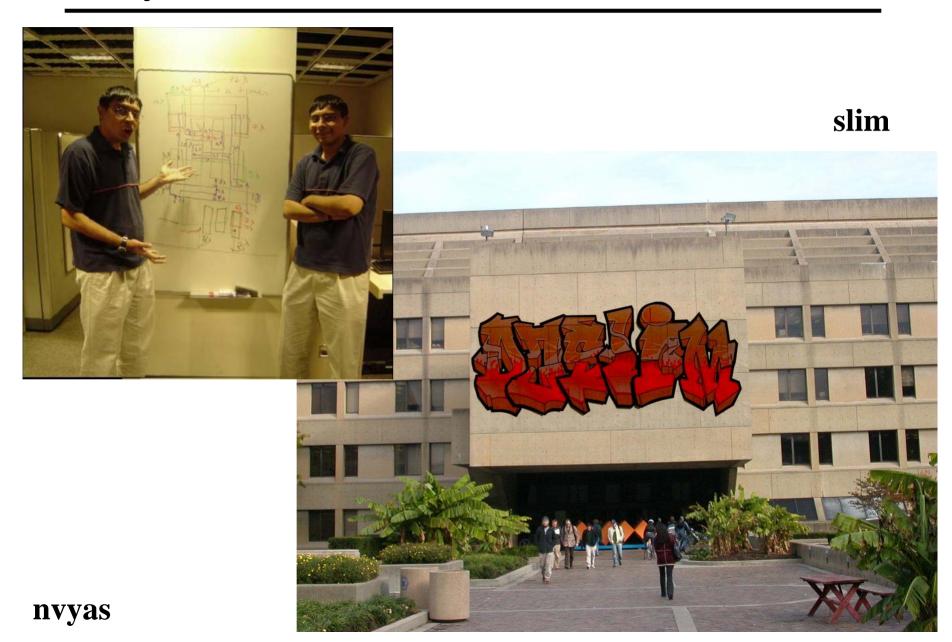
lms

cmcamero

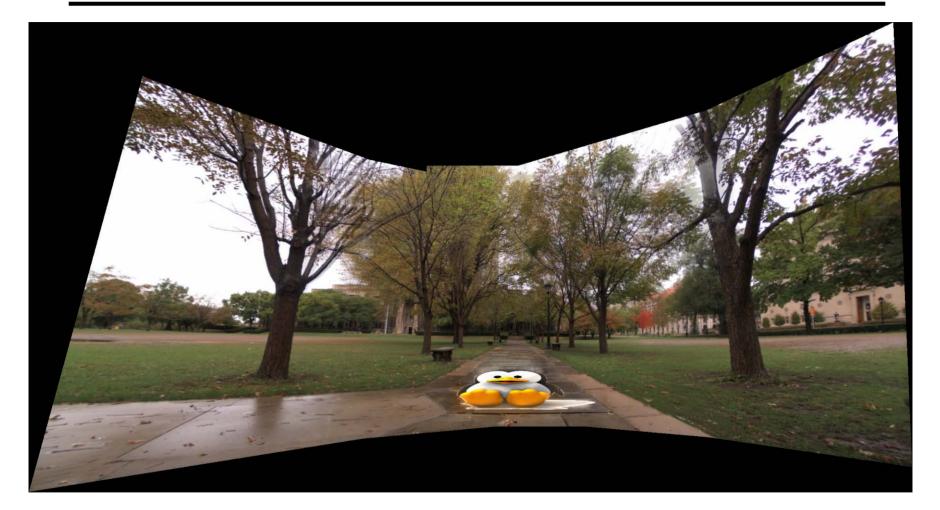


slim

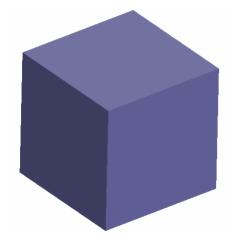
cmcamero



lms



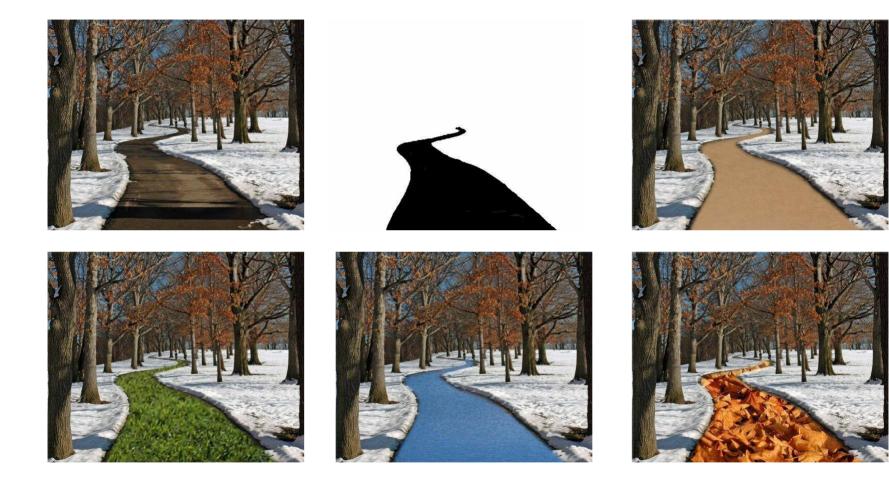
mrom



heegunl

cmcamero

bhon



chenyuwu

slim

Multi-Scale Oriented Patches

Interest points

- Multi-scale Harris corners
- Orientation from blurred gradient
- Geometrically invariant to rotation

Descriptor vector

- Bias/gain normalized sampling of local patch (8x8)
- Photometrically invariant to affine changes in intensity

[Brown, Szeliski, Winder, CVPR'2005]

Descriptor Vector

Orientation = blurred gradient

Rotation Invariant Frame

• Scale-space position (x, y, s) + orientation (θ)

Detections at multiple scales

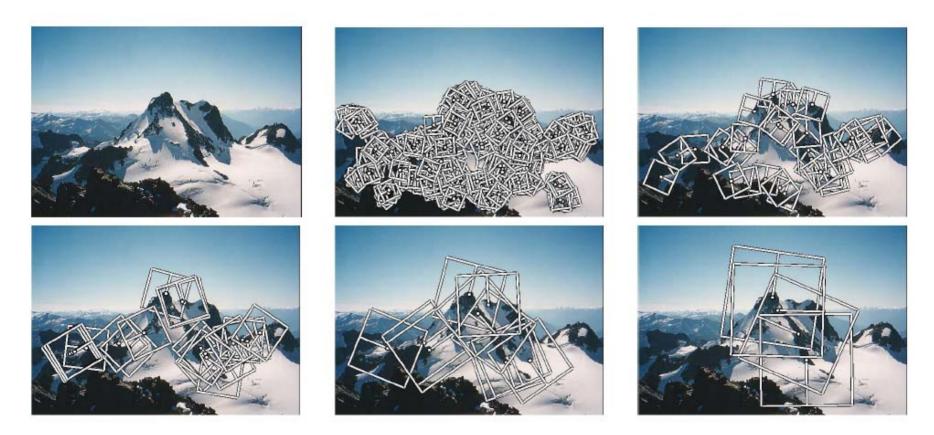


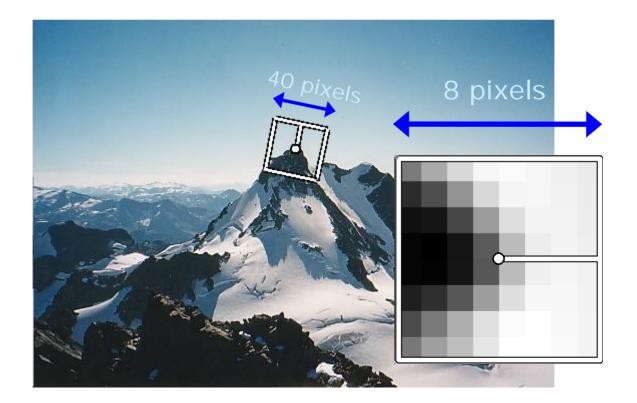
Figure 1. Multi-scale Oriented Patches (MOPS) extracted at five pyramid levels from one of the Matier images. The boxes show the feature orientation and the region from which the descriptor vector is sampled.

MOPS descriptor vector

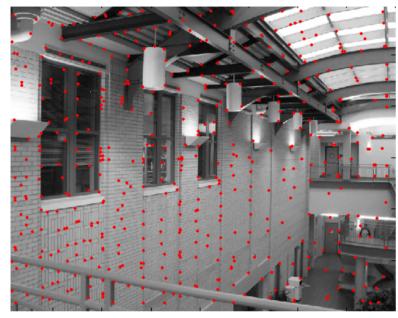
8x8 oriented patch

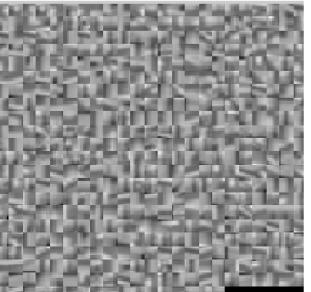
• Sampled at 5 x scale

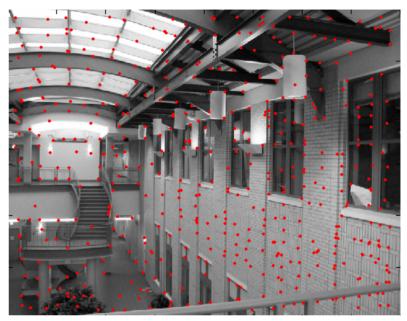
Bias/gain normalisation: $I' = (I - \mu)/\sigma$

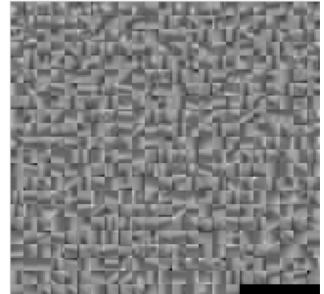


Feature matching







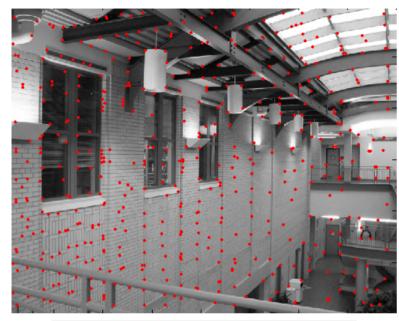


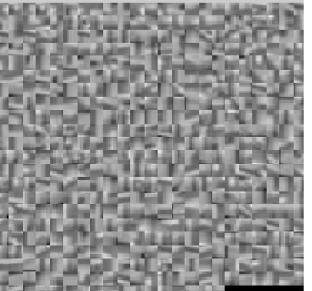
?

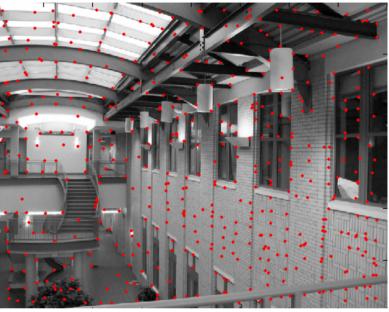
Feature matching

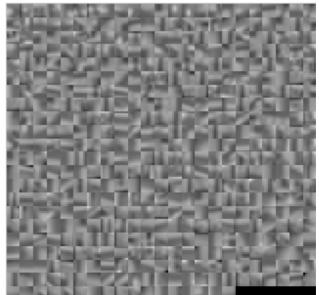
- Exhaustive search
 - for each feature in one image, look at *all* the other features in the other image(s)
- Hashing
 - compute a short descriptor from each feature vector, or hash longer descriptors (randomly)
- Nearest neighbor techniques
 - *k*-trees and their variants

What about outliers?







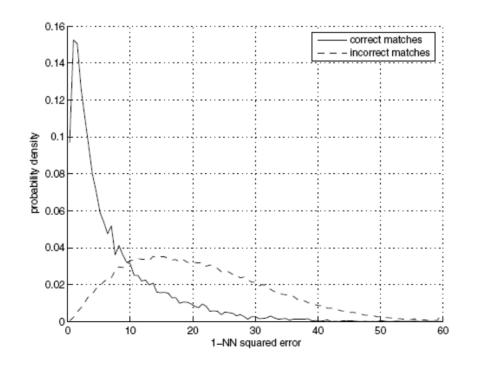


Feature-space outlier rejection

Let's not match all features, but only these that have "similar enough" matches?

How can we do it?

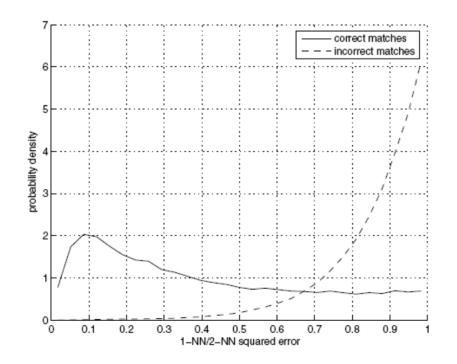
- SSD(patch1,patch2) < threshold
- How to set threshold?



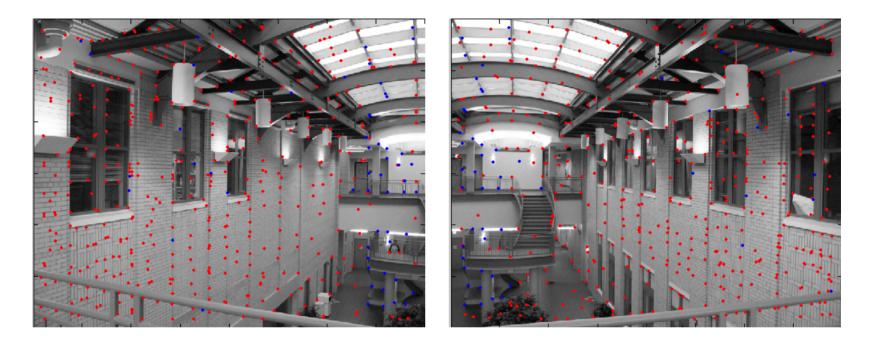
Feature-space outlier rejection

A better way [Lowe, 1999]:

- 1-NN: SSD of the closest match
- 2-NN: SSD of the second-closest match
- Look at how much better 1-NN is than 2-NN, e.g. 1-NN/2-NN
- That is, is our best match so much better than the rest?



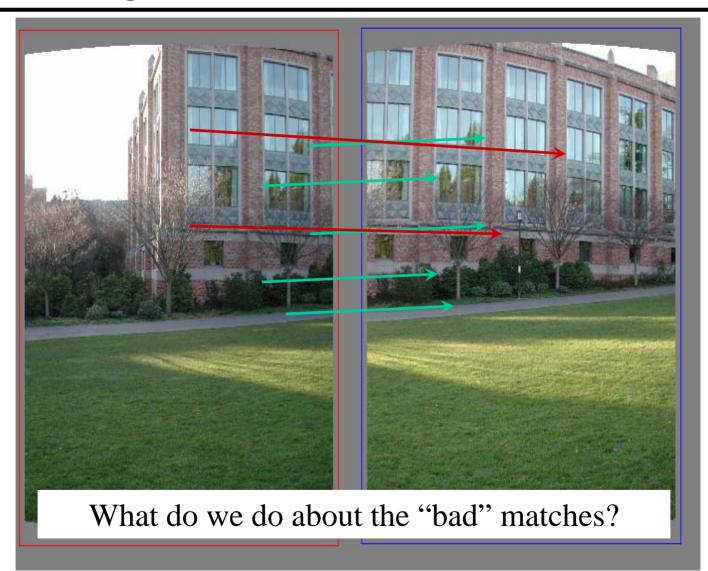
Feature-space outliner rejection



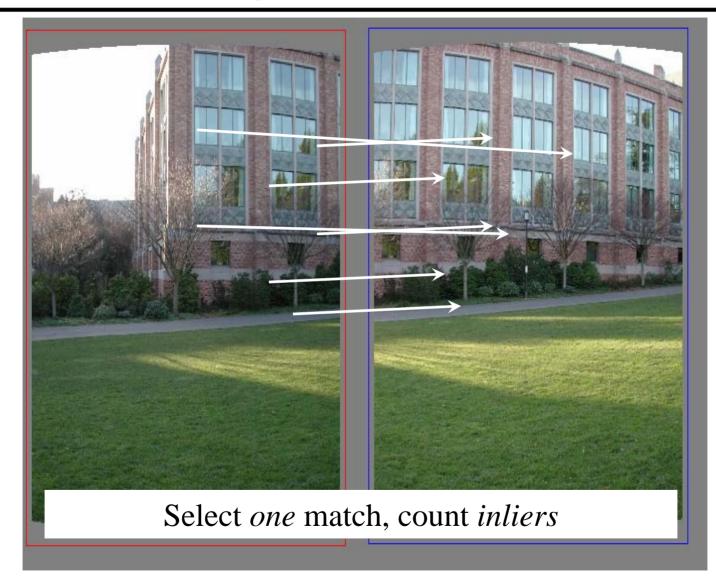
Can we now compute H from the blue points?

- No! Still too many outliers...
- What can we do?

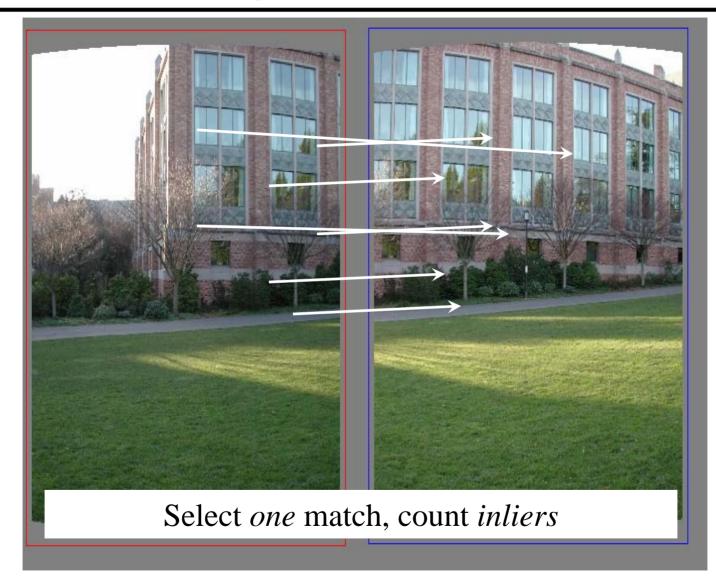
Matching features



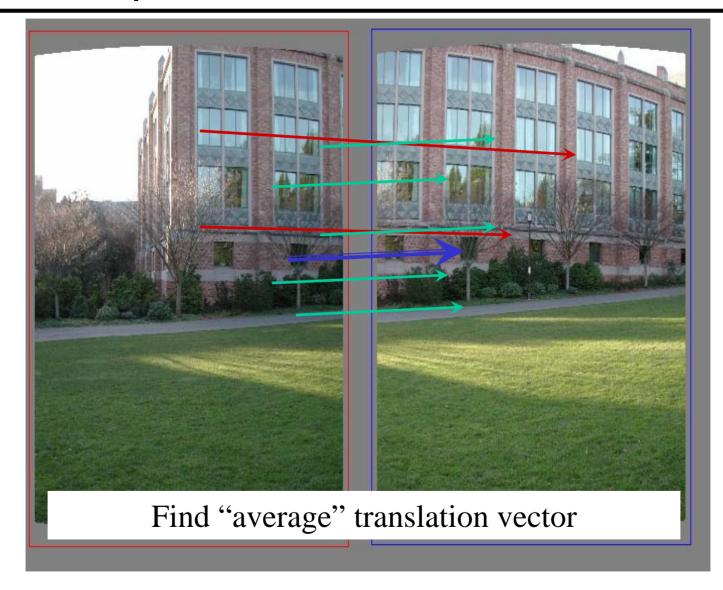
<u>RAndom SAmple Consensus</u>



<u>RAndom SAmple Consensus</u>



Least squares fit

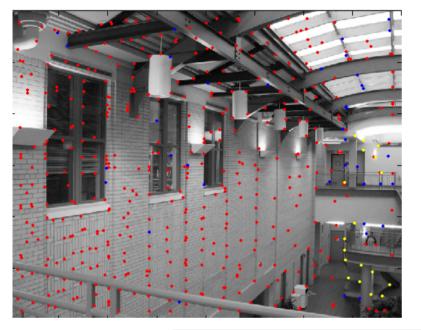


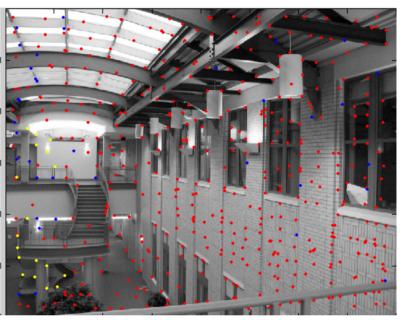
RANSAC for estimating homography

RANSAC loop:

- 1. Select four feature pairs (at random)
- 2. Compute homography H (exact)
- 3. Compute *inliers* where $SSD(p_i', H p_i) < \varepsilon$
- 4. Keep largest set of inliers
- 5. Re-compute least-squares H estimate on all of the inliers

RANSAC





Example: Recognising Panoramas

M. Brown and D. Lowe, University of British Columbia

1D Rotations (θ)

• Ordering \Rightarrow matching images

1D Rotations (θ)

• Ordering \Rightarrow matching images

1D Rotations (θ)

• Ordering \Rightarrow matching images

1D Rotations (θ)

• Ordering \Rightarrow matching images

- 2D Rotations (θ, φ)
 - Ordering \Rightarrow matching images

1D Rotations (θ)

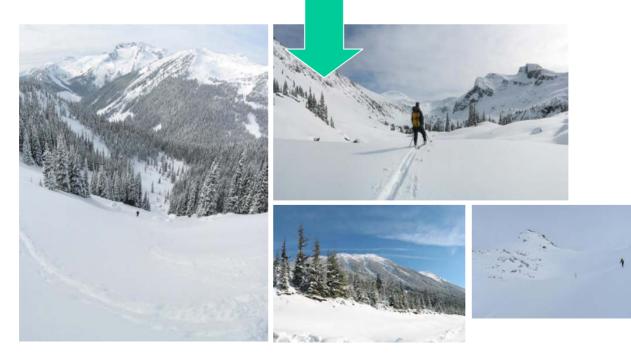
• Ordering \Rightarrow matching images

- 2D Rotations (θ, φ)
 - Ordering \Rightarrow matching images

1D Rotations (θ)

• Ordering \Rightarrow matching images

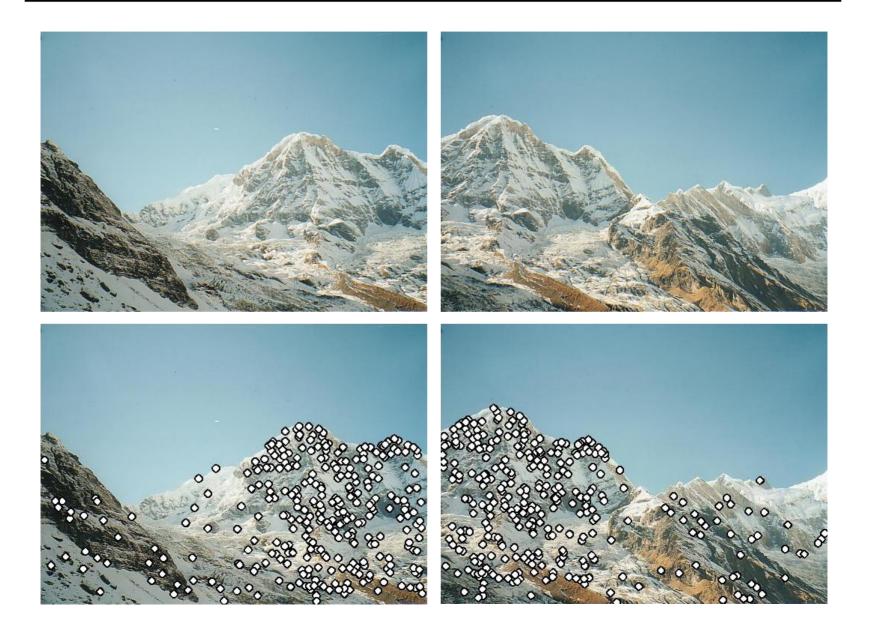
- 2D Rotations (θ, φ)
 - Ordering \Rightarrow matching images



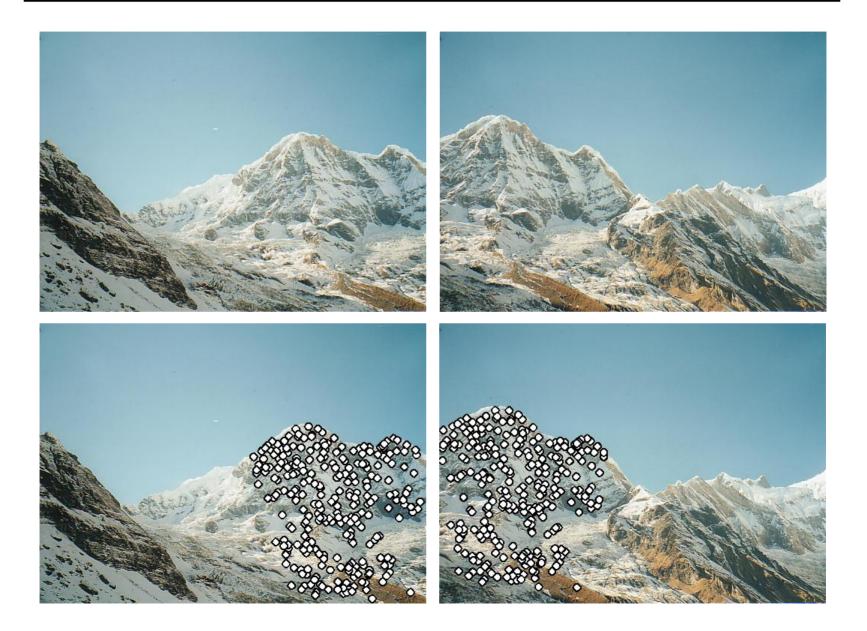
Overview

Feature Matching Image Matching Bundle Adjustment Multi-band Blending Results Conclusions

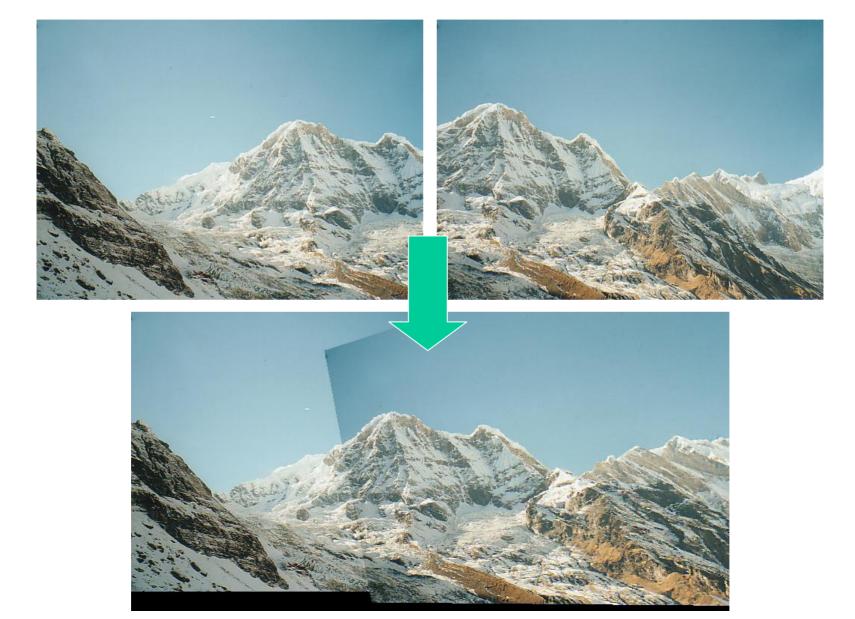
RANSAC for Homography



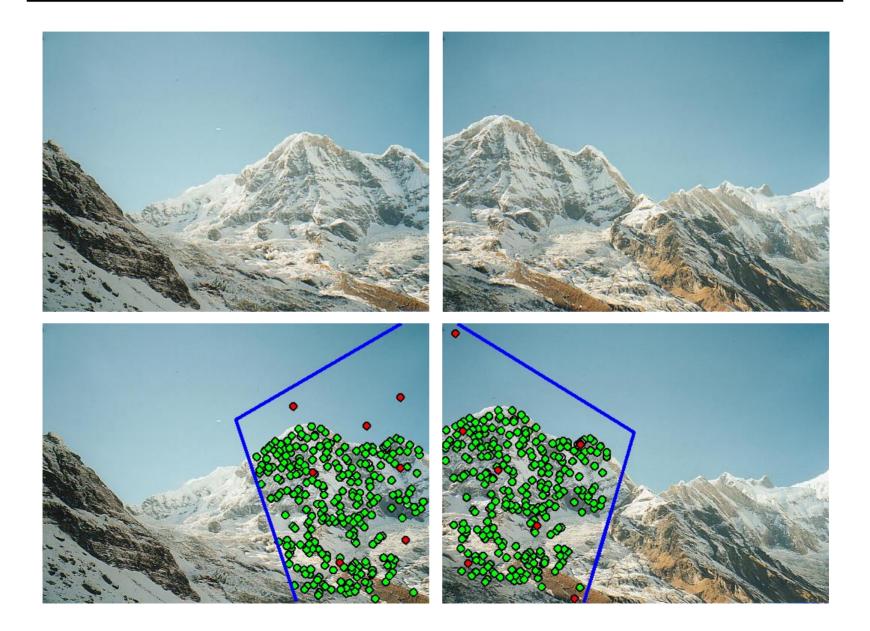
RANSAC for Homography

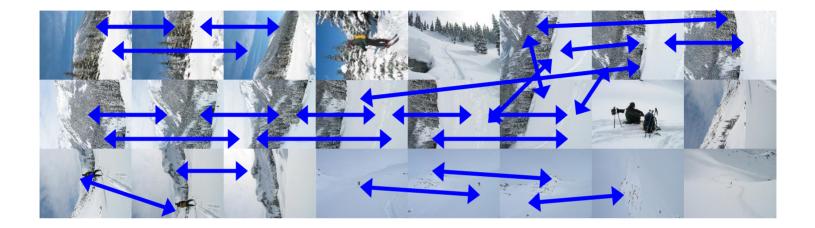


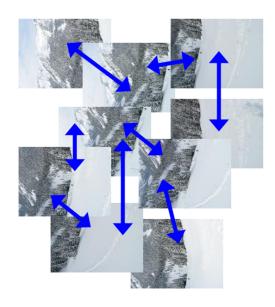
RANSAC for Homography

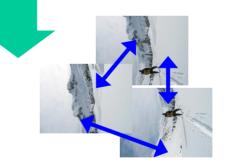


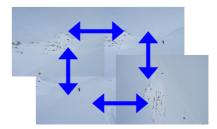
Probabilistic model for verification

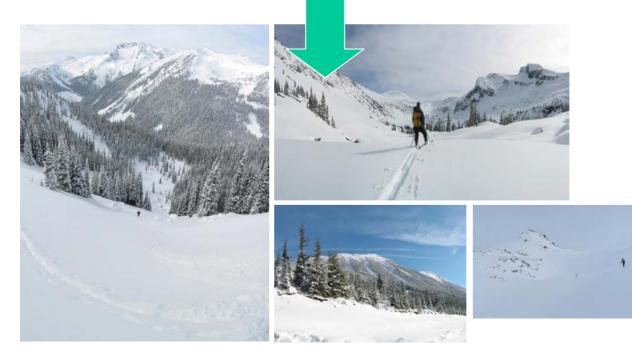












Homography for Rotation

Parameterise each camera by rotation and focal length

$$\mathbf{R}_{i} = e^{[\boldsymbol{\theta}_{i}]_{\times}}, \quad [\boldsymbol{\theta}_{i}]_{\times} = \begin{bmatrix} 0 & -\theta_{i3} & \theta_{i2} \\ \theta_{i3} & 0 & -\theta_{i1} \\ -\theta_{i2} & \theta_{i1} & 0 \end{bmatrix}$$

This gives pairwise
$$\mathbf{K}_{i} = \begin{bmatrix} f_{i} & 0 & 0 \\ 0 & f_{i} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\tilde{\mathbf{u}}_i = \mathbf{H}_{ij} \tilde{\mathbf{u}}_j$$
, $\mathbf{H}_{ij} = \mathbf{K}_i \mathbf{R}_i \mathbf{R}_j^T \mathbf{K}_j^{-1}$

Bundle Adjustment

New images initialised with rotation, focal length of best matching image

Bundle Adjustment

New images initialised with rotation, focal length of best matching image

Multi-band Blending

Burt & Adelson 1983

- Blend frequency bands over range $\propto \lambda$

Results

